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SUMMARY

This paper develops a regression model for ordinal data with non-zero control response proba-
bilities. The model is especially useful in dose-response studies where the spontaneous or natural
response rate is nonnegligible and the dosage is logarithmic. The model generalizes Abbott’s for-
mula, which has been commonly used to model binary data with non-zero background observations.
We describe a biologically plausible latent structure and develop an EM algorithm for fitting the
model. The EM algorithm can be implemented using standard software for ordinal regression.
Analysis of historical data on the severity of virus-induced deformities in Chicken Embryos illus-

trates the methodology.
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1. Introduction

In their books, Finney (1972) and more recently Morgan (1992) described the analysis of bino-
mial response data when the natural response rate is nonnegligible. In a dose-response experiment
the natural response rate is often called the baseline, the background rate, or the spontaneous
rate. Often death or other type of responses may occur in the control group in the absence of any
stimuli as measured by the experimental variables. One of the major bioassay models for binomial
observations was the binary nonzero baseline model proposed in 1925 by Abbott. Because of its
simplicity and biological plausibility, Abbott’s model has been commonly used to handle nonzero

controls for binary data. Adapting Abbott’s model to binary regression yields:
PY =1x)=a+ (1 - a)HE'B), (1)

where Y is the binary response taking possible values 0 and 1, x is the covariate vector, § is an
unknown regression parameter vector and o, 0 < o < 1, is an unknown baseline parameter. The
function H in model (1) is a general probability distribution function; its inverse function H~! is
called a link function. Two commonly used link functions are the logit, H~(p) = log{p/(1 — p)},
and probit, H~1(p) = ®~!(p), where ® is the standard normal distribution function.

If « is known, then Model (1) is an example of a generalized linear model as described by
McCullagh and Nelder (1989). In this case the iterative weighted least squares algorithm would
provides a fitting algorithm. Note the unsual feature that the response probability is bounded away
from zero. Copas (1988) and Carroll and Pederson (1993) investigated closely related classes of
models in which misclassifications of the response occur with specified nonzero probability.

In practice « needs to be estimated, and a more general fitting algorithm is required. Hasselblad
et al. (1980) described an EM algorithm for the case that H is of the probit form. Barlow and Feigl
(1985) suggested a variation on iterative weighted least squares for fitting a more general class of
models. Preisler (1989) provided iteratively weighted least square algorithms to fit the models with
probit or logistic link functions. Chapter 3 of Morgan (1992) reviewed the modeling of binary data
with nonzero control responses, and suggested an EM model fitting procedure for Abbott’s model.
It can be shown that Morgan’s EM algorithm has a smaller proportion of missing information than
Hasselblad’s, in situations where both apply, so Morgan’s is more efficient; see Little and Rubin

(1987, p.137). Here we focus on generalizability of the latent model rather than efficiency of the
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computing algorithm.

Our goal is to extend the Abbott-type model for analysis of ordinal data with nonzero baselines,
and also to provide a convenient computational algorithm for fitting the model. We describe a
Bernoulli latent structure for model (1) and generalize this latent structure to develop a non-
zero baseline regression model for ordinal response data. The latent structure we describe tries
to distinguish natural causes from causes due to experimental substance. In the binary case it is
closely related to the latent structure implied by Morgan’s (1992) analysis. Furthermore, our latent
structure allows us to develop a readily implemented EM-algorithm for to obtain the parameter
estimates. The E-steps calculate updated spontaneous and cumulative latent responses. The M-
steps provide updated baseline parameter estimates with the updated spontaneous latent responses
and get updated regression parameter estimates by maximizing standard ordinal regression models
with actual responses replaced by the updated cumulative latent responées. The maximization
can be handled by software which fits the ordinal regression model, and other calculations are just
simple weighted proportions.

In section 2, we describe a latent structure for the Abbott type model (1), and then generalize
it to obtain an ordinal non-zero baseline regression model. As in model (1), the generalized model
has the flexibility to incorporate different regression schemes and techniques. The EM algorithm
developed in section 3 provides a way of model fitting using standard software for multinomial
data. The definition of effective dose, ED5g, and some technique detail of computing estimates and
confidence intervals are provided in section 4. In section 5, our methodology is illustrated by an
analysis of data on the severity of virus-induced deformities in Chicken Embryos. The data have

been studied by McPhee et. al. (1984) and Morgan (1992).

2. Regression Model for Observations with Nonzero Controls

Suppose W and V are two independent random variables. They respectively have distribution,
W ~ Bernoulli(a) V ~ Bernoulli(H) (2)
where H = H(xT3). Let

Y = W+(1-W)V
= W+V-WYV, (3)



then P(Y = 1) agrees with model (1). Thus any observation from model (1) can be viewed
mathematically as a simple function of two latent independent Bernoulli random variables.

This latent structure has some biological explanation, for example, in risk assessment. Suppose
W is the indicator of the natural (or spontaneous) mortality which is from natural causes, and V'
indicates the exposure (or cumulative) mortality which is caused from exposure to certain experi-
mental substance. Formula (2) assumes that event {W = 1} has rate o, and event {V = 1} has
rate H(xT3), which means V itself is a binary regression. With the assumption of the indepen-
dence of W and V, equation (3) leads to the statement that Y satisfies model (1). Since {Y =1}
is equivalent to {W = 1}U{V =1}, Y can be explained as the indicator of overall mortality, which
comes from either (independent) natural causes or exposure causes.

The Bernoulli latent equation (3) can be written in other ways,

Ly=1) = Lw=1) t+ Lw=0)l(v=1)

or
Ly>y = Lwsy + Lw=0lwz), (4)

where 1¢) is an indicator function which equals 1 if set C is true and equals 0 if set C' is false. We
shall interpret equation (4) as: If the overall response Y is at least at severity level 1, then either
latent spontaneous natural background response is at least at level 1, or latent spontaneous natural
background response is at level 0 but latent cumulative exposure response is at least at level 1.
This argument is extended to ordinal response data as follows. Suppose that the ordered ‘ordinal
severity categories are 0,1,...,S5. If the observed overall response exceeds level s, 0 < s < S, we
believe either the latent spontaneous natural background response W exceeds level s, or W' is at
level [, for 0 < [ < s —1, but the latent cumulative exposure response V' exceeds level (s —1). If we

formalize this argument, we get the extension of equation (3) or (4) to ordinal categorical cases,

s—1

Lyss) = D Lw=lwzs-n) + Lwzs) (5)
=0

for s=0,1,...,S.
To specify an ordinal model from this latent structure, we need to make assumptions on the

distributions of random variables W and V. One natural choice of W is that it takes values of



0,1,...,S and has distribution
PW=l)=q I=1,...,S (6)

where Zf:o a; = 1. We call this a multinomial trial, the polytomous analog of Bernoulli distri-
bution. For the latent cumulative response V, parallel to binary case, we often assume it is an
regression on an explanatory variable x. That is, we assume V takes values of 0,1,...,5 and has

a distribution with the form of an ordinal regression model,

PV >s|x) = H(s,x), if s=1,...,S, (7)
= 1 ifs=0,

where x is the regression covariates and H(s,x) is a general function with 0 < H(s,x) < 1 and
H(s,x) decreases in s. In general, H could be any type of regression model, linear, non-linear or
even non-parametric. As long as there is a procedure to fit the regression model, the choice of
‘H would not affect the EM fitting procedure which will be presented in the next section. In this
paper, we ‘only focus our attention on V in the class of generalized linear models.

One special generalized linear regression model of (7), which is a popular choice among ordinal

regression models, can be written as,

P(V>slx) = H(y,+x78) ifs=1,...,5; (8)
= 1 ifs=0,
where (71,...,7s, ) are regression parameters and H~! is a link function. If H~! is a logit link,

model (8) is referred as the proportional odds model (McCullagh, 1980).
Assuming W and V are independent, based on equations (5), (6) and (7), we propose a nonzero

baseline ordinal regression model,

s—1 S
P(Y > s|x) = Z aH(s —1,x) + Zal, 9)
=0 l=s

fors=0,1,...,S.
If S = 2, this model reduces to model (1). If s = 0, the first summation vanishes and the
probability equals to 1, the sum of all @’s. To accommodate some special situations, we sometimes

allow some of the baseline rates « to be set equal to zero. For instance, if the maximum background



severity category level is K with K < .5, we shall let agy; = ag4+2 = ... = ag = 0 and drop them
out from the model. In model (9), oy is explained as the spontaneous natural rate of response at
severity level [ = 0,1,...,S and the regression parameters only appear in the generalized linear
regression part H.

As model (1), model (9) has some advantage to deal with non-zero control responses particular
when some explanatory regression variable is on a logarithmic scale. For example, in dose-response
models, with the dose variable entering the model on log-scale, the cumulative regression parts
disappears for control responses. It implies that control responses only come from spontaneous

background causes.

3. EM Algorithm

Model (9) provides formulas of response rates for ordinal observations from multinomial trials.
In practice, we are more likely to have observations y; = (¥io,¥i1,---,¥%s), ¢ = 1,...,k, that
are independent samples from multinomial distribution, Multinomial(n;; pio, pi1,- - -, Pis), where
rates {pis,s = 0,1,...,S} satisfy the condition that 37, py follows the form of (9). In a dose-
response model, for instance, the y;s is often the number of responses occurred at severity level
s, s =0,...,5, when n; individuals are studied at dosage d;, + = 1,...,k. If we denote U; s =
H(s,x;) — H(s + 1,x;), and let 6 represent all parameters appeared in the model, then the log-
likelihood function of observations {y;,7 =1,...,k} will be
n S
10ly) =D is log pis,
i=1s=0
where pis = Yj_g uldy (s—) for s = 0,1,...,5 — 1 and pis = lezo oyH(S — 1,x). Because direct
maximization of I(f|y) is tedious in general, special effort is required to obtain the parameter
estimates. Based on the latent structure discussed in the last section, we introduce a natural EM
approach to fit nonzero baseline model (9) for multinomial data.
Suppose {Y;ili = 1,...,k,j = 1,...,ni} is a latent realization of Y; = (Yi,Yi1,...,Yis),
that is, for each 3, ¢+ = 1,...,k, V5, 7 = 1,...,n;, are independent multinomial trials from
Multinomial(1; pso, pi1, - - -, Pis), and Yi, = Z?;l 1(yi=;=s), where 1(¢) is an index function. For

j=1,...,n4,1=1,...,k, we choose a pair of latent variables (W}

7%, Vi7) as multinomial trials such

that their rates satisfy the form of (7) and (8) respectively, and together with Y%, they satisfy
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equation (5). Write Wi, = 371 Lwy=s)» Vis = 254, Livz=s) and denote W; = (W, ..., W;s),
Vi = (Vio,...,Vis), then (W;,V;) can be viewed as a pair of latent random variables for Y;. To
derive an EM algorithm, we view {(wj,v;);i = 1,...,k} as the full data. The joint log-likelihood
function of {(w;,v;),i =1,...,n} is,
1(0|(wsyvi),i=1,..., ZZw,llogal+ZvalogL{w
i=11=0 i=1 s=0
After some standard mathematical calculations (see appendix for some detail), we find that the

EM algorithm iterates through the following two steps:

E-step:
CET) = ( il[Yir = VYir, & ( ) ul(:-n)v OvaS)
m m (m)q,(m)
( U((t 1) " Hi (5
= Zyzt o T YS =g G m)
Zz'~00‘z' Z/{z J(t=11) Zi=00 M (5
&7 = E(wsm = yir, o™ U7 =0,...,5)
= Ey efimhs” +yis E?Z My
= it T m
9=0 agln)squf’f) So= 00‘(5 s')HS @
M-step:

(m+1) _ 1 ¢~ (m)
m m
@ =_]\—720i,l

B = argmaxg {Z Z d(m) logl; s}
i=1 s=0 :

where N = Z "1 n;. The last maximization is exactly the maximization of loglikelihood function of
usual ordinal regression model (7) with true observations replaced by dgys ), Any standard software
which fits the ordinal regression models can be used to handle this step. For instance, we can use
the SAS (SAS Institute, Inc.) PROC LOGISTIC to fit ordinal regression model for several choices
of H.

In the binary model (1), a = a1 =1 — ay, and H(s,x) is reduced simply to H(x?3). The EM
algorithm becomes

E-step:
alm)

(1 - am)H™ + alm

ET) = EWaY; = (yi0, 1), ™, H™) = 43



7™
m)(1 - ™)+ H™'

& = B(Vi|Y; = (yio, yar), o™, H™) =y
o
M-step:

(me1) _ 1§ m)
(6] n ;C‘L,l y

and B(™+1) is the solution of equation:

k d(m)
Zni(-i — H(xTB))x; = 0.
i=1 T

This equation can be solved via standard statistical software for logistic regression and its variants.

Apparently the E-steps calculate the expectations of updated spontaneous and cumulative latent
variables, the M-steps provide the updated baseline paramenter estimates by taking average of
updated spontaneous latent observations and obtain the updated regression parameter estimates
by solving a maximization problem which only involves updated cumulative latent observations.
Except for the maximization, there are only simple calculations. These EM-algorithms could easily
be implemented in a standard software which provides a way to solve this type of maximization
problems.

In models (1) and (9), the corresponding likelihood functions could possibly have multiple
modes. The EM algorithms are not guaranteed to converge to a global maximum; see, Dempster
et al., 1977 and Wu, 1983. However, the projected log-likelihood Q(6*|0) := E{l(6*|(w;,vi),7 =
1,...,n)|0,y;,i = 1,...,n} is continuous in both 6* and #. By theorem 2 of Wu (1983), EM
algorithms presented above are guaranteed to converge to a stationary point. If one would like to
verify this stationary point is a local maximum or not, numerical calculation of the second derivative
matrix are needed. This numerical calculation could be obtained, for example, by techniques
presented in Meng and Rubin (1991).

To find appropriate estimates, we need reasonable starting values for the EM algorithms. One
natural choice is to use the observed proportions of each severity categories of control responses
as starting values for the spontaneous baseline rates. To get starting values for the regression
parameters, we fit the set of non-control observations or a set of simply adjusted exposure-only
observations to a standard ordinal regression model. The method of “adjusted” means to calculate
the suitable proportions of non-control observations through model (9) by treating the baseline

parameters as they were known (set equal to the proportion of control responses). In binary case,



this method of adjusting is discussed in Barlow and Feigl (1985), Hoekstra (1987) and Morgan
(1992). '

As discussed in section 2, some of the baseline parameters in model (9) may have constraint
of being zero and could be dropped out from the original full model. In this situation, the EM
algorithms obtained above still work. By setting corresponding baseline start point to be zero, we
can ensure the constrained baseline parameters to be zero through out the whole EM procedure.
In fact, if each group size n;, ¢ = 1,...,k, is large enough, a stronger statement can be obtained
from large sample theory: the estimates of the zero constrained parameters obtained from our EM

algorithm are always zero, independent of the choice of the starting value.

4. Effective Concentration Parameters

The effective dose, EDsp, at severity level s, s = 1,...,S5, is defined as the concentration that
produces a parallel degree of 50% responses that exceed severity level s (e.g., death plus deformities
or just death). In model (9), if the independent regression variables x include log;y(dosage) and

some other covariates X, then the EDsg at severity level s solves the equation,

Qs{[X,1og1(EDso)]; 8} = 0.50,

where Q;(x;6) is the right hand side of model (9). As EDsg is a function of 6, its estimate can
be obtained by substitution of 6 for 6. Except for certain special cases, one needs an iterative
algorithm to solve for EDs5q values. For instance, we can use Newton-Raphson algorithm, since the
evaluation of Q,(x;6) and its first and second derivative is often fairly easy.

There are several Wayé to obtain confidence intervals for EDs5g. Three classical approaches, which
are asymptotically equivalent, are Wald type approach, likelihood ratio based approach (Cox and
Hinkley, 1974) and the so-called fiducial limits of Fieller (1954). In their books, Finney (1978) and
Morgan (1992) carefully accounted the Fieller type confidence interval. Alho and Valtonen (1995)
provided a Newton algorithm to calculate the endpoints of the likelihood ratio based confidence
intervals and provided simulation comparison between likelihood ratio based confidence intervals
and Fieller type fiducial limits. The Wald type confidence intervals are often provide wider confi-
dence interval than the other two, and because of their lack of invariance, the performance may be
enhanced by a judicious transformation of the parameter estimates. In our analysis of the Chicken

Embryo data in the next section we adopt a modified Wald approach in which we compute the



Wald confidence interval for the logarithmic EDsg, and then exponentiate the endpoints. These
Wald type confidence intervals appear adequate to address our point.

Supposing temporarily that the asymptotic variance-covariance matrix of 0, say V, is known,
we can obtain the Wald type confidence interval for EDsq by the delta method as follows. Denote

log;9(EDs0), the log;g 50% effective dose at severity level s, by Gos s(8), and write

8 = (2G5 pms = {2 Q0 omal ™ (@0} s

By the delta method, the variance estimate of log;q(EDsg) is aZ Va. From this we obtain the
Wald type normal confidence interval for log,,(EDsp), and exponentiate its endpoints to obtain
the confidence interval for EDgp. Recall that the Wald type confidence interval is transformation
dependent. The use of back-transformed technique here to obtain confidence interval for ED50 is
based on our experience that the distribution of the estimate of log-scaled EDsq is more close to
normal than the original unscaled one. In addition, this back-transformed method ensures that the
confidence interval of EDs5qg satisfies the positivity condition.

As we know, ordinary EM-algorithm usually will not produce covariance matrix estimate for
parameters. To obtain the asymptotic covariance matrix V, some special treatment is needed.
Approaches to obtain covariance matrix V through EM-algorithm have been suggested, for example,
by Louis (1982), Meilijson (1989) and Meng and Rubin (1991). These approaches are mostly
useful under the situation where the direct computation of the log-likelihood for observed data and
its up to second order derivatives is difficulty. But they are often slow and usually needs extra
program effort. In some cases, for example in binary model (1) and some special case of model
(9), log-likelihood function and its derivatives can be calculated directly. In these cases, we suggest
to evaluate covariance matrix through of)served information matrix or obtain variance estimate

through likelihood ratio test statistics.
5. Example: The Analysis of Chicken Embryo Data

5.1 The Data

The data of Table 1 form a subset of data from Jarrett et al. (1981), which were quoted in Table
1.7 of Morgan (1992, page 10). The objective was to investigate the effects of arboviruses injected

into chicken embryos and to qualify the potency of arboviruses, with a view ultimately to assess



how these might affect lamb fetuses (see, Morgan, Example 1.5, Page 9). In the experiments, eggs
were inoculated with a range of virus and several inoculum levels and candled daily for 14 days to
check viability. The surviving embryos were then examed for gross abnormalities and their results
were reported 4 days later; see Jarrett et al. (1981) and McPhee et al. (1984) for more detail. The
resulting data of a control group and two arboviruses, Facey’s Paddock virus and Tinaroo virus,
are given in Table 1. There are three levels of possible responses — death, alive but deformed, and
alive but not deformed. The need to examine the dependence of their responses on the amount of

injected viruses leads to a typical statistical ordinal regression analysis.

Table 1 (Morgan, 1992) The effect of two arboviruses on chicken embryo

Inoculum titre number of number of number of total
Virus (PFU/egg) Death deformed not deformed number of eggs

Facey’s 3 3 1 13 17
Paddock 18 4 1 14 19
30 8 2 9 19

90 17 1 2 2

Tinaroo 3 1 0 18 19
20 2 0 17 19

2,400 4 9 2 15

88,000 9 10 0 19

Control 1 0 17 18

Jarrett et al. (1981), McPhee et al. (1984) and Morgan (1992) studied the arbovirus data two
of which are presented in Table 1. Because the control rate of death is “small” ( at level of 5.88%
in Table 1 and 7.7% for the control group in McPhee et al., 1984), and the control rate of deformed
is zero, they ignored the control group observations and used standard proportional odds model to
analyze the data. The primary covariate variable they used was log-dosage. Morgan (1992) and
Jarrett et al. (1981) indicated the failure of model fitting for Tinaroo virus data. In McPhee et
al. (1984), they provided detail experiment and model fitting information, and listed estimates of

EDs5g’s and their confidence intervals for different viruses.

5.2 The Model

In model (9), the choice of linear regression model for the analysis of the dependence of the

latent cumulative exposure effect on explanatory variables depends on the data and the purpose
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of study. For the analysis of chicken embryo data, we select the proportional odds model, i.e.,
regression model (8) with logistic link. One of the reasons is that Morgan (1992), Jarrett et al.
(1981) and McPhee et al. (1984) all used this model. The difference is our model also includes
baseline analysis, and allows us to use the control information.

Since the observed number of deformed embryos in control group is zero, the fitting of model
(9) to the chicken embryo data provide us zero as the estimate of baseline parameter for deformed
category. Notice zero is at the boundary of a baseline parameter space. The first derivative of the
log- likelihood function with respect to the baseline parameter for deformed category is not zero
at the estimated point, and the standard large sample theories is no longer valid. Some results
involving complicated boundary asymptotics, for example, discussed in Chernoff (1951) and Self
and Liang (1987) may be required. Instead, to avoid complications, we assume the spontaneous
occurence of nonlethal deformities is zero. One can argue that the true background deformed rate is
zero or close to zero and it is ignorable. In the goodness-of-fit test the null hypothesis is Model (9)
with a constraint which restricts the baseline parameter for deformed category to be zero. Under
this assumption regular x? theory applies, because all parameter estimates are in the interior of
the parameter space.

With this simplification, we denote the baseline parameter of the lethal category as «, and the
baseline parameter for the live/non-deformed category is 1 — a. The incidence rates associated
with severity level not deformed, deformed and lethal for non-control data will be p;;, 1 — p;; and
pi1 — Pi2 respectively, where

pir=(1-a)Hn+x/p)+e, (10)
pia=(1-)H(y2 +x] §) + . (11)
In (11) and (12), the 7 represents all dosage groups except the control grbup, H is the logistic link
function, and ~; and ~; are intercept parameters which are cofresponding to severity categories
deformed and death respectively (their zero reference is the intercept corresponding to severity
level not deformed). We use y.;,j = 0,1,2 to represent the observations of the control group

associated with severity response not deformed, deformed and death, and write § = (&, 71,72, B)T.

The likelihood function of the observed data is,

k
L(#) = (1 —a)¥a¥? [T(1 = pa)*® (pir — pi2)"* P’ L(yr=0)-

=1
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Because observed y.; = 0, the loglikelihood function exists,

k

1(6]y) = yeolog(1 — @) + yea log(a) + Y _{wio log(1 — pir) + vi1 log(pi1 — piz) + yiz log(pia)}.  (12)
=1

The EM algorithm presented in Section 3 is used to find estimates from this log-likelihood function.
To implement constraint a; = 0, we set a§°) equal to zero, which ensured that agl), ag2) , ... ) were
are all zero.

It is worth mentioning that, in this example, models (10) and (11) are both nonzero baseline
binary models. This is not true if the baseline parameter for deformed category is non-zero. Fur-
thermore, even if the incidence rates in models (10) and (11) have the formula of two binary models,

the model differs from an approach which directly combines the results of fitting two separate binary

models. Our likelihood approach analyzes (10) and (11) simultaneously.

5.3 Model Fitting Results and Conclusions

From Table 1, we form three data sets: (i) observations from experiment using Tinaroo virus
plus control data; (ii) observations from experiment using Facey’s Paddock virus plus control data;
and (iii) the whole data (Tinaroo observations plus Facey’s Paddock observations plus control
observations). Since the experiments of both viruses share a same control experiment, analyzing
data set (iii), i.e., total observations altogether is more appropriate than analyzing data set (i) or
(i) individually. Because all previous work by Jarrett et al. (1981), McPhee et al. (1984) and
Morgan (1992) treated those two virus data separately, we will also analysis data sets (i) and (ii)
for the purpose of strict comparison.

The calculations were carried out in the S-plus (MathSoft, Inc.) environment. In S-plus, there
are no standard functions to perform the model fitting task for proportional odds models. But we
have written S-plus based software to fit standard ordinal regression models (see, Simpson et al.
1995). We use this customized program to perform the maximization and coded our EM algorithm
in S-plus. The computer programs are available upon request.

Table 2 presents the model fitting results from our EM code. We calculate the parameter
estimates and deviances while we fit our model to the three data sets (i), (ii) and (iii) formed from
Table 1. The deviances are 4.90, 4.29 and 8.59 respectively. Under the models with zero constraint
on deformed category baseline, the degree of freedom for the goodness of fit test of these three

deviances are 5, 5 and 10. All three deviances are smaller than their corresponding x2 95% critical
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values. These indicate that all three data sets fit associated constrained models well. We also
repeated model fitting done by Jarrett et al. (1981), McPhee et al. (1984) and Morgan (1992) and
tried standard proportional odds model both to data (ii) and to data from experiment of injecting
Tinaroo virus ( data (ii) without control) with dose entering model at original scale. “All fittings
provide large deviances and prove to be lack of fit. There is a trend of natural causes in experiment
data of using Tinaroo virus, and only nonzero baseline model have picked it up. Nonzero baseline
model solves the poor model fitting problem of Tinaroo data reported in Morgan (1992) and Jarrett
et al. (1981).

Table 2 Parameter Estimates for Jarrett’s Chicken Embryo Data:

Baseline Regress
Not- Intrcptr Intcptr Sloper Intrcptr Intcptr Sloper
Virus deform Death Deform Death Dose Deform Death Dose
Cntrl&
Tinaroo 0.89 0.11 -9.97 -17.09 3.39
(0.74, 0.96)  (0.04, 0.26)  (-12.24, -7.70)  (-19.84, -14.35)  (2.86,3.92)
Cntrl&
Paddock 0.93 0.07 -4.41 -4.84 3.05
(0.75,0.98)  (0.02,0.25) (-5.06,-3.76)  (-5.51,-4.18)  (2.48,3.62)
Cntrlé&
Both 0.89 0.11 -9.70 -16.66 3.30 -5.23 -5.72 3.52

(0.76,0.95)  (0.05,0.24)  (-11.89, -7.52)  (-19.34, -13.98)  (2.80, 3.81)  (-5.92, -4.55)  (-6.42, -5.02)  (2.92,4.12)

We computed the covariance matrix V by calculate the second derivative of the loglikelihood
function (12). The Wald type 95% confidence interval for model parameters are reported in the
parenthesis of Table 1. Due to the same reason we described for confidence interval calculation of
EDsp, the confidence intervals of baseline parameters are obtained by a back-transformed technique
as well. The parameter under consideration here is log(a/(1 — @)).

According to the definition of EDs5¢ and the discussion in section 4, we calcula.ted estimates of
EDs0’s for death and for death plus deformed and their Wald type 95% confidence intervals. The
numerical results are reported in Table 3. Also in Table 3, we cited the results of these two viruses
posted in McPhee et al. (1984). The confidence interval reported in McPhee et al. (1984) are

Fieller type fiducial limits.
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Table 3 EDsy Comparison for Jarrett’s Chicken Embryo Data:

Death Death&Deformed
Virus Model EDsg 95%-Low  95%-Up EDs 95%-Low 95%-Up
Fancey’s Baseline 39.1 18.2 84.2 28.4 15.8 51.2
Paddock (All Data)
Baseline 36.7 16.1 83.5 26.5 13.7 51.5
(Cntrl&Paddock)
McPhee’s 32.7 18.7* 65.5* 22.8 11.9* 40.8*
(Paddock only)
Tinaroo Baseline 102,149.6  48,688.7 214,311.0 800.3 284.6 2249.9
(All Data)
Baseline 102,615.8 49,887.0 211,077.1 813.9 293.4 2257.9
(Cntrl&Tinaroo)
McPhee’s 41,000 10,200* 244,000* 465 116* 1918*

(Tinaroo only)

Remark: In McPhee et al. (1984), they separately fitted Paddock and Tinaroo (no control) data to propor-
tional odds model. The confidence intervals reported in their method were otained by using Fieller’s theorem

(see, Finney, 1971)

Although we do not have formal theories available to compare the model fitting results of data
sets (i) or (ii) with those of data set (iii), numerically they are close. The confidence intervals ob-
tained from data (iii) are slightly tighter, since more information (observations) are used altogether
to estimate these limits. We find that both EDsg’s of injecting Facey’s Paddock virus reported
in McPhee et al. (1984) are slightly lower than what we obtained, but well within the confidence
intervals. This could be because the nonzero baseline rates is small ( 7% in our model for Paddock
data plus control, empirically proportion 5.88% from Table 1) and plus single Facey’s Paddock virus
data fits standard proportional odds model well (Jarrett et al., 1981 and Morgan, 1992). However,
EDsg of death level for Tinaroo virus are fallen out of our corresponding confidence interval from
non-zero baseline models. We tend to believe this is caused by the lack-of-fit of the single Tinaroo
data to the simple proportional regression model.

.Correction by Abbott type model (1) for binomial data is sometimes not considered necessary
if control mortality is slight, say less than 5 or 10%; see Morgan, 1992, page 95, American Public
Health Associatiqn et al., 1981. One could have similar claim for ordinal observations if standard
ordinal (zero baseline) regression fits the data well. The model fitting results for Facey’s Paddock

data supported this claim. However, the analysis of Tinaroo data provide evidence that even the
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“small” baseline rate can effect substantially the model ﬁfting results. Simply ignoring control

responses could lead to inefficiency, and it makes goodness of fit testing problematic.

6. Discussion

In this paper, we describe a biologically plausible latent structure for data with natural cause
responses. We build an ordinal non-zero baseline regression model and develop associated EM
algorithms. The latent structure plays an important roll. The strength of the latent structure is
that it separates cumulative exposure causes from spontaneous natural causes. This separation
not only helps the development of the ordinal nonzero baseline model, it also makes incorporating
standard ordinal model fitting softwares into our EM schemes possible, and therefore makes the
implementation easy.

One further generalization of model (1) and model (9) is to multiple ordinal responses. Based
on the same latent idea, we can obtain a reasonable multivariate nonzero baseline model for binary
and ordinal observations, and we can derive similar EM-algorithms. Also, we can incorporate
marginal and generalized likelihood analysis into these nonzero baseline models. Some discussions
of multivariate nonzero baseline binary model and marginal analysis can be found in Xie (1996,
section 3, Chapter 5, Ph.D. dissertation, University of Illinois at Urbana-Champaign).

Our model fitting of the chicken embryo data of Table 1 indicates the practical use of our
nonzero baseline model. It is especially useful when the natural background rate is not ignorable.
In this paper we emphasized regression modeling. The latent idea and nonzero baseline models can

also apply to contingency table where the response levels are ordered.
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APPENDIX

Calculation of Conditional Expectation in Section J
The difficult part of the derivation of EM algorithm is to obtain the conditional expectation

formula for the latent variable W’s and V’s conditional on the observed Y. The following is some

15



high light of the calculation.
E(thlyﬁ = y;'kl’ ce 7Yi:zi = y;'kni) = Z l(W*—l)l i1 = yzlv .. ’Yi’:zi = y:ni)
= ZP(WQ = i’fw-wYJ;)
j=1

i P(Y = y”,W* =1)

- 3
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The calculation of E(V;|Yio = vio, Yi1 = vi1,-- ., Yis = Yis) is similar.
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