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Abstract

The usefulness of the service provided by an Advanced Traveler Information System and Advanced Traffic Management
System would depend on the quality of data that the system generates and the ability of system designers to tap into the
properties of the data. Probe vehicles are a major source of data in ATIS and ATMS. We investigate the quality of data
generated by probe vehicles on signalized arterial streets in terms of measurement errors and analyze the properties of travel
time data. A dominant property is the presence of dependence in the data. We then explore the nature of travel time
estimates. Given that travel time processes have certain properties and the realizations of travel times are affected by a large
number of covariates, the estimates may be of high variance. Also unless one states the travel time estimation model carefully,
some estimates may be biased. The dependence property of the data further makes statistical inference difficult. We point
out invalid conclusions that one may make under an independence assumption.

1 Introduction

The direct observation of transportation network conditions via specially-equipped ‘probe’ vehicles has
opened up an interesting area of traffic research and measurement. Probe vehicles form the heart of several
deployed and proposed mobile detection and monitoring systems within Advanced Traveler Information
Systems [ATIS] and Advanced Management Information Systems [ATMS]. While floating vehicles as a
technique for measuring speeds and travel times has been in use for a long time, most measurements were
made manually by observers in the vehicles. Probe vehicles use modern communications technology to
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transmit real-time information either to a centralized traffic information center or to distributed road-side
data-gathering points. Typically, these measurements are on travel times and average speeds.

Thus far, because of the absence of area-wide travel time data from network surveillance sources, the
quality of the data issues, in terms of measurement errors and potential effects on information quality,
have remained virtually unexplored. Also, the statistical properties of the estimates of travel time obtained
from probes and other network performance detection technologies have not been studied in any detail.

In this paper, we have three major objectives:

1. To investigate the quality of travel time measurements made by probe vehicles and to illustrate the
kinds of measurement errors that may be evident in the data.

2. To analyze the properties of travel time data.

3. To explore the properties of travel time estimates obtained on the basis of travel time data.

The unifying theme of the paper is that travel time observations have certain unique properties and in
order to develop useful estimates of travel times, one needs to take these properties into account. While
we focus our attention on measurements made by probe vehicles, our comments would be true about other
surveillance technologies that generate direct measurements on travel times (as opposed to technologies
and methods that allow the inference of ‘synthetic’ travel times either from data from other traffic stream
variables, as one could do with data from loop detectors or via traffic assignment procedures).

The ability to predict link travel times accurately is a core function of dynamic route guidance. A beginning
point of travel time prediction is the accurate estimation of expected travel times. We are ultimately
interested in a conditional expectation, since the estimate of an unconditional expectation would have a
large variance, which would not be very useful for predictive, and ultimately, the route guidance purpose.

Throughout the paper, we present empirical evidence by using data obtained via probe vehicles as a part
of ADVANCE , an ATIS project in suburban Chicago (Boyce, et al., 1994). The authors owe much to the
targeted deployment of ADVANCE, which was conducted to test the components of ADVANCE in the
real world and which yielded a dataset with measurements of travel time and other variables along certain
pre-determined routes. The availability of rich real-world data has allowed us to understand better the
nature of the underlying travel time processes. This knowledge could improve our efforts to devise travel
time estimation that take into account the properties of the travel times. The empirical evidence presented
in this paper uses part of the entire dataset, (described in Section 2) — that part being from signalized
arterials. We focus on conditions of recurrent (or incident-free) congestion.

Thus far, the major data quality issue in probe-based ATIS and ATMS has been a data ‘quantity’ issue
— that under low deployment rates, data from the system would be sparse with detrimental effects on
the quality of route guidance (Thakuriah and Sen, 1995, Koutsopolous and Xin, 1993). However, the data
itself may have measurement errors and because probe-based ATIS/ATMS is a relatively new concept, one
needs to understand the nature of measurement errors, if any, in the data. This is because the errors could
have unknown, yet devastating effects on the estimates developed from the data. Measurement errors are
present in to some extent most data; one needs to know the sources of these errors and their structure. In
this paper, we devote some attention to this important issue.

Probe-generated data have various properties; since our analysis is confined to signalized arterials, we will
confine our discussion to those properties that are directly relevant to the case of signalized arterials. Peri-
odicity and dependence are two major problems and if not handled carefully, can lead to wrong statistical
inference. Dependence can occur between travel time observations on the same link or between travel time
observations on different links along a vehicle’s route.

One ultimate use of probe data is to obtain estimates of expected link travel times. Again, careful model
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building should enable us to obtain good estimates of expected travel time; otherwise, the estimates may be
of high variance, and in some cases, biased. Moreover, because of dependence in the data, the computation
of several key statistics is not straightforward.

The paper is structured as follows: in Section 2, we describe the data used for the empirical evidence
presented. We point out some quality of data issues associated with probes in Section 3. We present
a detailed analysis of the properties of travel time data and estimates of travel time in Section 4. This
section has various subsections, and we will make detailed introductions as we go along. Finally, we draw
our conclusions in Section 5.

2 Data Collection Experiment

As already mentioned, the data used for the entire analysis were collected as part of the evaluation of
ADVANCE, during the summer of 1995. Travel times on signalized arterials depend on several factors or
covariates. These factors include volume and network control factors, physical network attributes, vehicle
route (turning movement executed to enter the link) and microscopic vehicle properties or driving style
idiosyncrasies. Naturally, the more covariate information we have, the better would be the precision of the
estimate. The data collection effort was preceded by careful planning, an objective of which was to design
the study such that we could collect as much data on these important covariates as possible. Moreover,
since we are interested in estimating a conditional expectation of link (and ultimately route) travel time,
the data collection was designed to enable analyses that would allow us to vary the travel time estimation
conditioning information.

The field tests were conducted in the northwest suburbs of Chicago. ADVANCE links are one-directional
and turning-movement specific, with a segment that may be common to more than one link. The link travel
time data were transmitted in real-time from ADVANCE probe vehicles that were driven by paid drivers
down pre-specified routes in three ‘networks’ that were identified for the purpose of evaluating different
algorithms in the Traffic Related Functions of ADVANCE. The three networks are presented in Figure 1.
The first of these networks consisted of 12 ADVANCE links and is labeled Network 1. The second, Network
2, consisted of 7 ADVANCE links. Network 3 consists of a total of 32 links.

All links in the three networks (except for link 5 in the first network) are part of a Closed Loop Signal
Control system. All approaches (two approaches in each direction) to intersections labeled X and Y in
Network 1 are detectorized. Intersection X is also covered by Networks 2 and 3.

The purpose of driving probe vehicles over a small number of links was to simulate fairly high levels [1-2
percent] of deployment of such vehicles, using very few equipped vehicles, by concentrating them on these
links. The probes were released at the beginning of the route at clock times that allowed the formation
of randomized headways. For the experiments on Network 3, the major objective was to gather extensive
amounts of data on three study links: Af (right turn), AE (through movement) and Ag (left turn). We
designed experiments such that vehicles were driven on randomly designed routes drawn over the 32 links.
The objectives of the randomization were the following: (i) to maximize the number of traversals on the
study links Af, AE and Ag and minimize traversals on supporting links (ii) to prevent the same driver from
executing the same turning movement repeatedly to control for extraneous dependence and (iii) to ensure
that all supporting links get comparable coverage.

The major variables on which data were collected are (i) link ID (ii) link exit time (iii) link travel time (in
seconds) (iv) congested time (in seconds), that is, the amount of time spent on a link during which the
vehicle traveled at or below 2 meters per second (4.4 mph) (v) congested distance (in meters), that is, the
distance on the link covered at speeds less than 10 meters per second (22.5 mph).

The entry and exit points of the three study links were also monitored by video surveillance cameras, that
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filmed the signal control at the both downstream and upstream intersections of the three study links (data
on time-varying signal control were not available from any other source), as shown in Figure 1. It would
ultimately be possible to obtain counts of vehicular demand at entry and exit points and also the travel
times of all vehicles, by matching vehicles at the two points. Data on signals were also manually recorded
at the locations indicated in Network 3 in Figure 1. '

During the experiments, care was taken at all times to ensure that all units providing data used in this paper
were time-synchronized according to the same clock. This included the video cameras, the clocks according
to which the signal data were manually recorded and the Traffic Information Center. The importance of
clock synchronization in ATIS and ATMS are elaborated upon in Section 3.

3 Probe Data Quality — Some Issues

The quality of any estimate would depend, to some extent, on the noise present in the data. Although most
deployed and proposed ATIS/ATMS utilize state-of-the art hardware and software in communications and
electronics technology, it is still essential to explore the sources of measurement errors, if any, and their
structure. This is especially the case with new technology. In section, we devote some attention to this very
important issue in the context of probe-based systems, and provide some illustrations about the nature of
the errors that might arise.

There are three issues which deserve attention in an ATIS that involves forecasting of link travel times,
although the first two issues are germane to all aspects of travel time measurements by probe vehicles. The
first is one of locating vehicles precisely on the network because of errors induced by Global Positioning
System. The second is one of synchronizing the clocks of all measurement devices within the ATIS/ATMS
correctly and maintaining this synchronization over extended periods of time. The third is a little obscure
but critical for the forecasting problem. It is an issue of the relationship between the amount of processing
time needed by the system and the forecasting interval of the system.

At the current time, the United States Department of Defense introduces an error that does not allow
precise location establishment for civilian purposes. Differential GPS (which was used in the ADVANCE
study) reduces the location error to 10 meters with 90% probability and to 5 meters with 50% probability.
However, considering the fact that urban arterial streets are usually a few hundred meters in lengths, even
the use of differential GPS may lead to noticeable location errors.

In the ADVANCE evaluation, an in-depth study was done to capture the effects of probe vehicle location
error by using observers in the probe vehicles who recorded the exit times from each link that the vehicle
traversed. The differences in exit times between each two consecutive links along a route yielded the travel
time on the downstream link. The analysis showed that 87.6% of the probe-generated travel times were
within £ 5 seconds of those recorded by observers. Figure 2(A) gives a histogram of the differences between
probe-recorded travel times and observer recorded travel times for all links in Network 1 in Figure 1, within
this + 5 seconds interval.

Measurement errors could lead to bias in estimates of travel time if they are systematic based on different
conditions. In the ADVANCE study, the distribution of differences was similar for different links with
different lengths and turning movements. Although there were tests done to validate the congested distance
and congested time measurements, we did not directly investigate whether measurement errors vary with
vehicle speeds. However, the distribution of differences were similar for congested links where virtually
all vehicles incurred stopped or queuing delay compared to other links with good progression and low
congestion, where vehicles rarely incurred any delay. Hence we have no reason to believe that location
error problems with different link lengths, turning movements or vehicle estimates, which could otherwise
bias estimates.
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Figure 2: Quality of Probe Reports

A difficulty with this kind of observer-verification is that observers may have difficulty knowing the exact
location where a link begins and ends, as defined in the ATIS map database. Hence. observer-recorded
exit times may also have a location-error problem.

The second issue is one of the clock time of recorded events. A problem could occur due to two reasons
— the first is that the clocks of different data gathering devices are not perfectly synchronized. This is
a long-run maintenance issue. The second reason is more ‘correctable’ and is more of a design issue. A
number of currently deployed ATIS/ATMS records the clock times at which events are recorded by the
system as opposed to when an event actually occurs, usually to prevent oversaturation of transmission
capacity. For example, in a probe-based system, the difference between the two clock time of the time of
event and the clock time of recording could occur due to processing time by in-vehicle system hardware or
due to lags in transmission or receiving time at the centralized or distributed information centers(s) due
to ‘radio-congestion’. In a system that measures travel times by video cameras at two different locations,
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measurements in travel times may be in error due to the recording speed of two video units. In such a
case, two camera locations may need to be connected by hard-cable or by some other means to ensure that
both cameras are indeed recording at the same speed (this was done in the case of the ADVANCE study).
Inconsistency in recorded clock times would especially lead to a problem if data from multiple sources have
to be integrated in real-time or even off-line.

The exit time from a link is the clock time stamp available in the ADVANCE data. However, the time that
is actually recorded is the time at which this message is received at the Traffic Information Center. This
message is transmitted ‘instantaneously’ after the vehicle exits a link, but due to reasons outlined above,
there could be a difference between the actual exit time and the recording time. The difference between
the exit time and the travel time on one link should yield exactly the exit time from a link immediately
upstream along a vehicle’s route. We present here an example from three consecutive links, DA, Af and
fC shown in Network 3 in Figure 1. Figure 2(B) and (C) show the distribution of differences, di f f1=[exit
time(link Af) - travel time(link Af)] - exit time(link DA), and di f f2=[exit time(link fC) - travel time(link
fC)] - exit time(link Af) respectively. The shape of the distributions are similar for dif f1 and diff2 and
approximately normal, except for the fact that the tails are long on both the positive and the negative side.
Figure 2(D) provides some insights into the structure of these long-tailed structure of the distributions.
The quantities dif f1 (black lines) and dif f2 (grey lines) are shown in Figure 2(D) for each probe vehicle
considered in Figures 2(B) and (C). For instance, for each probe, most large positive values of dif f1 go
with large negative values in dif f2. This indicates that the long tail on the positive side in Figure 2(B)
corresponds to the negative tail in Figure 2(C), which means that for the vehicles forming these tails, there
was a lag in recording the exit time from Af but little or no lag in recording the exit time from fC and DA.
This implies the possibility of cancellation of errors over a vehicle’s route. This means that if there was a
lag in recording the exit time from link Af, then there was little or no lag in recording the exit times from
fC. If Figure 2(D) had instead shown that dif f1 and dif f2 are both positive, then the implication would
have been that there were lags in recording the exit times from both Af and fC.

The third issue is relevant to probe-based systems with a real-time forecasting function. Typically, for dy-
namic route guidance purposes, in order to obtain a shortest path, forecasts of link travel times are needed
a short horizon into the future. Some studies have shown that the usefulness of prediction deteriorates with
increase in the length of the forecasting interval (for example, Thakuriah and Sen, 1995). Therefore, one
would like to give predictions for a short time horizon. The system also has a ‘cycle’, called the processing
cycle, during which the system processes incoming information. A problem could arise if there are incon-
sistencies between the two system ‘cycles’ — that of the forecasting cycle and the system processing cycle.
This is because some time must be allowed for the system to process incoming information. Depending on
the scale of the deployment of the system, the time needed for processing information may be quite large.
If the forecasting time horizon is smaller than the processing time needed, then a forecasting interval may
well retain an estimate of travel time from a previous system processing cycle. This could bar a real-time
ATIS from actually using forecasts altogether in its shortest path calculations.

We conclude our comments on the quality of information via probe-based systems by stressing that one
needs to be careful to check if ATIS or ATMS surveillance units yield data that have measurement errors
that are not understandable or that are not easily correctable. A way to assess the size of measurement
errors and their structure is by detailed field tests during the design phase of the system so that one can
have some reasonable assurance about the quality of information, once the system is fully deployed.

4 Properties of Travel Time Data and Estimates

In this section, we present some analysis on the properties of data from probe vehicles and the estimates
based on these data. The ‘all-encompassing’ property of data on signalized arterials is the presence of
dependence in the data which is important to consider because this property would complicate statistical
inference made on the basis of the data. We treat dependence in two ways: (i) situations when the
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measurements made by a vehicle is affected by another vehicle and (ii) situations where correlations among
observations are non-zero and observations are related by either long-memory or short-memory trends or
periodicities. The latter case can easily occur even when one observation is not affected directly by another
observation.

To motivate the discussion on dependence among travel times and the implications on travel time estimates,
we start by laying out the components of dependence in travel time measurements. In Section 4.1, we show
that data generated by probe vehicles can be used to decompose the total travel time measurement into
components that allow a better understanding of the structure of travel times. We present evidence of the
short-lived cyclical pattern in travel time observations that is induced by signal control in Section 4.2. This
trend imposes a profound effects on estimates of travel time if not handled carefully, as we will elaborate
in Section 4.3. We treat two different cases of dependence — among observations on the same link (in
Section 4.4) and among observations along links in a route (in Section 4.6). Then in Section 4.5, we address
the issue of potential bias in estimates of travel time.

4.1 Decomposition of Travel Time

The travel time incurred by a vehicle on a signalized arterial may be decomposed into two components:
cruise time and delay (intersection delay resulting in queuing and/or stopped delay). This decomposition
has been used in some traffic simulations (Thakuriah and Sen, 1995). Volume affects both components
by reducing the distance which a vehicle can travel at free-flow speed and increasing delay time. In this
section, we investigate whether this decomposition is empirically verifiable.

Probe vehicles allow the empirical verification of this notion by recording the time spent at or below
predetermined speeds. In the ADVANCE probe vehicles, as described in Section 2, three measurements
were made by the vehicles with respect to this issue: the time spent at free-flow speed (when congested
time (ct) and congested distance (cd) are both 0); the time spent at speed 0 or very low speed (less than
4.4 miles per hour, when ct and cd are both positive) and the third is a measure of the distance at a speed
at or below 22.5 miles per hour, which is less than free-flow speed but greater than stopped or low speed
(when cd is positive but ct is 0).

Figure 3(A) presents a scatterplot of ¢t against ¢t on Link 11 on Network 1 of Figure 1, with a linear fit
via Model [A] of (1):

[A] tti=a+Bcti+e; a=4206 (=097 se.(8)=009 s=11.36 R>=.88 (1)

One sees a large amount of variability of travel times at and around ct = 0, which indicates that in some
cases, high travel times are incurred without slowing down to below the threshold speed of 4.4 miles per
hour, whereas in other cases, vehicles do not slow down simply because they encountered free-flow conditions
(concurred by low total link travel times). Except for this variability at ¢t = 0, the relationship between
travel time and congested time is well-described by linear fits, indicating that most of the variability in
travel time is accounted for by speeds less than 4.4 miles per hour, as supported by estimating the model

[B] tti=a+Bctf +e¢; @=4269 =091 se(8)=004 s=523 R?®=.92 (2)

where ctj' are positive values of ct. We can expect the structure of the estimated errors to reveal the pattern
left in travel times after taking out the effects of queuing or stopped delay. These effects on signalized links
are mainly due to the effect of signalization or red phase delay. The residuals are plotted in Figure 3(B),
which shows that there is virtually no pattern left, except at ¢t = 0, indicating that the residual time
(travel times without queuing or stopped delay) is almost a constant. However, even vehicles that do not
incur stopped delay incur lower than free-flow speeds especially if they join the end of a moving queue.
This part of the travel time observation would be affected by volume because higher volume would lead to
higher queue lengths. This speed regime consists of vehicle acceleration from the critical ct speed of 4.4
mph to free-flow speed and de-acceleration from free-flow speed to below the ct threshold. This part of the
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Figure 3: Decomposition of total travel time of each vehicle via measurements at different speed levels.

speed regime can be explained by means of Figure 3(C), where we have shown the relationship estimarted
via the model

tt,=a+8cd?+¢ &=307T1 F=007 se(3)=0008 s=299 R?=.68 (3)

where cd? are congested distances of those observations with ct = 0, indicating that slowing down below
the free-flow speed is a significant contributor to variability in travel times for vehicles that does not incur
stopped delay (recall that cd is the distance spent at speeds between 22.5 mph and 4.4 mph. Hence. the
delay component inciudes the delay time that stopped and also the ‘slow-down’ time incurred by having
to wait for the stopped queue to clear.

The analysis shows that the decomposition of vehicle travel times into cruise time and delay holds quite

well on signalized arterials. An implication of this empirical verification is that simulations that use this
simple decomposition would approximate vehicle travel times with reasonable accuracy.

4.2 Inferring Signalization Periodicity in Probe Travel Times

In this section, we explore the periodicities imposed by signalization on travel times by using probe data.
Let t4,, be the travel time experienced by the ith probe vehicle during day d, that exited a link during
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time-period ¢. Now consider the following model

ttari =7+ Y alai+ Y Belri + €
4 t

where .
Ij; =

)

1 if tt was incurred on day d
0 otherwise

and
I { 1 if tt was incurred during time interval ¢
tai —

0 otherwise.

The parameters oy and 3; are respectively day effects and time-of-day (used as a surrogate for a link travel
time diurnal pattern) effects experienced by the ith probe. In case of day d and time interval ¢, under the
condition that Ele;] = 0, the model in equation (4) is equivalent to

Eltta,::] =7+ aq + B¢ : (5)

To estimate the model in ( 4), the independent variables corresponding to the ay’s and B;’s were coded
indicator variables, with one indicator variable for each time interval ¢ (each ¢ is five minutes long) and
one for each d used in the analysis. We estimated this model by least squares. If E[e;,¢;] = 0, then
Cov (tti, tt;) = Cov (e;,€5), Vi # j. Then the error structure of this model would allow one to be able to
examine the effects of those variables that are not included in the model. Assuming the time-of-day effect
lets us subtract out one of the major contributors to variability in travel times, that is volume, the error
structure of (4) should reflect the contribution of the periodic structure imposed on estimated link travel
times by signalization. )

Figure 4(A) shows a plot of the time headway or the difference in exit time (on the same day d) between two

probe vehicles ¢ and j on the horizontal axis. The vertical axis givés an empirical covariance, Cov (tt;,tt;),
(that is, it is the product of the residuals, e; X e;, 7 # j, obtained from estimating the model given in (4)).
The pattern shows that two pairs of vehicles that exit at certain headways are more likely to have the same
estimated covariance, than those pairs that exit at other headways. Clearly, there is a cyclical pattern left
in the estimated covariance, that cannot be accounted for by subtracting out the time-of-day effect only
from the travel time observations.

A periodogram of the estimated covariance (presented in Section 4(B)) lets us see that the largest peri-
odogram ordinate is estimated at 135 seconds. This is, in fact, the average signal cycle length, which we
were able to corroborate with the information on signals obtained from the video data. Figure 4(C) shows
a plot of the estimated covariance from a model

ctat; =77+ Z agly; + Z Bielts + €
d :
s.t. Z ag =0 (6)
d
Z,Bt =0
t

where ctq;,; is the congested time of the ith probe vehicle on day d and time interval ¢ and I;; and I, ;
are as defined above. Clearly, the same periodicity in evident whether we use the estimated covariances of
travel times or congested times. Figure 3 shows Cov (tt; — ct;, tt; — ct;), ¢ # j, that was estimated via a
model similar to those given in (4) and (6). The estimated covariance shows the approximate trend in the
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Figure 4: Estimated Covariances and Signal Cycle Periodicity Apparent in Error Structure

difference, indicating that at periods of close to the average signal length, there is some trend left owing to
vehicle acceleration and deacceleration, (as discussed in Section 4.1) even after taking out the time-of-day
effects and delay. To understand the effect of signalization on travel times, one needs to be able to account
for the vehicle arrival process within each cycle.

Figure 5 shows an estimated relationship between the vehicle's exit time within a signal cycle with its
travel time. The model is

tt = flpi) + & (7)

where tt; is the travel time of the ¢ probe vehicle and p; = t,mod(r;), t; being the exit time of the ith probe
from the link and r; is the start of the red phase of the cycle in which the vehicle exited from the link (a
cycle is assumed to start with the start of the red phase and end with the end of the green phase). The
scatter plot indicates that there is a lot of noise in the data. This is because the plot includes data from

1. signal cycles with several different volume levels; for example, the points in the upper right side are
travel times of probe vehicles that exited the link in cycles of high congestion, so that even though
these vehicles exited late in the cycle, they still incurred high travel times

2. cycles with low congestion and from probes that were able to take advantage of good progression by
incurring low travel times even though they exited at the start of the green phase; these are indicated
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by the group of points at the lower left side of the plot

3. from cycles of varving lengths so that the pattern is shifted to fit the ‘average’ cycle’.

The model was estimated by a non-parametric Gaussian kernal estimator (Hastie and Tibshirani, 1990)
with a bandwidth, A\ = 4.98 (s = 17.02 and R? = .33). Figure 6 shows the residuals plotted against p —
there is virtually no pattern left in the residuals. However, the spread in the points is slightly higher for
higher predicted travel times because of the role of progression effects in different cycles.
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Figure 6: Estimated error structure after subtracting out the effect of signalization.
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The function f(p) is volume-specific and at least a non-increasing function of volume. In Figure 5, the
estimated function is fitted for conditions of signal delay or uniform delay only (which occurs because
of differences in vehicle arrival times at the intersection during the red or the green phase) and not for
situations of overflow delay (when vehicles incur delay due to sustained conditions of demand exceeding
available capacity). However, the estimated variance of this model is the lowest of the models we had
considered so far (a piece-wise linear fit of the relationship between travel time and relativized time had
yielded an estimated s = 18.49, whereas the model in equation (4) relating to day and time-of-day effects
yielded an estimated s = 25.75). This indicates that the pattern imposed by signal cycles is perhaps
the major covariate of travel time on signalized arterial and that in order to subtract out the effect of
signalization from travel time observations, one needs to consider the relationship of the vehicle’s entry/exit
time vis-a-vis the signal cycle. However, all the factors itemized in the previous section contribute to high
variance in the estimates of travel time.

4.3 Dependence among Travel Time Measurements

We now investigate further the lack of independence among travel time observations and its effects on
travel time estimates. In Section 4.4, we discuss the dependence structure among travel time observations
on the same signalized arterial and the nature of the nature of the covariances among observations. In
Section 4.6, we explore the dependence structure among observations on multiple links along a route and
the implications for route travel time estimates.

4.4 Dependence — Case of a Single Signalized Arterial

In the case of travel time observations on a single signalized arterial street, the lack of independence
could occur due to several reasons, the crucial factors contributing to this dependence being signalization
and volume levels. Congestion imposes a periodicity via a long-range diurnal trend whereby, even though
separated by a long term period, vehicles at the rise of a peak period would incur travel time that are similar
to those entering the link during the decay of a peak period. But the short-lived cyclical pattern imposed by
signalization is the more pronounced contributor of dependence among observations generated by different
vehicles. Signalization causes dependence by (i) inducing similarity in entry times from upstream links
during the green phase of upstream links, which leads to similarity in arrival times within the signal cycle
of the downstream link; for example under otherwise similar conditions, two vehicles arriving at a traffic
signal ten seconds after the onset of the red phase will have similar link travel times (ii) inducing progression
effects so that vehicles that enter from the same upstream link incur travel times are similar compared
to those that arrive after executing other turning movements. Thus, not only would one conjecture that
link travel times are correlated but, as we showed in Section 4.2, that covariances are functions of time
headways (difference between exit times between two probes) and are variable.

The variance of the estimated mean &t = n™' 3., tt; of probe travel times, tt1,tts,...tt,, for the same
link over a time interval ¢t is

var [tt] = E[ft — E(#t)]> = E[n~! zn:(tti — E[tt])]?

=n"2 E[zn:(tti - E[tt:])* + z(tti — E[tt:])(¢tt; — Eftt;])] (8)
=1 ij
i#j

n
=n"2Y" varftt] + > Cov[tti, tt;]
=1 i,

. v].
i)
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be exactly the same and even a single observation would suffice as a replacement for all the observations.
In practice we would expect something in between, where > v > 0. Even then as n — oo, var[ft] — 0.
Although our focus has been on the estimated sample mean, we would expect this situation to be true for
most estimators.

If the t¢;’s were uncorrelated, the average covariance v would be zero. Therefore, in order tp shpw that the
observations are correlated, we need to test if v = 0. We did for each link on Networks 1 and 2 in Figure 1.
Also the estimation was conducted separately for peak and off-peak periods.

To estimate n and v, we used the estimated residuals eq; from the model in (4) — if the model in (4) holds,
a reasonable estimate of [t — E[¢t]] is €4 = ttas — § — Ga — B¢, and [64,¢]? estimates var [ft]. Therefore,
the model estimated is

[éd,t]2 =v+m [l/nd,t] + €d,t (11)

where the n = v +#; and €, is the error term relating to the tth time interval on day d. These parameters

—_— =2
were estimated by weighted least squares, with weights equal to E[t¢;] . To test the hypothesis H, v = 0,
against A, we conducted a t-test (the details of the validity of the ¢-test is given in Sen et al. (1996)).

We can see from Tables 1 and 2 that all estimates of v are positive and are significant at the 5 percent level
or better, with the exception of links 5, 6 and 8 in the peak period and 2, 5 and 6 in the off-peak period.
Based on the estimates of v, the hypothesis of no correlation may be rejected, indicating the presence of
dependence among observations on the same link.

Links 5 and 6 are not on Dundee Road, which is a major arterial with high progression effects; they are
side-streets with very little congestion. Link 5 is also not signalized. To enter Link 8 while driving along
the route, vehicles have to execute a permitted right turn that obviates the effects of signalization to a large
extent. These results indicate that the effects of both congestion and signalization induce dependence.

An advantage to treating average covariances and variances as model parameters is that one can estimate
them via data generated by probe vehicles, as we have illustrated. Once average variances and covariances
are correctly estimated, we can use these estimates for the following purposes:

1. Estimation of Sample Sizes: One purpose for which these estimates could be used is to estimate
sample sizes and therefore, deployment levels necessary for precise estimation of travel times. In
Sen et al. 1996, we presented a detailed analysis of sample sizes required for travel time estimation,
given dependence in the data. The relationship between the estimated precision of estimates, s.e.[Z],
where Z is the sample mean link travel time over a five-minute interval and n, the number of probe
observations per time interval of five minutes is shown in Figure 7. The results indicate that due
to dependence, the variance of the estimate of expected travel time does not decay to 0, so that
high levels of deployment may not offer a great deal of improvement in the quality of dynamic route
guidance. Therefore, the marginal improvement in the precision of estimates drop off after the use
of data from a few probe vehicles and adding more probe coverage on a link does not improve the
quality of the estimate.

2. Decision Rules to Give Dynamic Guidance: Recent results obtained by Thakuriah and Sen (1995)
by a simulation-based model of the quality of information showed that in a dynamic route guidance
system, dynamic travel time estimates had very large variances, especially at low deployment levels.
These estimates resulted in routes which were inferior to routes resulting from static estimates. In
an attempt to remedy this difficulty, we developed decision rules for providing dynamic estimates to
vehicles only when they differed ‘adequately’ from the corresponding historical estimate.

In the simulations, we used two criteria for giving dynamic link travel time updates for the purpose of
dynamic route guidance: [A.] Relazed Criterion [RC] when we broadcast dynamic estimates if they
differed from the corresponding static estimate by 1 ‘standard error.” [B.] Strict Criterion [SC] when
we required a difference of 2 ‘standard error’ for broadcast.



Thakuriah and Sen 16

21 =

20 =

1~

18 -

-

s -

l.')j

145

134 e

2= .

11-{ St e e e e e e et
5’5{&]10{

9 -

3=

a5
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The results showed that the quality of route guidance (in terms of travel time savings to users) improve
substantially when these decision rules are used for dynamic guidance, by acting as a “gatekeeper”
against “unreliable” dynamic updates. However, if the ‘standard error’ is computed in the usual way
by using the usual sample standard deviation of probe reports divided by the \/n, where n is the
number of probe reports used in constructing a dynamic estimate, then because of the presence of
correlations among probe data, the estimate of the variance would be an under-estimate. This would
permit gatekeeping decision rules to allow more unreliable dynamic updates, with negative effects on
the quality of guidance.

4.5 Bias in Estimates of Travel Times

The analysis presented in Section 4.2 showed that signal control is a major contributor to correlation
and that the vehicle’s exit time from a link relativized to the signal cycle is an important variable in the
estimation of travel times. However, data on the sequences of signal control phases on a continuous clock
are unlikely to be readily available in ATIS of the near future. In this section, we explore the effects of
non-inclusion of the vehicle’s entry/exit time to the cycle in a model that estimates travel times.

If a regression model does not include a term(s) reflecting traffic signal timings, the estimates from that
model may be biased. However, not all estimates in such a model will be biased in the same way. A model
that estimates travel time as a step-function of the clock time of day is a candidate for such bias. The
effects of this bias can be substantial in the case of pre-determined temporal aggregation intervals of travel
time on signalized arterials.
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Figure 8: Vehicle route trajectories.

not correct because we have ignored covariance terms, . o Cov [tt, tt;] for i # j in the same link.
¥y

To illustrate a situation of link-to-link dependence, we graphically investigate the effects of link-to-link
relationships on 10 links in Network 1 by means of Figure 8. This figure shows the route on the horizontal
axis and the cumulative link travel times of each of the 35 vehicles considered, on the vertical axis (TR =621,
sﬂ.e.[TR] = 24.89). We depict two groups of vehicles in the figure; Group A depicted in diamonds with
Tr = 918 seconds and s.e.[Tg] = 39.34 and Group B depicted in dots, T = 585 seconds and s.e.[Tg] = 4.32.
Both groups incur similar travel times upto Link 3, as indicated by the slope of each line upto Link 3.
Vehicles in Group A incur higher travel times on Link 4. Their high travel time condition is exacerbated
in Link 7 and in Link 9; however, even on other links, the slope of the grey lines almost never flatten out
compared to the black lines, indicating that vehicles in Group A did not get the chance to ‘recover’ their
travel times on subsequent links, so as to incur route travel times comparable to Group B.

As mentioned earlier, the dependence structure between links depend fundamentally on the signal control
parameters and progression factors between links. Figure 9(A) and (B) show scatterplots of

delay = traveltime — [link length/speed limat],

between consecutive links along the same route as in Figure 8. For example, DELAY-1 means the quantity
delay on link 1. The variable plotted on the horizontal axis is always the delay of the upstream link. Two
patterns become apparent (i) an L shape; for example the pattern between Link 1 and Link 2 and (ii) an
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Figure 9: Scatterplots of vehicle delays on pairs of consecutive links.

approximate increasing linear shape; for example between Link 5 and Link 6. Pattern (i) indicates poor
progression between two links; for instance if a vehicle traverses an upstream links with no delay, then it
would almost surely have to stop at the downstream link. Pattern (ii) indicates situations where a high
travel time on one link would be followed by high travel times on the downstream link. The same situation
holds for the case of low travel times.

Given the dependence structure between links, it would appear to be virtually impossible to predict travel
times on downstream links via closed form delay functions. Further research is needed to predict volumes
and time-varying sequence of signal control on a continuous clock, in order to estimate travel times on a
link-to-link basis for the precise estimation of route travel times, given the dependence structure in the
specific network under consideration.

5 Conclusions

In this paper, we commented on the quality of data obtained from probe vehicles and on the properties of
the estimates of expected travel time obtained on the basis of these data. Like any new technology, data
from probe based systems need to be analyzed to ensure that there are no measurement errors the effects of
which are not understood, because these errors could significantly affect the quality of the estimates based
on the data. We do so with data from ADVANCE probe vehicles and found the nature of the measurement
errors to be understandable and not worrisome. We then analyzed the statistical properties of the estimates
of link travel times and discussed issues of high variance and bias. There is dependence among observations
on the same link and on links along a route, which has profound implications on statistical inference.

In conclusion, we recommend that direct measurements on travel times generated by probes or other
surveillance technologies need careful handling for two reasons:

1. measurement errors may be present, with unknown resultant effects on the estimates of travel time;

2. the data would have certain undesirable properties, that if not carefully attended to, may have
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significant negative effects for the purpose of statistical inference.

Thus, any estimation process that uses probe-based data needs to be cognizant of these two issues.
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