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Environmental justice reﬂects the equitable distribution of the burden of environmental hazards
across various sociodemographic groups. The issue is important in environmental regulation, sit-
ing of hazardous waste repositories, and prioritizing remediation of existing sources of exposure.
We propose a statistical framework for assessing environmental justice. The framework includes
a quantitative assessment of environmental equity based on the cumulative distribution of expo-
sure within population subgroups linked to disease incidence through a dose-response function.
This approach avoids arbitrary binary classifications of individuals solely as “exposed” or “un-
exposed.” We present a Bayesian inferential approach, implemented using Markov chain Monte
Carlo methods, that accounts for uncertainty in both exposure and response. We illustrate our
method using data on leukemia deaths and exposure to toxic chemical releases in Allegheny
County, Pennsylvania.
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1 Introduction

In recent years, researchers and the general public have questioned whether environmental expo-
sures and risks are equitably distributed over population subgroups. The phrases “environmental
justice” and “environmenfal equity” -~a;re~tt§ed to describe situations where the risk of adverse
outcomes due to environmental exposures is equitably distributed across subpopulations. These
subpopulations may be defined by variables which are either demographic (e.g. socioeconomic
status) or geographic (e.g. proximity to a hazardous waste site).

Environmental justice is becoming an important part of the federal environmental regulatory
process. The United States Environmental Protection Agency established the Office of Envi-
ronmental Justice in November of 1992 (Sexton, Olden and. Johnson, 1993). In February 1994’.
President Clinton signed -the Environmental Justice Executive Order, which requires an assess-
ment of environmental justice in regulatory decisions made by every federal agency involved
with environmental and public health.

Wagener and Williams (1993) divide environmental justice into three components providing
a natural starting point for discussions of possible statistical analyses. The three components
correspond to the geographic distributions of (a) the exposure to an environmental pollutant,
(b) the health status of the population with respect to both disease incidence and access to
health care, and (c) various subgroups of the population subject to potentially increased risk.
These distributions lead to fhree primary questions of interest in studies of environmental jus-
tice, namely: (1) are members of a particular subpopulation subject to disproportionately high
exposure, (2) are thé& experiencing a disproportionate number of adverse outcomes, and (3) is
their risk of particular outcomes unduly incfeased by the exposure. These three questions di-

rectly correspond to the Environmental Protection Agency’s paradigm of exposure assessment,



effects assessment, and risk characterization (Sacks and Steinberg, 1994, pg. 4). Appropriate
statistical collection and analyses of environmental heath data play essential roles in addressing
these issues.

Data regarding the demographic distribution of the population-at risk typically are available
from census data. Researchers often wish to stratify by various aspects, such as age, gender,
race, or ethnicity. These variables and others, such as the percentage of the population with
household income below certain thresholds, are available for census subregions (tracts, or block
groups). These data may Be analyzed as reported, or used to provide a sampling frame for
prospective studies in a particular area.

The issue of environmental exposure is complex. It is essential to distinguish between the
amount of a given substance present at a particular lécation (ambient exposure) and the dose
actually received by a person at the same location. The dose received depends on many fac-
tors such as occupation, hand-mouth contact, and aerosol penetration rates. In a large-scale
monitoring situation, a reasonable goal is to estimate the ambient exposure. Specific studies in
industrial hygiene can then be used provide insight into average delivgred dose levels associated
with certain levels of ambient exposure and daily activities.

- The remaining issue is the relation of subgroup exposure to the observed -distribution of
health events. The geographic distribution of health events is usually estimated from disease
registries. In the United States, these registries are managed by the Centers for Disease Control
and Prevention or by individual states. Due to confidentiality concerns, the data often are
available only as census district counts.

Quality and availability of exposure data vary widely. The United States Environmental
Proteétion Agency maintains the Toxic Chemical Release Inventory (TRI). It contains industry-

reported releases of over 300 toxic chemicals to the air, land, and water. Transportation of



these chemicals to off-site facilities is also reported. The TRI is not a complete assessment
of toxic releases since not all facilities handling toxic chemicals are required to report releases.
Nevertheless, TRI data are publicly available and are often used in assessments of environmental
- justice (e.g. Bowen et al. 1995, Glickman and Hersh 1995). We illustrate the methods proposed
below with TRI data froﬁ Allegheny County, Pennsylvania.

In the following, we distinguish between the terms “exposure inequity” and “risk injustice”:
exposure inequity refers td differences in exposure distributions, while risk injustice refers to
differences in adverse outcomes due to exposure inequity. We differentiate between the terms to
emphasize that we do not presume that differential expoéures automatically result in differential
adverse effects (i.e. risk injustice). From a public health perspective, risk injustices typically
involve adverse health effects, but a more general view may encompass economic effects of
exposure inequities as well.

Section 2 motivates our methods by an example from TRI-reported releases in Allegheny
County, Pennsylvania for 1990. In Section 3 we outline the methods we propose, and show how
they summarize risk injustice. Section 4 illustrates the approach with a dataset on leukemia
cases and TRI site exposure in Allegheny County, highlighting the sampling-based Bayesian
analytical methods we employ. Finally, Section 5 discusses our findings and suggests directions

for future research.

2 Motivating example

Glickman and Hersh (1995) illustrate the use of geographical information systems (GIS) to assess
environmental justice in Allegheny County, Pennsylvania. To motivate the methods described

below, we use 1990 census tract data from Allegheny County and reported releases of toxic



chemicals from the 1990 TRI.

Glickman and Hersh (1995) distinguish between prozimity-based and risk-based assessments
of environmental justice. Proximity-based assessments use distance as a surrogate for exposure so
that populations near releases are assumed to receive higher exposure than populations farther
away. Risk-based assessments incorporate more data such as groundwater flow, location of
occupation and residence, time spent at work and at home, and so on to portray a more accurate
estimate of individual risk. For illustrative purposes we adopt a proximity-based assessment of
environmental justice in Allegheny County for 1990.

TRI data include substance released, amount released, latitude, longitude, and street address
for the reporting facilities. For 1990 there were 423 reported releases of TRI chemicals in
Allegheny County. Since releases are reported by chemical or compound, a single location often
is associated with several releases.

Latitude and longitude data were inconsistent with the boundaries of Allegheny County for
34 of the 423 releases. Of these, 17 appeared to have transkposed latitude and longitude values
(the negétive sign associated with western hemisphere longitudes is implicit and not stored in
the longitude field). The 406 locations with consistent latitude and longitude values correspond
to the 84 unique release locations shown in Figure 1. We illustrate our methods using these 84
sites. The sites are found throughout the county but, as one might expect, concentrate along
the three rivers (the Allegheny in the northeast, the Monongahela in the southeast, and the
Ohio in the west).

A more complete assessment of environmental justice near TRI sites in Allegheny County
requires assessing the accuracy of the release locations. One validity assessment checks the
latitude and longitude values through “geocoding” (i.e., abstracting latitude and longitude from

the recorded street address). Most modern geographic information systems (GIS’s) include some
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Figure 1: 1990 census tract centroids for Allegheny County, Pennsylvania. “P” indicates reported
locations of 84 toxic chemical release sites from the 1990 Toxic Chemical Release Inventory.

form of autqmated geocoding although some effort is required to match a large percentage (say
95%) of addresses.

Table 1 gives summary data on the racial and ethnic composition of the Allegheny County
population as reported in the 1990 Census. We see that the largest groups in terms of population
size and in terms of proportion of population in census tracts are those with census designation
“black” or “white”. (We use the term “black” rathér than “African American” for consistency
with the census data.) These two groups comprise most of the census tract populations for
Allegheny County in 1990. Our illustrative analysis compares the distribution of proximity to
TRI sites between these two groups.

Glickman and Hersh (1995) make an interesting conceptual claim in their discussion of envi-

ronmental justice and statistical uncertainty: namely, that when both exposure and demograph-



Mean Range

Population size 2678.26 (0, 8523)
Population per racial/ethnic groups
White 234359 (0, 8297)
Black 209.70 (0, 4632)
American Indian 2.91 (0, 29)
Asian/Pacific Islander 26.99 (0,-484)
Other 5.06 (0, 56)
Hispanic 17.50 (0, 140)
Percent of tract population
White 84.06% (0.7, 100)
Black 14.62% (0, 98.79)
American Indian 0.14% (0, 4.76)
Asian/Pacific Islander  0.98% (0, 21.61)
Other 0.20% (0, 1.53)
Hispanic 0.70% (0, 5.17)

Table 1: Population summary statistics for 1990 census tracts in Allegheny County, Pennsylvania

ics are known without error, no statistical evaluation is necessary; the situation is Qquivalent to a
census, rather than a random sample. We agree with this viewpoint if the goal is purely descrip-
tive, as when the quéstion being asked is, “What is the distribution of exposure?” If, however,
the questions concern causal evaluations, such as, “Is this distribution of exposure consistent
with an equitable spatial-temporal exposure process,” or “Does this distribution of exposure
result in an inequitable pattern of adverse health effects,” then statistical inference will have
an important role. Of course, in many settings personal exposure wi]l itself be estimated with

considerable uncertainty, and so even the descriptive goal will require a statistical evaluation.

3 Statistical assessment of environmental justice

Suppose we have two population subgroups (“black” and “white”) and let G;(-) denote the
cumulative distribution function (CDF) of exposure to a TRI site for group i, i = B, W. This

distribution is constructed from regional and group-specific data. Inequity in exposure is defined
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Figure 2: Cumulative distribution of exposure for Allegheny County, Pennsylvania 1990. Expo-
sure is defined as the inverse distance in kilometers from the nearest TRI site to the centroid
of a census tract. Separate cumulative distribution functions are shown for census designated
“black” and “white” populations.

by differences between G and Gy .

For our proximity-based study we define exposure as the inverse distance (in km~!) from
a census tract centroid to the nearest TRI site. For simplicity, we assume that all individuals
within a tract receive the same exposure. We define G and Gw as the empirical cumulative
distribution function (CDF) of the inverse distance of census tract centroids to the nearest TRI
site. Even though we use empirical CDF’s, we treat the distributions as known population
quantities in the analysis below since the “steps” in the functions are détermined by census
geography and not sampling uncertainty. (This issue is discussed more fully in Section 5 below.)

Figure 2 illustrates Gp and Gw for the 1990 Allegheny County data. We see a clear sepa-

ration of the two curves for exposure values between 0.2 and 1 km~1. We also see that picking



a single exposure value as a dichotomous exposed/unexposed threshold could result in differ-
ent estimates of the effect magnitude. For example, Gh'ckma,n‘and Hersh (1995) considered
two threshold values, 0.5 and 1 mile. They feport greater observed inequity for the 1 mile
limit (corresponding to approximately 0.62 km~!) than for the 0.5 mile limit (corresponding
to approximately 1.25 km~1). Figure 2 captures these results with a greater vertical distance
between Gp(z) and Gw(z) when z = 0.62 than when z = 1.25 km~!. Similar use of di-
chotomous proximity-based estimates of exposure appear in other assessments of environmental
justice (Anderton et al., 1994; Bowen et al., 1995).

Creating exposure zones within a given distance of fixed locations is straightforward in a
GIS. However, the dependence of results on the chosen thresﬁold diétance is a- drawback. We
prefer a summary of inequity that depends on the entire CDF of exposure (z) within each
subpopulation. Rather than choosing an exposure threshold, we propose quantifying exposure
inequity by a distance measure D(Gw,Gp). There are many possible measures of differences

between two CDF’s, such as the familiar Kolmogorov-Smirnoff-type statistic
D*(Gw,Gg) = sup {Gw(z) - Gg(2)}.

Alternatively, a weighted, integrated difference of G and G yields a summary measure having

general form
Di(Gw,G) = [ 4(2:0)d{G(z) - Gw(x))? (1)

for some function of exposure y(z;6), parameterized by 6, and some power p. This family



includes the familiar Cramér-von Mises-type statistic
D(Gw,Gp) = [ {Gw(z) - Gp(@)}* dz

The function y(z;0) translates exposure differences into risk differences. Letting y(z;6) =
in. equation (1) produces the difference in expected exposure. If y(z;8) computes the risk of
an adverse outcome associated with exposure z and the dose-response relation is the same in
the two groups, then Dg(Gw, G ) assesses differences in environmental justice. For illustration,
the “one-hit” model gives a simple dose-response relationship. In this case, y(z; ) results‘ from
an underlying model of carcinogenesis where a single exposure affects the probability of cell

transformation from a normal to a diseased state, and is defined by
y(z;0) = 1 — exp(—0z), 6 > 0. (2)

In the special case where p = 1, it is easy to see what is assessed by Dg(Gw,Gp). Following

integration by parts, Dg(‘Gw, GB) can be written as
o [dy(z;0
712550 (i) - Gata)h ©
0 T
We see that Dg(Gw,Gp) represents the area under the curve
f(2;0) = [0y(z;0)/0z]{Gw(z) — Gp(z)}.

Figure 3 shows y(z;6) and Figure 4 shows f(z;8) for the 1990 Allegheny County data with

the one-hit model and 6 = 0,2, and 20. The one-hit model with § = 0 corresponds to a disease
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Figure 3: Dose response function y(z;8) = 1 — exp(—6z) from a one-hit model for 6 = 0, 2, 20.

unrelated to the exposure of interest. In this case, Dy(Gw,Gp) is identically zero, and the
exposure inequity observed in Figure 2 does not translate into ‘a risk injustice for the disease of
interest. In contrast, # = 2 corresponds to considerable risk injustice,A since the area of greatest
exposure inequity (¢ between 0.2 and 1 km™!) corresponds to the area of greatest increase in
disease risk with respect to z. When 6 = 20, only a small risk injustice remains, since the risk
of disease is near 1.0 for z > 0.5 km™!. For such a dose-response ;elationship, differences in
exposure CDF’s for z > 0.5 km~! do not translate into sizable risk differences.

A potential problem in interpreting an estimate of Dy for any given dataset is its somewhat

arbitrary scale. To remedy this, we might switch to a relative scale by defining

D¢(Gw,GB)

Ro(Gw,Gpg) = 100 x )
o(Gw,GB) Toww (Gow)

11
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Figure 4: The “injustice function” f(z;60) = Z [y(z;0)] {Gw(z) — Gp(z)} for § = 0,2,20.
Similar line types in Figures 3 and 4 indicate the same value for 6.

where Ty w(Gw) = [ y(z;0) dGw(z), the “total” risk of disease for group W, marginalizing over
the potential exposure values. Rg(Gw,Gpg) thus gives the percent increase in risk associated

with group B, an easily interpreted measure of environmental inequity.

4 Data analysis

Using the development above, inference regarding environmental justice reduces to inference
about Dy and Rys. We adopt a Bayesian approach, in order to obtain the full posterior distribu-
tions of these quantities rather than mere point estimates and associated asymptotic standard
error estimates. Let Z; be a random variable representing the number of leukemia cases occur-

ring in census tract j, j = 1,...,J. Similarly, let n; denote the number of individuals at risk in

12



tract j. Our dataset, obtained from the Allegheny County (Pennsylvania) Health Department,

provides disease incidence and population counts for all J = 499 census tracts in the county

~ from 1985-1992.

For our analysis, Z; includes counts of both acute myelogenous leukemia, AML, and acute
lymphocytic leukemia, ALL. The twb types of leukemia differ in etiology but are both of interest
in environmental health. Most cases of leukemia in children are ALL. Childhood malignancies
are often considered “sentinel health events” due to shorter latent periods between exposure and
onset, and the shorter time for change of residence among the susceptible population. Toxicology
studies link AML to exposure to benzene (a TRI-reported contaminant). We combine two
-outcomes of interest (ALL and AML) to illustrate our approach. A more focused assessment
could consider only particular releases and outcomes.

Turning to the exposures, the locations of 84 waste sites in the county were obtained from
the EPA Toxic Release Inveﬁtory. Let z; denote the TRI site exposure of an individual residing
in tract j, again defined as the reciprocal of the distance from the geographical center of the
tract to the nearest site. We treat the x ; as fixed cova,ria,tes," dbéerved without error. Due to.
the presence of leukemia cases in tracts having z; ~ 0, we generalize the simple one-hit model
(2) slightly to

y(z;0,7)=1—vyexp(—0z), 6 >0,0<v< 1, (4)

so that the “background” disease rate is 1 — 4. Thus we have the binomial model Z; ~
Bin(nj, y(fIIj; 0,7)),7=1,...J.
To complete the Bayesian model specification, we require prior distributions for § and .

For simplicity, we adopt familiar distributional forms for each, namely 6 ~ Gamma(a, 3) and

13



v ~ Beta(a,b). Writing z = (2,...,2s), the posterior distribution for (6,v)’ is thus

i=1

J
p(6,7z) x {H[l — 7 exp(—0z;)]7 [y exp(—ﬂfvj)]"j_zj} 6* L exp(=6/B)7* (1 - 1),

iz

up to an unknown constant of proportionality. Finally, we set & = § = a = b = 1, thus
determining an Ezponential(1) prior for 6 and a Uniform(0,1) prior for v, both very vague
specifications designed to let the data (rather than prior information) dominate the posterior.

To obtain the standardized posterior, we use a Markov chain Monte Carlo (MCMC) method
called the Hastings algorithm (Hastings, 1970; see Carlin and Louis, 1996, Sec. 5.4.3 for a more
élementary description). " This algorithm operates by alternately drawing “candidate” values
0* and v* and accepting or rejecting them according to a criterion based on the unnormalized
posterior. We used Gamma(a*,(*) and Beta(a*,b*) candidate distributions for 6* and v*
respectively, with parameters chosen by trial-and-error to produce acceptance rates near 50%,
a value that should provide good mobility in the Markov chain (Gelman et al., 1996).

Running five initially overdispersed parallel sampling chains for 1000 iterations each, we
found algorithm convergence to be almost immediate, requiring a “burn-in” period of no more
than 10 iterations. Figures 5(a) and (b) give kernel marginal posterior density estimates for
6 and 7, respectively, based on the remaining (post-convergence) samples {(8(9), () ¢ =
1,...,G = 5(990) = 4950}. The estimated posterior mean for v is 0.999677, implying a back-
ground leukemia probability of 1 — E(-y|z) = 0.000323. The estimated posterior mean for 6 is
2.5765 X 10~°, suggesting an increased leukemia rate at the highest exposures in our dataset
(z = 4.0) of 0.000426.

An advantage of our MCMC approach is that posterior samples Dgg) and Rgg) may be

obtained by simple transformation of the (0(9),7(9)) samples. For example, taking the derivative
i
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of y(z;0,~) with respect to z, equation (3) gives
DY) = [ 5@ exp(~09)2) {Grw(z) - Gin(z)} da,
0

a simple one-dimensional integral that can be eva,lﬁa,ted using a grid-based (e.g. trapezoidal)
rule. A similar expression is available for Te(f]v)v’ whence Rgg ) = 100D§g ) / Téf’v)v-

Kernel estimates of the marginal posterior densities for Dy and R, obtained using this
approach are shown in Figures 5(c) and (d), respectively. Note tha,.t both are highly skewed,
suggesting that the Gaussian approximation normally used to obtain traditional confidence

intervals would be badly misleading in this case. Ry has estimated posterior mean 0.626, with

corresponding 95% equa,l-tail credible interval (.0284, 1.72). While this interval does exclude
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zero, implying a statistically 'signiﬁca;nt increase in leukemia risk for blacks, from a practical
standpoint our results strongly suggest a high degree of environmental equity: the increase in
risk among blacks is probably less tilan 1%, and is very unlikely to be more than 2%. While this
result may be somewhat s;urpri‘sing in view of the relative affluence of suburban whites residing in
Allegheny County, it is apparently due to the wide dispersion of TRI sites throughout the county,
as well as the presence of both white and black socioeconomically depressed neighborhoods near
many urban waste site's.' Our findings also generally agree with those of Glickman and Hersh
(1995), though these were somewhat more equivocal due to their strong dependence on the
radius chosen to distinguish “exposed” and “unexposed” tracts, a difficulty our method was

designed to avoid.

5 Discussion

The approach presented in this paper offers a family of quantifications of environmental justice
with severai advantages. The choice of the dose-response function y(z;6) allows assessment of
both exposure inequity a,ﬁd risk injustice. The method uses thé whole distribution of exposures
observed within population subgroups, rather than assessing differences based on particular
threshold values. Finally, our Bayesian approach produces the entire posterior distribution of
Dy, rather than summary statistics alone, the sole output of a classical approach. The fact that
Bayesian procedures implemented with vague priors like ours produce effective frequentist infer-
ences has been well-documented (see e.g. Carlin and Louis, 1996, Chapter 4), so the investigator
need not worry about lurking “subjectivity” in the results.

In order to out]jné the methodology, we have made several simplifying assumptions. However,

the method is flexible and allows for generalization. For example, the dose-response models we
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have illustrated allow the probability of response to approach 1.0 as exposure grows to infinity,
but we could easily place an upper bound on this growth by adding a third parameter to
model (4). Also, while the leukemia data represent all cases reported by physicians, whites
represent 93.8% of reported cases of ALL (122 of 130) and 95.6% of AML (307 of 321). For
comparison, the 1990 Census reports whites representing 88.7% of the combined black and
white populations of Allegheny County. The difference may be due to differing age structures
within the two subpopulations, but perhaps also to underreporting or underdiagnosis among
some sociodemographic groups. Due to the small number of incident cases among one of the
subpopulations, our data are insufficient to enable estimation of separate dose-response curves
yi(z; 0;,7;) for each demographic group, i = B, W. Measured discreéancies in disease outcome
(as well as exposure) among groups could well magnify environmental inequity, as captured in
the posterior distributions of Dy and Ry like those i)lotted in Figures 5(c) and (d). Differential
response between children and adults with similar exposures could also be accommodated in
this way.

Another advantage of a Bayesian framework is the allowance for multiple levels of uncertainty
inherent in data encountered in environmental justice studies. For example, disease rates in the
various tracts might be spatially correlated, due to the effect of variables other than demographic
group. We thus might want to add a r@ndom effect ¢; to our mociel for the response probability
Yy, and assign a spatial smoothing prior to the vector (¢1,...,¢7)" that encourages the fitted
rates in adjacent counties to be simiiar. Such models are often used in conjunction with a
Poisson approximation to the binomial likelihood in disease mapping problems (Besag, York
and Mollié, 1991; Clayton and Bernardinelli, 1992), and recently have been extended to the
spatio-temporal case (Waller et al., 1997). Another possibility is to think of the G; not as

known population quantities to be computed from census data, but as additional unknowns to
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be estimated. A Bayesian would likely do this nonparametrically, using recent developments
in the theory and implementation of Dirichlet proceés priors (Escobar and West, 1995). This
modification would likely have little impact on our point estimates for Dg and Ry, but would
widen the corresponding interval estimates due to the added uncertainty in the G; now accounted
for by the model. Finally, if the exposure value z were itself measured with error (as opposed to
our proximity-based approach), as would likely be the case with atmospheric measurements, an
error distribution for # can be added to the hierarchy and the analysis may proceed, accounting
for the errors-in-covariates (Bernardinelli et al., 1996). In all of these examples, MCMC methods
continue to enable ready computation of the required posterior distributions for Dy and R,.

‘Data availability and format will lead to further research into appropriate use of the method-
ology. Cox and Piegorsch (1996) and Piegorsch and Cox (1996) note that environmental health
studies can include data from several sources and of many types. Exposure data for risk-based
(rather than proximity-based) assessments are generally gathered from point releases or sam-
pling stations. Typically, one uses geostatistical methods to impute exposure between stations.
Demographic variables such as income or race are available as regional data. Disease incidence
data are available as regional counts, but death certificates may provide addresses (points) for
deaths. As mentioned above, demographic and disease incidence data cpllected in the United
States are typically regional counts rather than points due to confidentiality requirements. A
proper synthesis of these data is central to valid and efficient assessments of environmental
Jjustice.

A particular problem is the compatibility of the demographic regional data and continuous
exposure data. In the sections above, we assume that exposure data and demographic data are
available for the same regions, but this may not be the case. Exposure data may be available for

regions from an entirely different partition of the study area. For instance, water quality may
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be defined for various watersheds that have little to do with political boundaries such as census
regions. Also, dose-response effects may be related to particular spatial scales and aggregation at
other scales may hide true relationships (Zimmerman, 1993). The integration of data collected on
such “misaligned” regional systems has been explored in the geography literature by Flowerdew
and Green (1992). An EM algorithm is used for such “areal iﬁterpolation” problems. We are
currently extending our formulation above to address such incompatibilities.

Geographic information systems (GIS) provide powerful tools for integrating spatially refer-
enced data over a given geographic area. Unfortunately, the statistical analysis capabilities of
GIS lag behind capabilities for data management and presentation (Meyers, 1993). Appropri-
ate -methods for statistical analysis of mapped data are needed to realize the full potential -of
GIS as an analytic tool. Particular problems, such as the assessment of environmental justice,
provide opportunities for collaboration between geographers, statisticians, epidemiologists, and
environmental scientists. Tools like GIS provide the means to quickly provide maps illustrating
differences, and appropriate statistical methods are needed fo evaluate and quantitatively assess

the magnitude of apparent differences.
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