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Abstract

The number of cars in a household has an important effect on its travel behavior (e.g., choice of
number of trips, mode to work, and non-work destinations), hence car ownership modeling is an
essential component of any travel demand forecasting effort. In this paper we report on a random
effects multinomial probit model of car ownership level, estimated using longitudinal data collected
in the Netherlands.

A Bayesian approach is taken and the model is estimated by means of a modification of the
Gibbs sampling with data augmentation algorithm considered by McCulloch and Rossi (1994).
The modification consists in performing, after each Gibbs sampling cycle, a Metropolis step along
a direction of constant likelihood. An examination of the simulation output illustrates the improved

performance of the resulting sampler.

Keywords: Multinomial probit model, Panel data, Gibbs sampling, Metropolis algorithm, Bayesian

analysis.



1 Introduction

The number of cars in a household plays an important role in travel demand forecasting since it
is a major determinant of the trip-making behavior of individuals and households. Among other
things, household car ownership affects the number of trips made by a household (Meurs, 1990),
choice of destination for non-work activity participation (Wrigley, 1990), mode choice to work and
to other non-work activities (Bhat, 1995; Uncles, 1987), and chaining of activities in a tour (Hamed
and Mannering, 1993; Strathman et al., 1994).

The critical need for accurate car ownership forecasting as a precursor to reliable travel demand
forecasting has led, in the past few years, to a number of important developments in car ownership
modeling. One such development is the use of longitudinal analysis methods. Longitudinal panel
data methods enable the incorporation of the intertemporal dimension present in car ownership
choices (for example, resistance or delays to change in car ownership levels due to search costs and
uncertainty of financial position in the future; see Goodwin and Mogridge, 1981).

Longitudinal analysis also enables the control of unobserved intertemporal factors, such as
acquired tastes for a certain lifestyle, that are likely to affect household car ownership decisions.
These unobserved factors are also likely to make some car ownership alternatives closer substitutes
than others (Small, 1987), thus inducing an intratemporal correlation among alternatives. From a
modeling perspective, this implies that the independence of irrelevant alternatives (IIA) assumption
(Ben-Akiva and Lerman, 1985), often maintained in discrete choice models, is likely to be violated
in the context of car ownership choices.

Ideally, then, car ownership choices should be modeled accounting for both intertemporal cor-
relation of unobserved determinants over time and intratemporal correlation of unobserved deter-
minants across choice alternatives. While researchers have recognized the need to accommodate
both these types of correlation, previous efforts in car ownership modeling have either a) ignored
both types of correlation (Lerman and Ben-Akiva, 1975) or b) focused only on the intratempo-

ral dimension of correlation (Bunch and Kitamura, 1990; Small, 1987), or c¢) addressed only the



intertemporal dimension of correlation (Hensher et al., 1992).

In this paper we present a multinomial probit (MNP) model which accommodates both in-
tratemporal and intertemporal correlation. The intratemporal correlation is accommodated by
allowing a general form for the error term covariance matrix. The intertemporal correlation is
captured by unobserved individual-specific time-invariant attributes (also referred to as household
heterogeneity). For other ways of allowing for intratemporal and intertemporal correlations see
Borsch-Supan et al. (1992).

The approach is Bayesian: a prior distribution for the parameters of the longitudinal MNP
model is specified and the posterior is examined using Markov chain Monte Carlo methods. The
Markov chain is similar to the Gibbs sampler with data augmentation proposed by McCulloch and
Rossi (1994), with the additional Metropolis step introduced by Nobile (1995).

The rest of the paper is organized as follows. The structure of the longitudinal MNP model is
presented in Section 2. Details on the Ma,rkov chain sampler are reported in Section 3. Section
4 describes the data set used in our modeling effort and presents empirical results. Conclusions
are presented in Section 5. The Appendix provides a comparison between the performances of the
samplers with and Without the additional Metropolis step, by exhibiting simulated sample paths

for some parameters in the model.

2 The model

Suppose that the choices of n agents over a set of p alternatives are observed at different times and
denote by d; = (di,t € S;) the choices made by agent ¢. Thus, d;; = j means that at time ¢ the
i-th agent has chosen the j-th alternative. .S; is the set of times in which the choice of agent 7 is
observed; this allows, for instance, for the usual turn-over of households occurring in panel surveys.
We denote by T; the number of elements in 5;.

Denote by w;; the (p — 1)-vector containing the utility differentials of agent ¢ at time ¢ between

the first p — 1 alternatives and the last alternative, used as reference. Assume that these utility



differentials are linear combinations of ¢ characteristics Y4, m = 1,...,¢q, of the agent, plus error.

Then, one can write the MNP model under consideration as

7 if wi; > maxy wig > 0
d,‘t = (1)
p if max, wi <0

q
Wit; = ij + Y 6imYiem + € (2)
m=1

wheret=1,...,n;j=1,...,p—1land t € S;.

Equation (2) can be rewritten in matrix notation as
wi = o + AY g + €5 (3)

Agents’ heterogeneity is modeled by assuming that the intercepts a; are normal random effects:

i.4.d.

a; ~ Np_1(A, V), i=1,...,n. (4)

The other component €;; of the error term is normally distributed, independently of «;:

G HNa(0.3)  i=l.mies; ©

The specification of the model is completed by assigning a prior distribution on the parameters. The
covariance matrices ¥ and V are assumed to have an inverse Wishart, while A is matrix-variate

normal and A\ multivariate normal:

=t~ W, (v, P) (6)
A~ Npp_q)xg(D, Z@ Q1) (7)
V7~ Woi(n,Q) (8)
A~ Np_i(€,071V). (9)

The symbol  will be used to denote the parameter vector, § = {X, A, V, A} and 7(6) will denote

the prior distribution (6)—(9).



3 The hybrid Markov chain sampler

Inference about the parameters in the model of the previous section follows the Bayesian approach
described in McCulloch and Rossi (1994). Values of the hyperparameters in (6)-(9) are chosen
so that the prior distribution is proper, yet rather diffuse, so that the posterior distribution of 6
will mostly reflect the likelihood. A sample from the posterior of 6 is obtained using the Gibbs
sampler with data augmentation algorithm. The constraint o7 = 1, usually imposed to obtain
identifiability in a MNP model, is enforced “a posteriori” through the consideration of “identified”
functionals of the sampled parameter values, such as §;m/\/011, 05;/011, 0jk/+/T;;0kk- After each
Gibbs cycle through the full conditional distributions, the Metropolis step proposed by Nobile
(1995) is performed, to ameliorate the convergence properties of the sampling Markov chain.

The next subsection is devoted to the full conditional distributions necessary to implement the
Gibbs sampler with data augmentation, while the following one deals with the specification of the

Metropolis step for the model at hand.

3.1 The Gibbs sampler

When the parameter vector § can be partitioned as = {6,,...,0,,} in a way that the full condi-
tional distributions
[6:1{0;,7 # i}, Data) (10)
can be sampled from, then successively drawing from these distributions will asymptotically give a
sample from the posterior distribution of . This is the Gibbs sampler (Gelfand and Smith, 1990).
In models where the distributions (10) are available only conditional on some latent variable
W, sampling from the posterior of 6 is accomplished by successively drawing from the following
full conditional distributions:

[6:{0;,5 # i} , W, Data] (11)
(W10, Data) . (12)

This technique is called data augmentation (Tanner and Wong, 1987).



Papers dealing with the application of the Gibbs sampler with data augmentation to the MNP
model include Albert and Chib (1993), McCulloch and Rossi (1994), and Geweke et al. (1994).
The last cited paper compares the performance of the Gibbs sampler to that of other estimation
methods for the MNP model.

Below we report the full conditional distributions necessary to implement the Gibbs sampler
with data augmentation for the model (1)-(9). We will denote by Data the sequence of choice
vectors d; and by a the sequence of random effects ;.

1. [wi|Z, A, V, A, @, W_), Data).

The distribution of w;;; conditional on the parameters, the other utility differentials W_;;)

and the observed data is normal N(m;j;,74;) truncated either to [max(w;;,—;,0),00) if di; = j, or

to (—oo, max(wi,—j,0)] if diz # j. The mean m;;; and variance TZ~2jt are
T -1 T
mit; = ij + 85 Y — 977 95 _j(wit,—j — ot —j — A_; Y i)

2 = g71
it = gJJ
where

-1

—1
iy T ..
955 = [OJJ a’j,—gz—j,—jaa,—J]

9i-; = —E-j,—ja'j,—jgjj
and wj; —; is the vector w;; with w;;; deleted; a; _; is a; with o;; deleted; A_; is A with the j-th
column &; deleted; 3_; _; is 3 with the j-th row and column deleted; o _; is the j-th column of
3 after the deletion of its j-th element o;;.
2.[Z|A,V, A\, a, W, Datal.
This is an inverse Wishart distribution:

n n
T~ Wy (1/ +Y Ti,P+Y > e,»teglg) :

=1 i=1teS;



3.[A|Z,V, A\, a, W, Datal).

This is a matrix-variate distribution:
AT AN AT Q7lex
gx(p-1) Lkt

where

N e

abp’ + i Z Yii(wi - ai)T]

1=1teS;

and

n
Q=0+> ) YuY]
i=1teS;

4.[a|X, A, V,\,W, Data)l.

Here we have a set of n conditionally independent multivariate normals:
a; ~ Np-l(ai,vl)
where
V;l - V—-l + 1'11,2—1

and

a; =V [VIX+ I (wig — AYy)| .
teS;

5.[A\|Z,A,V,a, W, Data).

The conditional distribution of A is multivariate normal:
A~ Npa (A, (p+0)7'V)
with
X = (pt+n@)/(p+n)

and

1
a= ;Ear

=1



6.[V|IZ, A, \,a, W, Data).
This is also inverse Wishart:
V3ia W, (17 +n,Q+ Z:(onZ - A)(e; — A)T) .
=1

3.2 The Metropolis step

For the sake of simplicity, in this section we reparameterize § = {3, A, V,A} tod = {Lg, A, Ly, A},
where Ly and Ly are the lower triangular Cholesky factors of £ and V, respectively. 7(¢) will
denote the prior distribution on ¥ induced by (6)-(9).

As already mentioned, the model (1)-(5) is not identified, since rescaling the parameters and

the utility differentials leaves unchanged the distribution of the Data. More precisely, for any ¢ > 0,
k(Data, W, a|9) = k(Data,cW, calc?) (13)

where k denotes the joint probability density of observed choices, unobserved utility differentials
and random effects, given the parameters. Identification is usually achieved by imposing o1; = 1,
thus implicitly fixing the arbitrary constant c.

In the Bayesian approach, the model (1)-(9) is, strictly speaking, identified, because of the
proper prior distribution. This allows to run the Markov chain sampler without imposing ¢1; = 1.
However, on sets of the form {c¥,¢ > 0}, variation in the posterior distribution only reflects
variation in the prior, since the likelihood is constant. Therefore, as the sample size increases, the
posterior mass will concentrate rather than on a single point 9, on the set {¢d,c¢ > 0}. While
this explains the need to look at “identified” functionals of the sampled parameter values, it also
suggests a technique to improve the speed with which the sampling Markov chain explores the
parameter /latent variables space.

Suppose a Gibbs cycle has yielded ¥9 = {9, ¢, W}. Then, before performing the next Gibbs
cycle, one may change the scale of ¥, having care to respect the equilibrium distribution of the

sampling chain. One way this can be accomplished is by means of a Metropolis step: a candidate



¥* = ctpp is drawn from some distribution h(%)|1g) and it is accepted with probability

min [MM !
F(0) P(9*[t0)" "1

where f(9) x k(Data, W, a|9)r(?) is the equilibrium distribution of the Markov chain. Because of
(13), f(v¥*)/ f(%0o) depends only on the ratio between the prior distribution at ¥y = {Lg, A, Lv, A}
and 9* = e¢do:

) _ ()
F(%0) ~ 7(D0)

¢~ (P=D)(vntrtatl) oy {—%(c'l -1) [(c‘1 +1) (trPE"1 + trQV'l)
+QDTE 7 (¢ 4+ 1)D - 24) + €TV (T +1e-2x)]}.
(14)
Also, the candidate 1™ is best obtained by sampling a rescaling factor c¢. One can show that if ¢ is

drawn from an Ezp(1) distribution (other viable alternatives are considered in Nobile, 1995), the

acceptance probability of the Metropolis step is

B ECH)! 2-1
mm[ﬂwo)zexp{ p },1].

Considering that the limiting distributions of both Markov chains, with and without the rescal-

ing Metropolis step, coincide with the posterior distribution on the parameter/latent variables
space, an argument needs to be made to support the slightly more expensive use of the hybrid
chaip. Our still limited experience suggests that, at least in problems involving binary exogenous
variables, and within the constraints imposed by limited computing resources, the hybrid chain
seems to provide more representative samples. Further discussion of this issue is deferred to the

Appendix.

4 Data and Results

4.1 Data Source

The data source used in the present study is the Dutch National Mobility Panel. This panel was

instituted in 1984 and involves a one-week travel diary and household and personal questionnaires



collected at biannual and annual intervals. Ten waves (a wave refers to cross-sectional data at one
time point) were collected between March 1984 and March 1989. See van Wissen and Meurs (1989)
for additional information. Data for our analysis is obtained from waves 3, 5, 7 and 9 of the panel,
collected during the spring of the years 1985 through 1988 (data from wave 1 were omitted because
there was considerable sample attrition between waves 1 and 3). The four waves comprise (after
deletion of some cases due to missing values) 2731 households for a total of 6882 observed choices.

Since fewer than 1% of the choices corresponded to three or more automobiles, we decided to
consider only p = 3 alternatives: 0, 1, 2 or more cars. The alternative “0 cars” was used as the
reference alternative.

We considered several model specifications, some of them were quite comparable in terms of
goodness of fit. We present here the results for one such specification.

The set of ¢ = 15 exogenous variables comprises a) wave dummy variables accounting for fixed
temporal effects relative to wave 3, b) residential location indicators for city and suburb dwelling
as opposed to rural dwelling, and ¢) socio-demographic variables. The socio-demographic variables
include three license-dummy variables for 1, 2 and 3 or more license holders, respectively, in the
household (the base is households with no licensed members), annual household income (in tens of
thousands of Dutch Guilders), number of workers (full time and part-time) in the household, two
dummy variables to represent the effect of number of adults (the base is household with one adult),

and the number of children in the household classified by age-group.

4.2 Results

We estimated the model of Section 2 using thé sampling procedure described in Section 3. The
following hyperparameter values were used: v =4, P =4[, 1, D = 0(,_1)xq, 2 = 0.0115xq, 7 =4,
Q=4L,_1,£=0,_1,p=1.

The sampling Markov chain was run for 50000 cycles (each consisting of a Gibbs/data augmen-
tation cycle and a rescaling Metropolis step). The first 5000 draws were discarded. Due to the

relatively large number of variables involved, the remaining 45000 draws were sampled at the rate



of 1 every 4 and this subsample was output for analysis. An examination of time series plots of the
sampled values of the parameters supported the presumption that the Markov chain had stabilized
within the initial burn-in of 5000 draws.

Table 1 contains the means of the (marginal) posterior distributions of the parameters obtained
from the simulation sample. All values are standardized so that 047 = 1. Along with each mean, an
interval accounting for 95% of the (marginal) posterior probability is also reported (the extremes
of the intervals are the 0.025 and 0.975 quantiles of the empirical cdf’s of the simulated parameter
values). Estimates of other quantiles of the marginal posterior distributions, density estimates of
the marginal posterior densities or joint posterior probability regions for more than one parameter
could also be computed from the simulation output.

The estimates of the coefficients for the wave dummies are all negative and most of the prob-
ability is assigned to negative values by the posterior distributions, especially for the coefficients
in the “2 or more cars” equation. This seems to point to the presence of generic temporal effects.
Taking wave 3 as reference point, the effect is negative in all the remaining waves, it is strongest
in wave 7 and rather mild in wave 9. This seems to agree somewhat with the Dutch business cycle
in the years 1985-88, during which the data was collected.

Having as reference rural location, residence location in a suburban area tends to lower the
utility of owning 1 and 2 or more cars approximately in the same amount, with respect to 0 cars.
The same holds true for urban location, with the effect being even stronger, as would be expected.
Thus the model seems to capture a clear progression of the utility of owning cars, increasing from
urban to suburban to rural location. This agrees with the usually greater availability of public
transportation in more densely populated areas and with their characteristically higher costs of
parking.

For each level of the number of licenses in the household, there is a positive effect on the utility
of 1 and 2 or more cars, with respect to no cars. Moreover, as one would expect, one license favors
1 car over 2 or more, while two licenses correspond to a slight preference for 2 or more cars and

three or more licenses yield a definite increase in the utility for 2 or more cars. The estimates

10



of the parameters in the equation for 1 car suggest a non-linear relationship, so that it would be
inappropriate to replace the three dummy variables with a single quantitative variable “number of
licenses”.

Income enters with a positive coefficient in both the utility functions and the coeflicient is
larger, as one would expect, in the utility function for 2 or more cars. The number of workers in
the household seems to matter especially in the utility function for 2 or more cars. The coefficients
of 2 ADULTS and 34+ ADULTS indicate that the presence of more than one adult in the household
is associated with a larger number of automobiles. While the two dummy variables enter in the
equation for 1 car with approximately the same coefficient, there seems to be a much larger effect
of three or more adults, with respect to that of two, on the utility of two or more cars.

The variables accounting for the number of young people in the household have coefficients very
close to 0 and of varied sign, in the first equation. In the equation for 2 or more cars, however,
they show a progression from negative to positive, as age increases, as would expected.

The ratio between the variances of the two components of the error term ¢; is about equal to
2 and the components are approximately uncorrelated. The variability of the random intercepts is
much larger: vy; and voo are about 5 and 12 times larger than oq;, respectively. Thus, much of
the variability in the choice behavior has to be attributed to between-household differences, rather
than shocks occurring within the households. Moreover, behavior relating to the alternative “2 or
more cars” is more volatile. The components of the random intercepts are positively correlated,
so that larger utilities of the alternative “1 car” in a certain household are usually associated with
larger utilities, in the same household, for “2 or more cars”.

Using the simulation output from the Markov chain sampler, and with little additional compu-
tation, one can estimate, for each observed choice, [ Pr[d;;|0]7(0|Data)d 6 and from this compute a
quantity analogous to the usually reported maximum log-likelihood. The estimate of this quantity
for the present model is -3748. A quantity usually reported for comparison is the log-likelihood in a
model where the choice probabilities are equal to the relative frequencies of choices in the sample.

This quantity equals -6018.

11



5 Summary and Conclusions

We have presented a random effects multinomial probit model of household car ownership level.
This structure allows one to capture both intratemporal and intertemporal correlations. The model
was estimated using longitudinal data from the Dutch National Mobility Panel. Residential loca-
tion, number of license holders in the household, household income, number of adults and number
of employed people in the household appear to be important factors in car ownership decisions.
Most of the variability in the observed choices can be attributed to between-household differences
rather than to within-household random disturbances.

We have also described a Markov chain Monte Carlo method which combines the Gibbs sampler
and the Metropolis algorithm. This technique seems to provide, at a small additional computational
cost relative to Gibbs sampling, a more reliable tool in the exploration of the posterior distribution

of the parameters in the model.
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Appendix

Here we provide some evidence in support of our contention that the little extra computation
necessary to implement the hybrid chain, basically the evaluation of (14), is well worth its cost.

The results reported in Section 4 were obtained using the hybrid Markov chain sampler. We
repeated the simulation using the Gibbs sampler with data augmentation, with the same stream
of random numbers. Figure 1 displays time series plots of simulated values for some parameters in
the model, obtained using the hybrid chain (darker dots) and Gibbs sampling (lighter dots). Both
samplers were run for 50000 cycles, the plots display a subsample of 1 every 4.

For about a half of the identified parameters in the model, time series plots of the simulated
values obtained with the two methods exhibited quite similar characteristics, even though, typically,
the Gibbs sampler simulated paths were more strongly autocorrelated. An example is in panel (b)
of Figure 1, which refers to o99/0771. For these cases, inferences based on the two sampling methods
did not differ much. However, for other parameters, there were clear discrepancies. For instance, in
panel (a) of Figure 1 the simulated values of §;,cry /1/011 from the Gibbs sampler are consistently
larger than those from the hybrid chain. Similar differences were present for the other location
variables, for the number of licenses variables and for the means of the random effects. Differences
were really marked for the correlation coefficients in ¥ and V. Part (c) of Figure 1 presents time
series plots for o15/,/011022. Notice how the properties of time series from the Gibbs sampler
change as the simulation progresses. A similar pattern was exhibited by the values of v12/,/v11722.

An examination of the absolute scale of the sampled parameter values may help understand how
these differences might arise. This is provided in panels (d) and (e) of Figure 1, both containing
the simulated values of \/11 produced by the hybrid chain and the Gibbs sampler, respectively.
From these plots one evinces that, even though the two Markov chains yield overall similar results
in terms of identified parameters, they are actually exploring different regions of the “unidentified”
parameter space. The hybrid chain stabilizes rather quickly on values of ,/7q; close to 0.35, while

the Gibbs sampler at first oscillates around values near 1, then shows a tendency towards larger
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Figure 1: Time series plots of simulated values for some identified parameters: (a) coefficient of
CITY in equation for 1 car; (b) ratio of the variances of € and €;1; (c) correlation coefficient of
€ir1 and €;12; (d) and (e) standard deviation of €;;;. Darker dots represent the output of the hybrid

Markov chain, lighter dots the output of the Gibbs sampler with data augmentation.
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values.

Now, as we have shown in Section 3.2, the likelihood contains no information about the overall
scale of the parameter vector, which depends on the prior distribution only. Therefore, one can
ascertain whether the sampler has wondered in a region of low posterior probability by comparing
the prior density at the current state of the Markov chain with the prior density at rescaled versions
of the current state. We considered the last parameter vector 95 obtained from the hybrid chain and
computed the scale factor ¢y which maximize ry = m(cgdy)/7(9g). This yielded cg = 1.077 and
rg = 1.369. The corresponding values for the Gibbs sampler were cg = 0.231 and rg = 1.678-10%3,
suggesting that it spent the last part of the simulation in the tails of the posterior distribution.
Therefore, in the present situation, unless one feels as confident about the tail behavior of a high
dimensional prior distribution as one does about its behavior near the mode, it is difficult to imagine
preferring the Gibbs sampler over the hybrid chain, when making inferences about the “identified”

parameters in the model.
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Table 1: Means and 95% probability intervals of the marginal posterior distributions of the param-

eters.

Variable 1 car 2 or more cars

A -1.50 (-2.24,-0.75) | -6.89 (-9.86 ,-4.23 )
WAVE 5 -0.13  (-0.37,0.09) | -0.53 (-0.98,-0.12)
WAVE 7 -0.17  (-0.41,0.08) | -0.62 (-1.10,-0.20)
WAVE 9 -0.02 (-0.27,0.23) | -0.16 (-0.60,0.27)
CITY -3.34 (-4.21,-2.57) | -3.84 (-5.17,-2.56)
SUBURB -2.34 (-3.20,-1.55) | -2.30 (-3.54,-1.03)
1 LICENSE 479 (4.26,5.37) | 3.39 (2.25,4.82)
2 LICENSES 597 (5.33,6.70) | 6.81 (5.28,8.82)
3+ LICENSES | 6.42 (5.15,7.85) | 937 (7.05,12.12)
INCOME 039 (0.26,053) | 069 (0.43,0.97)
# WORKERS | 0.05 (-0.15,0.25) | 0.45 (0.12,0.82)
2 ADULTS 091 (0.56,1.27) | 053 (-0.30,1.38)
3+ ADULTS 1.07 (0.34,1.82) | 2.96 (1.49,4.68)
# KIDS < 12 |-0.11 (-0.26,0.04 ) | -0.14 (-0.40,0.11)
# KIDS 12-17 | 0.12 (-0.11,0.36) | 0.25 (-0.11,0.62)
# KIDS > 17 |-0.03 (-0.31,0.27) | 1.04 (0.58,1.60)
092/011 212 (1.04,3.76)

012/+/11032 0.14 (-0.12,0.42)

v11/011 541 (4.23,6.88)

v92/011 12.18 (6.58,21.99)

v12/+/V11022 0.41 (0.22,0.62)
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