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MULTIVARIATE THRESHOLD METHODS

Richard L. Smith (University of North Carolina)

1. Threshold methods

In this paper, I review a variety of approaches to the estimation of
extremal properties of a probability distribution or stochastic process.
Statistical methods based on exceedances over a high threshold have
gained in popularity in recent years, as compared with the much older
methods based directly on the extreme value distributions. Nevertheless,
there remain some critical questions about their application.

The simplest approach is based on a sequence of i.i.d. observations
X1, ... Xn, from an unknown distribution function F, in which, to confine
attention to the tail, we model only the exceedances over a fixed high
threshold w. That is, our information conmsists of N,, the number of
exceedances in n trials over the threshold u, and the excesses Y3,...,Yn,,,
where if the ’th exceedance occurred on the j’th trial of the original
sample, the i’th excess is defined by ¥; = X; — u. It is natural to
formulate the problem in terms of A = 1 — F(u), the probability of an
exceedance over the threshold, and the conditional distribution function
of the excesses,

— F(u'l'y)—F(u)‘ (11)
1- F(u)

Fu(y)

It is obvious how to estimate A (by the point estimate X = N, /n with as-
sociated confidence intervals etc.), but not at all obvious how we should
deal with (1.1). Davison and Smith (1990), following earlier papers
by Davison (1984), Smith (1984) and others leading back to Pickands
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(1975), suggested that an appropriate model for this is the Generalized
Pareto distribution (GPD) defined by

-1/¢

G(y;0,8) =1~ (1 + %y)+ y y>0, (1.2)

where o > 0, £ is any real number, and z4 = max(z,0). Thus the range
ofyisO<y<ooforf>0and 0<y< —o/fif £ < 0. The exponential
distribution, 1 — e~¥/?, arises naturally as a limiting case when £ — 0.

The motivation for the Generalized Pareto distribution is based on
Pickands’ theorem that

inf lim inf sup | F,(y) — G(y; 0,€)| =0
€ ulwrp 7 450

if and omnly if F' is in the domain of attraction of one of the standard
extreme value distributions. Here wp = sup{z : F(z) < 1} is the right-
hand endpoint of F, which may be finite or infinite. In words, there
exists a £ (which does not depend on ) and a ¢ (which does) such that
F, is closely approximated by G(:;0,€) whenever u is sufficiently close
to the right-hand endpoint.

If we ignore the approximation and assume F;, is exactly GPD, then
estimation by numerical maximum likelihood (MLE) is straightforward
in nearly all practical cases. The asymptotic properties are regular when-
ever{ > — %, and alternative remedies are available for £ < — % These re-
sults follow from general properties of nonregular estimation established
by Smith (1985). One serious competitor to maximum likelihood, apart
from Bayesian methods, is the probability weighted moments (PWM)
method of Hosking and Wallis (1987). The PWM method was earlier
developed for the three-parameter generalized extreme value distribu-
tion (Hosking, Wallis and Wood, 1985), where it was shown by simula-
tion to be in general more efficient than MLE for the central range of
€ (0.2 £ £ £ 0.2) and moderate values of n (up to 100). However,
PWNMs are much less flexible than MLEs as a general estimation method
— the reader who doubts this is invited to re-cast all the results of this
paper in terms of PWMs! Pickands himself proposed a direct method of
estimation based on quantiles, and de Haan and co-workers developed
methods based on moments (Dekkers and de Haan 1989, Dekkers et al.
1989, de Haan and Rootzén 1993), but these also lack the flexibility of
MLE to handle more complicated situations.
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In practice, of course, we want to apply this method in situations
much more complicated than i.i.d. observations, for example, depen-
dent data and situations depending on covariates. Major themes are the
following.

(i) Modeling of covariates: The idea here is that threshold exceedances
may depend on other measured variables that can be incorporated into
the analysis. For example, tropospheric (ground-level) ozone, a common
cause on environmental health concern in large cities, is hugely affected
by meteorological factors: the worst ozone days occur in hot weather
when there is low wind. It is natural to construct a regression model
in which the parameters A, o and (possibly) £ are functions of the co-
variates, through additional parameters which are estimated by MLE. A
direct method of doing this was described by Davison and Smith (1990).
An alternative approach, based on nonhomogeneous Poisson processes,
was developed by Smith (1989) and is outlined below.

(ii) Dependence: Most environmental time series are not independent
but exhibit serial correlation. An informal and somewhat historical ap-
proach to this is to group the data into clusters of dependent exceedances
and to apply the GPD to the maximum within each cluster. A more rig-
orous justification for such a procedure is based on the theory of extremes
in dependent stationary processes (Leadbetter et al. 1983, Hsing 1987,
Hsing et al. 1988, Leadbetter 1991) which shows how clustering natu-
rally arises in the limiting distribution of the point process of threshold
exceedance times under a simultaneous rescaling of time and space.

Nevertheless, although the idea of clustering is intuitive, there are a
number of approaches to identifying clusters in practice. This problem is
closely tied up with estimating the extremal index, for which a growing
literature now exists (Leadbetter et al. 1989, Nandagopalan 1990, Hsing
1991, Smith and Weissman 1994). The extremal index, an important pa-
rameter in its own right (Leadbetter et al. 1983, Leadbetter 1983) may
be defined in the present context as the reciprocal of the mean cluster
size in the limiting point process. It is estimated by first identifying clus-
ters of neighboring exceedances, and then calculating the mean cluster
size. (This assumes that we do not have in mind any specific model for
dependence, since if we did, we might prefer a model-based approach.
See section 4 for specific proposals in this case.) From this point of view,
the problems of identifying clusters and estimating the extremal index
are the same.



A number of procedures for identifying clusters exist. The simplest
is the blocks approach (Leadbetter et al. 1989, Hsing 1991) in which
the data set is divided up into blocks of consecutive observations, all the
exceedances within a single block being defined to form a single cluster.
An alternative is the runs approach in which two consecutive exceedances
are defined to be in the same cluster if and only if they are less than r,
observations apart. Here r, is a parameter to be determined. Smith
and Weissman (1994) give a theoretical argument for preferring the runs
approach to the blocks approach and suggest a procedure for determining
Tn. In the majority of practical cases, the results are not sensitive to the
precise choice of r,, which may be based on intuitive reasoning of how
long one would expect the clusters to last, and consequently such formal
procedures are not necessary.

(iii) Seasonality: A common feature of environmental data is that
the series is not stationary, but exhibits a strong annual variability and
possibly other periodic effects. (For instance, the tidal record is often
decomposed into over 100 harmonic components.) Davison and Smith
(1990) discussed two broad approaches to dealing with seasonality, the
“prewhitening” approach in which the raw data are deseasonalized be-
fore applying the threshold, and the “separate seasons” (or blocking)
approach in which the year is divided up into blocks with a homoge-
neous model being assumed for each block. The main example in Smith
(1989) also contains an extensive discussion of the blocking feature. The
disadvantages of prewhitening are, (a) the method is unsound unless
there are strong grounds, which would almost certainly have to be phys-
ical rather than statistical, for believing that the prewhitened data really
are strictly stationary even in the tails, (b) it can be hard to interpret
a threshold analysis of the prewhitened data as an extreme value anal-
ysis of the original data. The main disadvantage of the blocks method
is that the data are unlikely to be exactly homogeneous across blocks,
unless one uses very short blocks, in which case the problem becomes
overparametrized. An alternative approach is to treat time of year as
another covariate and use a regression approach. This is what I actually
do in Section 5 below. '

(iv) Selecting the threshold: Another practical problem in these
methods is how to decide what threshold u to use. Although theoretical
results on this question are available (Smith 1987, Dekkers and de Haan
1989, Dekkers et al. 1989), they are rather hard to use in practice be-
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cause the theoretical results themselves depend on additional parameters
which are unknown. A practical technique is to use the mean residual
life plot (Davison and Smith 1990, Smith 1990). The motivation for this
is the easily checked formula that for Y ~ G(+;0,€) and v > 0 (assuming
v < —0o /€ in the case £ < 0),

o+ &v
1-¢°

Therefore, an empirical plot of E{Y — v|Y > v} against v, should be
approximately a straight line. In practice, with data X,..., X, we plot
(X —w) (X > u) (1.4)

Y I(X; > u) )

E{Y —v|Y > v} =

(1.3)

against u, and look for the smallest u over the region in which this is a
straight line. The left hand side of (1.3), or its empirical counterpart in
(1.4), is known as the mean residual life in the theory of survival data,
hence the name of the plot. This at least gives some empirical support
to the practical choice of u, though it requires some care because the
plot becomes very irregular as u approaches the upper boundary of the
data. Again, from a practical point of view, the problem is often not so
serious because the choice of u is either suggested on physical grounds
(for example, with tropospheric ozone it is known that different chemi-
cal processes affect the ozone levels above about 80 ppb — the current
ozone standard is 120 ppb) or else the analysis is not too sensitive to the
precise choice of u. Nevertheless, it must be admitted that the choice of
threshold remains a major practical issue in this kind of analysis, and
may still be the area where further theoretical development is most badly
needed.

The Poisson process approach

An alternative approach, introduced by Smith (1989), is based on
viewing the two-dimensional process of exceedance times and excesses
as a point process in R%. Limit theorems for such processes were devel-
oped by Pickands (1971) and Resnick (1975) in the independent case,
and formed a major impetus for the probabilistic work on extremes in
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dependent processes, reviewed in Leadbetter et al. (1983). However,
the statistical application of these processes is more recent. Although at
first sight more complicated than the GPD approach, it ultimately helps
to simplify and unify the whole theory, especially when covariates are
present.

To develop this approach, let Xy, ...,X, be i.i.d. (~ F). Suppose F
is in the domain of attraction of an extreme value distribution. One way
to express that property is to say that there exist constants a, > 0 and
b, such that

n{l = F(any +ba)} = V(y) (1.5)

for each y, and hence
F™(any + by) — eV, (1.6)

Here we may, without loss of generality, take V(y) = (1 + £y);1/5 for
fixed £, in which case the limiting distribution function in (1.6) is of
generalized extreme value (GEV) form.

Now define a point process P, on [0,1] x R by putting a point at
each {i/n,(X; — by)/an)}, 1 < i < n. The total number of points in
this process is of course n, but the expected number in [0,1] X (y, o)
for any fixed y is n{l — F(any + b,)} which, by (1.5), converges to
V(y) (finite). From this it is possible to establish that P, converges
weakly, on all sets for which the second coordinate is bounded away
from its lower boundary, to a nonhomogenous Poisson process P whose
intensity measure A (A(A) is the expected number of points in A, for
A C [0,1] x R) satisfies

A{(t1,t2) X (y,00)} = (t2 — t1)V(y)

whenever 0 <t <t; <land ye R (y > -1/€if £ > 0).

In practice, rather than try to construct the limiting process with the
renormalization required, a more practical approach is to work directly
with a nonhomogeneous Poisson process applied to all observations over
a threshold u. Thus, for any observation X, taken at time ¢, for which
X: > u, one puts a point at (¢,X;). This is treated as part of a non-
homogeneous Poisson process on R x (u,00) whose intensity measure
satisfies

RV, «
M(ts, t2), (z,00)} = (ta—t1) (1+5"‘ ¢")+ Lt <ty o> (L7)
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It can be seen, from a number of different points of view, that this
is equivalent to either of the usual approaches to extreme value theory.
If M7 denotes the maximum of the process over time interval (0,T),
assumed bigger than u, then the event M1 < z is equivalent to saying
that the set (0,T) X (z,00) is empty, and this has probability

exp{—T (l +£z ;u);l/f} , T2u,

which is of the usual generalized extreme value form. Another fact that
follows directly from (1.7) is that, given a point (T3, X;) for which X; > u,
the conditional probability that X; — u > y is

(1+€‘u s );1/6 _ {1 + &y }—1/5
(1+§"_;&)'1/€ B Y+ &(u—p))y
+

which is of GPD form (1.2) with o = ¢ + £(u — p).
Estimation from (1.7) proceeds by constructing the appropriate like-

lihood for an nonhomogeneous Poisson process (Cox and Lewis 1966,
Section 3.3): if we re-define V() to be

T — —l/€
Vein b6 = (1+e225)
+
and let v(z; pu,v,£) = -0V (z;u, p,£)/0z, then if we observe a random
number N of exceedances (T, X;) with X; > u over a time period (0,T),
the approximate likelihood function is

N
L(.u', P, 6) = exp{—TV(u;p, ¢s 5)} : H ’D(Xj;[.t, ¢a f) (18)

=1

Estimation of p,1 and £ proceeds by numerical maximization of (1.8).

Comparison of the GPD and Poisson process approaches

The two approaches are equivalent in the sense that any model which
is expressed in terms of one of the two approaches may be rewritten
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as an equivalent model in terms of the other. The main advantage of
the Poisson approach is that the parametrization is more convenient
for complex models involving covariates. Suppose there is a vector of
covariates z; for each time point ¢, and that the quantities p = p¢, ¥ = ¥y,
€ = & depend on a parameter vector 7 through functions pu:(7) = p(zt; 1),
¥i(n) = ¥(25m), E&(n) = €(z¢;m). Then the likelihood, as a function of
7, may be expressed in the form

L(n) = exp{= [T V(u;pa(n), $e(m), &(n))dt} -
: H;V=1 'U(Xj; #T,(W), Tl’Tj(U)» £Tj (77))’

extending (1.8). For example, in the not uncommon situation that the
location parameter of a distribution is taken to depend on the covariates,
with the scale and shape parameters held fixed, we can simplify this by
setting 1(n) and &(n) equal to constants ¥ and . Such a simplification
was used by Smith (1989) to model the case of an additive linear trend.
It is not so easy to see how to incorporate such a feature into the GPD
model. In principle, then, I believe this method to be superior to the
GPD approach, though for practical application it is beneficial to have
both methods in hand.

2. Multivariate extremes.

Multivariate extreme value theory is concerned with the joint distri-
bution of extremes of two or more dependent random variables. The tra-
ditional approach to their definition has been via componentwise maxima
(or minima): if {(Xi1,...,Xip), ¢ = 1,...,n} is a sample of independent
p-vectors, then the vector of componentwise maxima is (Mn1, ..., Mnp),
where My; = max(Xyj,...,Xnj), 7 = 1,...,p. The limiting joint distri-
butions of these maxima (Mayy, ..., Mpp), subject to location-scale renor-
malization of each component, are the multivariate extreme value dis-
tributions. The bivariate case p = 2 is of particular significance, both
because it was the first case to be studied in detail and because much of
the theory is simpler for this than the general multivariate case.
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The main contrast with the univariate case is that there is no finite-
parameter family which exhausts the class of multivariate extreme value
distributions, for any p > 2. Hence there are two basic approaches,
namely those based on parametric subfamilies and those which are essen-
tially nonparametric. The discussion in this paper is concerned entirely
with parametric families. How severe a restriction this is, from a prac-
tical point of view, is still not clear, but there are now several different
approaches to the construction of multivariate extreme value families, so
this is still a very broad approach.

There are several different but equivalent characterizations of mul-
tivariate extreme value distributions, reviewed in detail in the books of
Resnick (1987) and Galambos (1987). One feature of multivariate ex-
treme value distributions is that the dependence structure is preserved
under transformations of the marginal distributions, so there is no loss
of generality in restricting attention to a particular univariate extreme
value family. For example, de Haan and Resnick (1977) assumed unit
Fréchet (F(y) = e~1/¥) margins and developed the characterization

s
G(y15--»Yp) = €Xp {—/ max (—l) p(duy, ..., dup)} (2-1)
T, 3 \Uj
where g is a positive measure on the set

Tp = {('u.l,...., up) DU >0, Eu‘? = 1}
Jj
subject to the condition

/T wip(du, ooy duy) = 1 for all j.

P

An alternative approach, due to Pickands, leads to a representation
formula (with GEV margins) of the form

z ¢ t
G(yl,...,y,,)=exp{— (th)A( pl T 7T t')}’ (2.2)
=1 j=1"J j=1%

where A(zi,...,Zp) is a convex function over the unit simplex S, =
{(z1,.0,zp ¢ 21 2 0,.,2p 2 0,3 z; = 1} which takes the value
1 at the corner points (when one z; is 1 and the rest 0), and ¢; =

9



{1+&(y; — uj)/ 11’;‘}:.1/5’ . In the bivariate case this reduces to a simpler
form

G(y1,92) = exp {— (t1+12)A ( b )} (2.3)

th+ 1
with A a convex function on [0, 1] satisfying A(0) = 1, A(1) = 1, A(z) >
max(z,1 — z) for 0 < z < 1 (the case where equality is attained in the
last expression being the case where both components are equal with
probability 1, the extreme case of complete dependence).

In principle, one can generate multivariate distributions by taking
general formulae such as (2.1)-(2.3) and inserting specific functions for p
or A. Simple-minded attempts. to do this fail to yield useful or tractable
families, but there are by now a number of approaches which do yield
usable parametric families. First I consider the bivariate case and then
generalize to p > 2.

Extensive work on bivariate extremes was carried out by Tiago de
Oliveira in a long series of papers (for a review see Tiago de Oliveira,
1984), but recent years have seen a number of new models introduced.
Among the models currently considered are

(a) Mixed Model (Gumbel and Mustafi 1967):
A(w) = fw? — 0w +1, 8 €0,1],
(b) Logistic Model: (Gumbel 1960):
A(w) = {(1-w)/*+w/*}*, 0<a<],

the limits @ = 1 and « | 0 corresponding to independence and complete
dependence respectively,

(c) Asymmetric Mixed Model (Tawn 1988):
A(w) = pw’ +0w’ —(0+p)w+1, (0> 0,0+¢ < 1,642¢ < 1,0+3¢ > 0),
(d) Asymmetric Logistic Model (Tawn 1988):
A(w) = {8/%(1 = w)"/* + g/ *w!/*}* + (0 - pJw + 1 - 6,

in which 0 €0 < 1,0 £ ¢ <1,0 < a< 1. The asymmetric versions of
the mixed and logistic models allow for non-exchangability between the
two components.
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(e) Inverted Logistic Model (Joe 1990):
A(w) = 1-[($10) T +{$(1-w)} 7]V, 720,0< H < 1,0< < 1.

The simplest (symmetric) form is when ¢; = ¢2 = 1; in this form the
mixed model with § = 1 arises when 7 = 1 while the limits 7 — 0, 7 — o0
correspond respectively to independence and complete dependence.

(f) Gaussian Model

a 1 1—w a 1 w
Alw)=(1- w)@{E + ;log( " )} + w@{ﬁ + Elog(l — w)}
for a € [0,00], where ® is the normal distribution function. This was
introduced independently by Hiisler and Reiss (1989), who derived it as
a penultimate approximation for dependent normal extremes, and Smith
(1991) as an example of a max-stable process (see Stuart Coles’ paper
at this meeting for a discussion of max-stable processes).

(g) Bilogistic Model (Joe, Smith and Weissman 1992).

A(w) = /01 max{(1 - a)(1 — w)u™,(1 - Bw(l — u)""}du

in which 0 < o <1, 0 £ 8 < 1. This is an alternative to (d) as an
asymmetric form of the logistic model, to which it reduces when a = g.
For multivariate (p > 2) cases, the possibilities are even more diverse.

In this case an equivalent characterization of Pickands’ A function (from
(2.2)) is
A(wyy ey wp) = [9 m?,x(wjuj)dH(ul, ey Up)s (2.4)
P
H being a positive measure on S, satisfying

/S uidH (uy,...,up) =1, j=1,..,p. (2.5)
P

Suppose we restrict H to be an absolutely continuous measure on
the interior of Sp. This is a nontrivial restriction, since many examples
require a degenerate H measure — for instance, in the independent case
H gives mass 1 to each of the corner points of the simplex. We can
construct families of multivariate extreme value distributions by finding
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measures H satisfying (2.5) and then applying (2.4). However, it is still
not so easy to find suitable H, especially with the restriction (2.5).

One construction suggested by Coles and Tawn (1991) was to take
an arbitrary density A* on S, with positive first moments, and to define

mj = /S w;h*(Ury oy Up)dUty, oy dtp, j=1,..,p
p

followed by

h(wy, ..., wp) = Hm_., (ijwj)_p_ *( it - T )

j=1 25 miw; 2 Miw;

Then h is the density of a valid measure H satisfying (2.5), and (2.4) may
be used to construct the A function and hence the distribution function.
An example for which this construction works is the Dirichlet density,

. P(ZJ a;) w®i~
h (wl,...,w,[,)={1-I F(aJ)}H l

for o; > 0, j = 1,...,p, and (w1, ...,wp) € Sp. Then m; = o; /(X k)
and

o = I g e i)™

i1 Lk QKW

This is therefore known as the Dirichlet model for multivariate extremes.

Other approaches to the construction of multivariate extreme value
distributions include a hierarchical approach introduced by Tawn (1990)
and in a related way by Joe (1990), time series contructions (cf. Section
4 below) and methods based on specializations of max-stable processes.

Coles and Tawn (1991) reviewed these approaches in more detail.
Two models that have been known for a very long time are the p-
dimensional generalization of Gumbel’s logistic model (Gumbel 1960),
A(wy, ..., wp) = (Z w;/ o')o‘, and the family introduced by Marshall and
Olkin (1967). However, Gumbel’s model has the severe restriction that
it forces all p components to be exchangeable, while the Marshall-Olkin
model can never be absolutely continuous, a fact which restricts its range
of applicability in the areas in which we are interested. With the above
classes of models, there are now many more possibilities.
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Estimation.

The estimation of multivariate extreme value distributions has long
been known to be problematic because all of them become nonregular as
the independence case is approached. That is, standard maximum like-
lihood asymptotic theory breaks down, as the Fisher information about
the dependence parameter tends to co. This problem was, however, es-
sentially solved by Tawn (1988, 1990), who developed stable asymptotic
distributions for the score statistic at independence, and used this prop-
erty to characterize the limiting properties of maximum likelihood in this
case. For interior points of the parameter space (i.e. bounded away from
independence or any of the other boundary conditions) these difficulties
do not arise and maximum likelihood seems to behave perfectly well. In
any case, our own preference is now to use standard maximum likelihood
theory for all calculations except that of testing independence, for which
we know that the standard x? distribution for the likelihood ratio statis-
tic breaks down. Even then, maximum likelihood may not be easy to
implement in practice, as it requires being able to evaluate the density,
and in several of the cases described above (for instance, the Dirichlet
model) this is not available in closed form. Computer algebra is one of
the techniques that has been used to get round this problem.

3. Threshold methods for multivariate extremes

The first attempts to construct threshold-based methods of statis-
tical inference in the multivariate cases were those of Coles and Tawn
(1991) and Joe et al. (1992). Both of these are based on a gener-
alization of the point process approach described in Section 1. If we
have multivariate data {Xji,...,Xip} and renormalize each component
so that (Mp; — byj)/an; tends to a limiting univariate extreme value
distribution, then we can form a point process P, on [0,1] X RP by
putting a point at each {i/n,(Xi1 — bi1)/ai1,...,(Xip — bip)/aip}, 1 <
t < n. In this case the number of points in any rectangle of the form
(t1,22) X (y1,00) X ... X (y¥p,00) converges to a limiting form, which we
may write in the form (¢t — t1)V(y1,...,9p), as n — oo. In fact the
limiting extreme value distribution, in the sense defined in Section 2, is
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just exp{-V(#1,...,¥n)} and this result combined with representations
such as (2.2) may be used to obtain point-process methods for inference
about multivariate extremes. For applications of this technique, I refer
to Coles and Tawn (1994) and Jonathan Tawn’s paper at this meeting.

For the remainder of this section I discuss an alternative approach,
currently being developed by Jonathan Tawn, Stuart Coles and myself
(Smith et al. 1993), in which we work directly with the exceedances over
a threshold, analogous to the GPD approach in the univariate case.

Suppose (X1,...,X,) is a typical p-variate data point but that, in
the spirit of threshold methods, for each j between 1 and p, we observe
not X; but Z; = max(Xj,u;), together with an indicator §; (6; = 1
if X; > uj, 0 otherwise). Here u; is a fixed threshold, which may be
different for each component j. We want to derive an approximation
for the joint distribution of {(é;,Z;), j = 1,...,p}. The underlying
assumption is that (Xj,...,X,) lies in the domain of attraction of a
multivariate extreme value distribution. Omne characterization of that,
described in detail by Resnick (1987), is first to transform each margin to
unit Fréchet form by means of a probability integral transformation, and
then to define the distribution function Fy(v,...,v,) for the transformed
distribution. Resnick’s Proposition 5.15 shows that the distribution is in
the domain of attraction of a multivariate extreme value family if and
only if, for all (vy,...,,) in which each v; > 0,

lim 1— F.(tvy,...,tvp) _ - log Gu(v1, ... ,vp) _ V (v, ...,v,,).
tmoo 11— F,(t,...,t) -logG.(1,...,1) V(,..,1)
where G, is a multivariate extreme value distribution function with unit

Fréchet margins.

By analogy with threshold methods for univariate extremes, in which
the approximate generalized Pareto distribution is in effect treated as
exact for sufficiently high thresholds, we may consider a scheme in which
(3.1) is treated as exact, for sufficiently large ¢t and vy, ..., vp.

The assumption we make about each marginal component is that for
sufficiently large threshold u;, the marginal distribution of X; — u; given
X; > u; is GPD. This allows us to write the j’th marginal distribution
function in the form

Fi(z) = 1= A{1 + &(z — ) /o337, 2>,

where \; = 1— Fj(u;). By analogy, we also take the limiting result (3.1)
as an identity for sufficiently large t. In fact, it is more convenient to treat

(3.1)
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(3.1) as an identity for some fixed ¢ = t., provided the v; are sufficiently
large; this is clearly an equivalent interpretation. Specifically, taking
tc=1and v; > /\J-'l, j=1,...,p ensures that the GPD approximation
is applicable for each marginal component. Our additional assumption is
that these levels are also sufficiently high for the asymptotic dependence
structure to be a valid approximation through (3.1).

By assuming this form of Fj, transforming to unit Fréchet (in the
tails) and applying (3.1), the form of multivariate joint distribution that
arises is

F(a:l,...,a:p) =1-

— u\ 16 _ 1/¢p
V{/\l‘l (1+éfmlalul)+ ,...,/\;1 (l-l-fp"——ypa u,,) },
P/

(3.2)

valid for z; > u1,...,2, > u,. For example, in the p = 2 case with the

logistic model of Sectlon 2, we have V(y1,12) = (u7* + y71/%)?, so
equation (3.2) becomes, for z; > uq, z3 > ug,

F(zq,29) = 1-

- 1/(ar) - -1/(a2) ) ¢
{/\l/a (1 e Ul) n ,\1/"‘ <1 P Rl uz) }
1 + g2 +

(3.3)

This formula still has one disadvantage: when a = 1 it does not re-
duce exactly to the independent GPD case. To get around this problem,
Jonathan Tawn and Anthony Ledford have suggested an alternative con-
struction, starting from replacing 1 — F, with —log F, in (3.1), which
leads to the formula

F(zq,...,2;p)

= » »
exp[—V ( (1—)\1 1+€1m1—u1) K)) yeons
o1 +
u) ~1/ép -1
( ( 1+ 6,= - ”) )) }] (3.4)
P +
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which shares the same asymptotic properties as (3.2) while avoiding this
one undesirable feature. In this case, (3.3) becomes

- -1/é1\\ /@
F(‘Bl,l‘z):exp[—{ (—log (1-1\1 <1+£1210_1'u1)+1 ))
Ty — U -1/é2 1/ay a
+(—log (1—/\2 (1+£2 p )+ )) . (3.5)

The main complication in the estimation of these distributions is the
form of the likelihood. The contribution to the likelihood from a vector
{(8;,Z;)} is constructed by differentiating the joint distribution function
with respect to the observed components. As an example, suppose p = 3
and §; = 63 = 1, §; = 0 (observations 1 and 3 above the threshold, 2
below). The contribution to the likelihood function from this triple is

BZF(zI’ T2, 1‘3) ]
3216233 o

=X1 WL2=U2 ,$3=X3 .

Maximum likelihood estimation in these cases is therefore straightfor-
ward in principle. In terms of its asymptotic properties, maximum like-
lihood is regular at interior points of the parameter space, but there are
still difficulties in testing independence which require the construction
of special tests (work by Ledford and Tawn, in progress).

4. Markov chains

One consequence of the methodology of Section 3 is that it gives us
a new way to think about extreme values in univariate time series. The
work described here is based on Smith et al. (1993).

The threshold approach in Section 2 is based on identifying clusters
of neighboring exceedances, and then using the GPD to model the largest
value over the threshold within each cluster. This is open to two major
objections, first that the method of identifying clusters is arbitrary, and
second that it seems inefficient to model only the largest value within
each cluster when all of them contain useful information. An alternative
approach would be to assume some model for the dependence in the
time series. However, the two major classes of models used in time
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series analysis are Gaussian models and linear models. Gaussian models
are not very satisfactory in extreme value analysis because, subject to a
very weak long-range independence condition, they always have extremal
index 1, and therefore necessarily fail to capture the features we are
trying to model. Linear models are in principle a more general class,
but the required extremal computations are not easy, and there remains
the question of how to verify the correctness of the linearity assumption,
which could be crucial to any calculation of extreme value properties.

The approach suggested here is to model the short-term dependence
by assuming the process to be a k-th order Markov chain, i.e. the distri-
bution of X, given X,,, m < n is determined completely by a transition
density depending only on X,,_g,..., X,—1. We also assume the process
to be stationary. Such a process is, of course, completely specified by its
consecutive (k + 1)’st order joint distributions, and if we assume these
are in the domain of attraction of a (k 4+ 1)-dimensional Markov chain,
an attractive theory results.

Suppose the consecutive j-dimensional joint densities are denoted by
fi(%1,...,z;). Then the joint density of a realization (Xy,...,X,) for
n > k is given by

= fear(XG, oo Xjgk)
325 fe(Xjseor Xjrko1)

Thus, given parametric families for fj, and fi,;, the likelihood function
is a ratio of two terms, each of which is a constructed in the same way
as a likelihood for independent multivariate data.

Now suppose the parametric family is not completely specified, but
only determined in the tails, as in Section 3. Then we may approximate
each of the numerator and denominator in (4.1) by an appropriate lim-
iting form. Our specific proposal is to use the approximations developed
in Section 3 to do this.

One consequence of adopting this approach is that it is still neces-
sary to calculate extremal properties of the process for the fitted Markov
chain. There has been considerable recent progress in this area. For
example, Smith (1992) developed a method of calculating the extremal
index for a Markov chain under the main assumption that the consecu-
tive bivariate distributions lie in the domain of attraction of a bivariate
extreme value distribution. Yun (1993) has extended this calculation to
k’th order Markov chains. Smith et al. (1993) discuss a variety of other
functions such as the sum of exceedances within a cluster. Anderson

(4.1)
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and Dancy (1992) refer to this as the severity of an extreme event, and
develop a characterization of its asymptotic form in terms of the limit-
ing point process of crossings of the threshold. With the exception of
Smith (1992), which reduced to the numerical solution of a Wiener-Hopf
integral equation, all of these solutions rely on simulation to calculate
limiting distributions of functionals within a cluster, but such methods
seem entirely within the scope of available computing resources.

Smith et al. (1993) applied these ideas (with £ = 1) to model seasonal
minima in a long-term temperature series, and a follow-up paper by Coles
et al. (1993) will develop this analysis further.

5. An application: High-level exceedances of tropospheric
ozone

The ideas developed in this paper have proved to be valuable in a
major applied study currently in progress, concerning urban ozone. Only
a bare outline is presented here; full details are available in the technical
report of Smith and Huang (1993).

Ozone is produced by complex chemical processes in the lower atmo-
sphere as a result of the emissions into the atmosphere of hydrocarbons
and nitrogen oxides. According to the current national ambient air qual-
ity standard (NAAQS), at any individual monitoring site, the number of
exceedances by daily ozone maxima of the level of 120 parts per billion
(ppb) should not exceed 3 in any 3-year period. Regions which violate
this are deemed non-attainment regions. These non-attainment regions
are generally in major cities such as New York, Chicago, Houston and
Los Angeles.

The principal purpose of the present study is to decide whether there
are trends in measured ozone data, after taking account of what are
known to be substantial meteorological factors. In earlier work as part
of the same project, Bloomfield et al. (1993) fitted nonlinear regression
models to daily ozone maxima, and for an extensive data set from the
Chicago area, concluded that there was a significant downward trend in
ozone levels during the 1980s after adjusting for a variety of meteorolog-
ical variables. Apart from the use of daily maxima, however, there was
no specific attempt in their work to focus on the extreme values of the
process. Concern about ozone is usually focussed on extreme values, as
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is reflected in the ozone standard, and this served to motivate the alter-
native analysis discussed here, which is based explicitly on exceedances
over a high threshold.

The data analyzed were daily maximum ozone levels for the summer
months from 1981 to 1991, a total of 2354 daily values. Raw data were
available for 45 monitoring stations in greater Chicago; for the purpose of
the present analysis, a set of “network maxima” based on 16 of those sta-
tions was used (Bloomfield et al., 1993). Meteorological variables include
noon values of temperature, windspeed and a number of other variables
from the meteorological station at O’Hare Airport. There also appears
to be a seasonal factor over and above what is explainable in terms of
meteorology, and this is modeled by introducing covariates cos(2rd/366),
sin(27d/366), where d is calendar day within year (1 < d < 366). Finally,
the year itself is treated as a covariate in the analysis.

A natural starting point is to consider just the crossing probability
of a single threshold (taken as 120 ppb) and to look for trends in that.
For this purpose we use the logistic link function:

o {205} = 200 (51)

where p(t) is the probability of exceeding the threshold on day t and
zj(t), 7 = 1,2,..., are known covariates and 31, B2, ... unknown covariates
to be estimated. Equation (5.1) is fitted by maximum likelihood to the
binary data consisting of 1 if there is an exceedance of the threshold on
day ¢, 0 otherwise.

In the present case, fitting (5.1) by stepwise selection of variables
resulted in a regression model including year and the seasonal variables
as covariates, as well as a number of meteorological variables: tempera-
ture, windspeed factored into directional components, pressure, visibility,
relative humidity and a temperature-windspeed interaction term. Sig-
nificance of the yearly trend may be assessed either from the standard
error of the estimated coefficient, or from comparisons of log likelihoods
(or deviances) of models with and without the fitted trend. The results
do confirm the significance of the yearly trend. At this stage, we are
implicitly assuming separate days to be independent.

A full discussion of the problem, however, requires more than the
crossing probabilities for a single threshold. For example, one question
of importance is to explain the very high ozone levels of 1988, when
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the highest reading in Chicago was 223 ppb. This cannot be answered
purely in terms of the probability of exceeding 120. Continuing to assume
independent days, the obvious analysis is to use the GPD of equation
(1.2) to model excesses over the threshold, together with (5.1) for the
exceedance probabilities. The analysis uses a logarithmic link function
for o (i.e. we assume that log o is a linear function of the covariates),
with constant £& The results imply a significant trend in the excess
values, as well as the exceedance probabilities.

We can now ask the question of whether the assumption of inde-
pendent days is in fact a reasonable one. The current thinking of most
researchers working in this area is that raw ozone data are serially cor-
related from day to day, but this is due primarily to the persistence of
meteorological influences, and once these are taken into account, inde-
pendence is a reasonable assumption. Bloomfield et al. (1993) assumed
independence based primarily on this reasoning,.

We can study this issue by assuming a first-order Markov structure
with (3.5) to model the joint distribution of consecutive days. Here )\,
and Az are the threshold crossing probabilities, modeled by (5.1), and
we assume §; = £; independent of covariates, log o and log o3 as linear
functions of the covariates on the respective days. Fitting this model,
with the same covariates as in the previous analyses, resulted in an esti-
mate & = 0.94 with an estimated standard error of 0.32, and a deviance
statistic (twice the difference of log likelihoods) of 6.33 compared with
the independence model @ = 1. As previously pointed out, this cannot be
assessed against the usual x? distribution, because the asymptotic theory
justifying this breaks down, and it is somewhat ambiguous whether this
is a significant result or not. In contrast, if we omit the meteorological
covariates, there is no ambiguity at all: in that case estimated values
of a are in the range 0.75-0.8 and the deviance statistic much larger,
indicating clear serial dependence in daily ozone.

Introducing dependence into the model makes little difference to
the estimated trends, which are clearly significant under either analysis.
However, it does affect the way we judge the model fit: the extreme values
of 1988 are clear outliers as judged against the independence model, but
do seem to be consistent with the first-order Markov model as judged
by some predictive diagnostics developed in Smith and Huang (1993).
For this reason, our current thinking is that it is important to take serial
dependence into account when trying to model the most extreme levels
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of ozone.
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