September 24, 2021 10:30 – 11:30 am ET
Statistical Learning: Causal-oriented and Robust
Speaker
Peter Bühlmann, Department of Mathematics, ETH Zürich
Abstract
Reliable, robust and interpretable machine learning is a big emerging theme in data science and artificial intelligence, complementing the development of pure black box prediction algorithms. Looking through the lens of statistical causality and exploiting a probabilistic invariance property opens up new paths and opportunities for enhanced robustness and external validity, with wide-ranging prospects for various applications.
About the Speaker
Short biographical statement coming soon!
Connection Information
Please see the Webinar Series website for registration and connection information.
Event Type
- NISS Sponsored
Host
Purdue University
Sponsor
National Institute of Statistical Sciences
Website
Location
Online Webinar