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Preface

This report describes the scientific program and presents the findings of a workshop, Statistics
and Materials Science: Microstructure—Property-Performance Relations, held at the National
Institute of Standards and Technology (NIST) on July 26-28, 1993.

The workshop was sponsored jointly by the National Institute of Statistical Sciences (NISS)
and NIST. It was organized by Edwin R. Fuller, Jr., of the Ceramics Division of NIST and
Alan F. Karr, Associate Director of NISS. Stephen Freiman (Materials Science and Engineering
Laboratory) and Robert Lundegard (Computational and Applied Mathematics Laboratory) of NIST
were instrumental in articulating the goals of the workshop and securing funds from the Advanced
Technology Program of NIST for preparation of this report. Raghu Kacker, of the Statistical
Engineering Division at NIST, played a crucial role in early planning. Funds for participant
support were derived in part from a grant by the National Science Foundation to NISS. The
Conference Office at NIST handled local arrangements superbly.

Drs. Freiman, Fuller and Lundegard generously provided numerous comments and suggestions
for improving the report, as did Jerome Sacks of NISS and Nozer Singpurwalla of the George
Washington University.

This document may be read at various depths. The Executive Summary (§1) contains broad
descriptions of the main issues; it can be read on its own, possibly with the assistance of Appendices
CandD.

Section 2 is a description of the nature and problems of (some of) the data arising in materials
science.

Section 3 presents in more detail the key materials science issues exposed at the Workshop,
along with statistical strategies available or potentially available to address them; it is an expanded
version of §1.6, and may be read almost independently of the latter.

Finally, §4, 5, 6 and 7 present technical details associated with quantification of microstructure,
microstructure—property relations, materials performance and materials processing, excerpted from
presentations at the Workshop. Section 8 treats the statistical theme of combining information,
which is common to many of the materials science problems presented at the workshop.

Appendix A contains the names and addresses of Workshop participants, while Appendix B is
the program. Appendices C and D are glossaries of materials science for statisticians and statistics

for materials scientists, in an attempt to lessen the terminology impediment to cross-disciplinary
research.
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1 Executive Summary

This report describes the scientific program and presents the findings of a workshop, Statistics and
Materials Science: Microstructure—Property—Performance Relations, held at the National Institute
of Standards and Technology (NIST) on July 26-28, 1993. More broadly, it addresses the nature
and importance of cross-disciplinary research between materials and statistical scientists, as a key
to progress in both fields.

To define the fields of materials science and statistics completely exceeds the scope of this
report; however, it is important to identify key characteristics.

1.1 'What is Materials Science?
In brief [77, 79],

Materials science is the understanding of the nature, properties and use
of materials and control of their basic building blocks: atoms, molecules,
crystals, and noncrystalline arrays.

Seen in this light, materials are defined by chemical composition and structure at levels from
the molecular to the macroscopic, both of which may vary in response to external influences, such
as those exerted in processing or by the environment. Broadly, materials can be classified as

e Structural materials:

— Metals
— Ceramics

— Composites (whose constituent phases are usually metals or ceramics);
e Polymers;
e Electronic materials;
e Biomaterials.

The structural materials are scientific neighbors, sharing an origin in mechanics, an emphasis on
(poly-)crystalline structure and mechanical properties and an operative length scale of microns to
millimeters. They are rather clearly differentiated from polymers, which lack crystal structure and
whose theory is driven more by chemistry, electronic materials, whose behavior reflects quantum
mechanical considerations at the nanometer scale, and biomaterials.

At a scientific level, the “objectives of materials science are the synthesis and manufacture of
new materials, the modification of materials, and the understanding and prediction of materials
properties and their evolution over time” [79]. Four themes are depicted in [77] as spanning
materials science and engineering:
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Materials microstructure, consisting of the size, shape and orientation of crystalline phases, and
the location, orientation and connectivity of boundaries, defects, fibers and microcracks.
Microstructure is accessible experimentally, can be manipulated in processing, and can be
related to properties of materials.

Materials properties, such as mechanical properties (e.g., Young’s modulus or fracture tough-
ness), thermal properties (e.g., thermal conductivity) and electrical properties (e.g., electrical
conductivity). Changes in properties over time, especially as a result of processing, use or
environment, are important as well.

Component/materials performance in service. Often couched as reliability, performance relates
to behavior, such as fatigue, failure and yield, that depends on extreme characteristics of
microstructure, which are subject to severe variability. Environmental effects and degradation
are also crucial, as is cost.

Materials processing, via which microstructure is manipulated, typically by application of stress,
temperature and pressure, to produce materials and components with desired properties.

The relationships among these areas are equally significant.

1.2 What is Statistics?
The science of data,
Statistics is data-driven modeling and analysis.

In the best historical tradition of mathematics, statistics springs equally from applications in the
sciences' and an internal imperative to understand and extend the theory.
A statistical analysis of a scientific problem poses three central questions:

¢ What is the problem?
e What are the data?
¢ How can the data be used to inform decisions regarding the problem?

With some oversimplification, many problems and techniques in statistics fall into three general
categories:

® Measurement, which has a retrospective aspect of analyzing data collected previously, as well
as a prospective aspect of designing informative means of data collection, such as experiments
and surveys.

1This term is meant broadly, as a euphemism for the “real world.”



Statistics and Materials Science §1. Executive Summary

e Prediction of unobserved or hypothesized phenomena. These range from not-yet- (but to-be-)
observed behavior of physical systems to potential effects of policy decisions.

® Modeling, which links measurement to prediction, and analysis to data.

1.3 Background of the Workshop

The workshop was organized in response to growing belief that cross-disciplinary research between
materials and statistical scientists is central to progress in materials science, and at the same time
will stimulate development of new statistical strategies and theories having broad applicability.
Previous workshops in November, 1992, organized by the National Institute of Statistical Sciences,
and in June, 1993, organized by the Catholic University of America, addressed rather focused
aspects of this issue, and a more broadly targeted workshop was seen as desirable.

The purposes of the workshop were to:

e Initiate productive communication between materials and statistical scientists;

e Formulate a cross-disciplinary research agenda leading to high-impact advances in materials
science and statistics;

e Recommend actions by researchers, their institutions and funding agencies to address this
agenda;

e Identify potential barriers to implementation of the research agenda, and means by which they
may be overcome. '

Two key classes of structural materials, ceramics and metals, were emphasized. This was
deliberate, in order to limit the scope of the workshop, and reflects the similar origins and concerns
of these classes and their importance to industry, as well as the perceived immediacy of statistics
to central issues in them.? .

The fifty-two workshop participants were materials and statistical scientists from industry,
government laboratories and universities. Their names and addresses appear in Appendix A.

The workshop program, reproduced in Appendix B, comprised eleven lectures, one session of
informal, ten-minute presentations, and a concluding panel discussion.

1.3.1 Materials and the Advanced Technology Program

Three industrial needs, all of which are targeted by NIST’s Advanced Technology Program (ATP).
motivated the workshop:

e Life-cycle engineering;

*This should not be construed to mean either that other classes of materials are unimportant or that statistics is
irrelevant to them.
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e Component and system performance;

o Industrial competitiveness.

§1. Executive Summary

Translated to the context of the ATP, the key needs for materials science are to

and the processes to produce
these components and materials

via control of microstructure.

Design components with desired performance,

fabricated from materials with desired properties,

The ultimate goals are to

Optimize materials properties and

increase reliability of components and systems.

1.3.2 Life-Cycle Engineering

Life-cycle engineering, or concurrent design, posits that products be designed and evaluated in

terms of their entire life cycles, as depicted in Figure 1.
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At any point in its life, a product is characterized by its product state, consisting not only of
physical variables, such as composition, microstructure, temperature, stress and shape,® but also
economic variables, such as cost. In some settings, the appropriate state may consist not of simply
the current values of such variables, but rather their entire histories.

Effective life-cycle engineering leads to reliable, affordable products, funds for needed research,
a cleaner environment and jobs for scientists and engineers.

1.3.3 Component and System Performance

Component and system performance is the basis of product evaluations, whether prospective or
retrospective. The need for credible prediction of performance and properties is overwhelmingly
urgent. Indeed, of ten materials needs identified in [77] for eight industries,* four span all eight
industries, and two of these focus on prediction:

e Prediction of service life;
e Prediction of physical properties.

Performance, albeit often expressed in terms of physical components of product state, cannot be
isolated from cost and other nonphysical factors. This is particularly true for “advanced materials,”
whose superior performance is often matched by high cost. In “high-tech” settings, performance
may dominate, but in other settings, established, inexpensive materials may be preferred. Always,
however, there remains the need to predict performance.

Increasingly, applications demand that materials perform in hostile environments, with respect,
for example, to temperature, stress or corrosion. Such factors must be accounted in performance
predictions.

1.3.4 Economic Competitiveness

Banalities notwithstanding, advances in materials science and engineering are widely acknowl-
edged as crucial to U.S. economic competitiveness:

New structural materials technologies will be a determining factor in the global compet-
itiveness of U.S. manufacturing industries in the 1990s and beyond. Today, for example,
materials account for as much as 30 to 50 percent of the costs of most manufactured
products. New materials that can reduce overall production costs and improve per-
formance [italics added] can provide a competitive edge in many products, including
aircraft, automobiles, industrial machinery, and sporting goods. [81]

3 All of which are fields, that is, functions of spatial location within the product as well as time.
4Aerospace, automotive, biomaterials, chemical, electronics, energy, metals and telecommunications
5The remaining “spanning” needs are near-net-shape forming and materials databases. The other needs are

lightness/strength, high temperature resistance, corrosion resistance, rapid switching, efficient processing and material
recycling.



Statistics and Materials Science

Q¥
(< oo

7N
T

f(\//(m‘ TISTfééfC/ C

Analytical N p
Modeling U f’ {
"‘3\ » 5
lallall e

Figure 2: Materials Science in a “Sea” of Statistics (after S. Kurtz)

An overriding theme for all the industries surveyed was the primary importance of syn-
thesis and processing [italics added] of new materials and traditional materials, as well
as fabrication of these materials into components and devices. Materials science and
engineering, and processing in particular, plays a uniquely important role in these indus-
tries and in their ability to help maintain and improve the U.S. position in international
competitiveness. [77]

In recent years, a combination of factors has prompted recognition of the need for a
stronger overall Federal commitment to materials R&D. A major concern is growing
foreign competition, which already has had a significant impact on manufacturing and
national competitiveness. [29]

[I]t is clear that the scientific vigor, technological strength, and economic health of the
nation all argue in favor of universities, government, industry, and professional societies
stimulating and facilitating new collaborations between mathematical scientists and
materials scientists. [79]

§1. Executive Summary

Thus, materials science and engineering are necessary (but not sufficient) in order that the U.S.
improve its international competitiveness.

1.4 Findings and Recommendations

The workshop produced two principal findings:
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Crucial problems in materials science
are inherently statistical, so that
statistics is an enabling technology

for progress in materials science.

and

Fulfilling industrial needs and goals demands cross-disciplinary

collaboration between materials and statistical scientists.

Materials structure is a complicated object, whose intrinsic variability can only be characterized
statistically. Key experimental data are uncertain and incomplete. Relations among structure,
properties, performance and processing, derived from a combination of experiment, analytical
modeling and numerical modeling, require statistical characterizations. Indeed, modern materials
science is embedded in a “sea” of statistics: see Figure 2.

It follows that neither materials science without statistics nor statistics without materials science
can address the industrial needs outlined in §1.3.1.

The recommendations, then, are straightforward:

Statistical and materials scientists need to collaborate, for their mutual benefit. This will pro-
duce key progress in materials science, and will lead to important advances in statistics as

well. There is no possibility that extant statistical strategies will suffice to resolve the materials
science issues raised in this report.

Funding agencies should continue to recognize the need and enhance their support for cross-
disciplinary, large-scale approaches to important issues in materials science.® High-impact
projects will require funding at the scale of millions of dollars annually. Agencies’ must
realize that “cross-disciplinary collaborations require long-term commitments” [77].

Industrial and university managers, who select personnel and establish and implement reward
structures, should pay serious attention to cross-disciplinary research generally, and to that
between materials and statistical scientists in particular. Granting tenure or other rewards to a

statistician for cross-disciplinary contributions to materials science, or vice versa, should be
a goal, not a fear.

Institutions with extensive mandates and broad constituencies, NIST and NISS in particular,
should set the standard for cross-disciplinary communication and collaboration. They are

8 A conclusion echoed, in the broader context of all mathematical sciences, in [79].
7 And researchers!
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especially well positioned to perform and foster cross-disciplinary research. Moreover, com-
munication, in multiple forms, including workshops, written reports and interaction with
non-technical communities, is explicitly part of their mission.

The needs are urgent, but just one collaboration producing high-impact, high-visibility contri-
butions to both materials science and statistics can serve as a powerful model. Others will then
surely follow.

1.5 Materials Science Themes

We now move on to present a somewhat more technical summary of the workshop.

Several materials science themes emerged strongly and repeatedly. The importance of statistics
and cross-disciplinary research to these themes is discussed in §1.6 and again in §3.

Implicit in each of these themes are analysis and modeling, which are identified® in [77] as
“cut[ting] across all four of the elements of materials science and engineering.” The importance of
modeling is driven by increasing speed and capacity of computers, by availability of instruments
able to make detailed quantitative measurements and by advances in theoretical understanding of
materials properties, which allow construction of more accurate numerical simulations.

1.5.1 Use and Understanding of High-Dimensional Data

Microstructure is the epitome of complex, high-dimensional data. Experimentally accessible
features must be characterized, and at the same time, crucial characteristics affecting materials
properties identified and used to inform the measurement process. Although some needs for
additional or improved data were identified — higher resolution and direct measurement of three-
dimensional structure, in particular — use of available data seems to be a more pressing issue.

1.5.2 Heterogeneity

Nearly all real materials are heterogeneous at length scales finer than the microstructure. Many,
for example, composites and some ceramics, are heterogeneous at larger length scales. Models
are necessary that accommodate and represent heterogeneity. At the heart of this issue are the
problem of dealing simultaneously with multiple length scales and an inevitable tension between
representative properties and local variation.

Muitiple, simultaneous length scales. Length scales relevant to microstructure (let alone compo-
nents) range over at least four orders of magnitude (10~7 to 10~2 m), and must be handled
simultaneously. Data regarding different length scales is of variable nature and quality.

8Together with instrumentation.
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Representative elements and local variation. In order to provide a simplified description of a
material or component, it is necessary to identify “representative” elements of it, but inevitably

these suppress information regarding local variability, which may be crucial to macroscopic
behavior.

1.5.3 Critical and Extreme Phenomena

Ceramic components, unlike metals, are brittle. Failure (fracture) is sudden and catastrophic,
ordinarily without precursors. Fracture of ceramics results from propagation and coalescence of
cracks [68], coupled with the inability of the material to relieve stress concentrations at flaws by
means of plastic deformation. The process may be initiated by the “weakest link” in the component,
an extreme characteristic subject to severe variation. As a consequence, ceramics exhibit size
scaling: larger objects are weaker than smaller. In addition, object-to-object variability is higher
than for materials in which component behavior reflects “average” rather than extreme material
characteristics. Models are required that relate macroscopic failure to extreme microstructural
characteristics. Mechanisms to strengthen ceramics (e.g., transformation toughening, the use of
ceramic composites and introduction of microcracks during processing) are known, but predictive
models of their effects are lacking.

1.5.4 Interfaces and Grain Boundaries

Important behaviors of brittle materials, such as fracture, are controlled by interfaces between
grains and by boundaries between grains and other phases, including defects and voids. Stress
concentrations associated with interface geometry and topology lead ultimately to fracture of the
material. Description of interfaces and their relationship to key properties, despite recent progress,
remains an important unmet need.

1.5.5 Time-Dependent Effects

Materials performance and processing are time-dependent. The product state — temperature,
stress, composition, microstructure, shape and cost — varies in consequence of deliberate and
inadvertent or uncontrollable actions. Performance depends on time-evolving fatigue, damage
and environmental degradation (e.g., corrosion). Processing typically involves time-dependent
application of heat, pressure and mechanical stress, and possibly chemical effects as well. The
physical processes themselves are not understood completely, and available data are incomplete.
To the extent that microstructure determines properties of interest in known ways, understandmg
microstructural evolution comprises one approach to these issues.
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1.5.6 = The Role and Evaluation of Complex Computer Models

Computer experiments have become an indispensable to the research process in materials science.
Computer models discussed at the workshop portray phenomena as diverse as fracture of ceramics
and hydration of cement. These models are complex, often with embedded finite element calcu-
lations. They may or may not be explicitly stochastic (Monte Carlo models). Integration of data
from computer experiments with that from physical experiments is necessary. In addition, models
themselves must be validated, and their parameters, which may have no innate physical meaning,
must be “tuned” to available physical data.

1.5.7 Discretization of Data and Models

The ubiquity of computers, not only in modeling but also in data acquisition, can lead to approx-
imations and errors. Much data regarding microstructure is collected as, or converted to, digital
images. Finite element models entail similar discretization. The effects of discretization in data
and models are not understood fully.

1.6 Materials Science Issues and Statistical Strategies

From the materials science themes in §1.5, we extract and summarize a set of materials science
issues with three key characteristics:

e They were identified as important at the workshop: substantial progress on them will lead to
improvements in performance, properties, and processing;

e Statistical strategies can be developed that will lead to progress on them;
e Development of such strategies will constitute progress in statistics as well. _
Addressing these issues requires cross-disciplinary research between materials and statistical sci-

entists.

This entire subsection is presented in expanded form in §3, where details concerning the
statistical strategies are discussed.

1.6.1 Materials Performance

Issue: Performance prediction from diverse data. Component performance, in the form of fail-
ure probabilities on the order of 107, must be predicted from data of varying nature, sample
size and quality. Models must incorporate dependence of performance on materials, ge-
ometry, fabrication, load, testing, operating environment and time; they may involve heavy
computational burdens. Uncertainty in predictions of performance must be characterized.

Statistical strategies: Design of physical and numerical experiments; combining information
from physical and numerical experiments; simulation; statistical estimation of functional

10
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relationships;® model validation; use of physical data to “tune” parameters of computer
models;'? statistically derived “fast prototype” simulations.!!

Issue: Models of failure and fracture. Micromechanical models, analytical and numerical, of
varying failure modes are required. Phenomena that must be accommodated include interfacial
processes, heterogeneity and time dependence of materials properties in response to loads or
environmental conditions.

Statistical strategies: Stochastic micromechanical models; physically-based statistical mod-
els for tails of performance distributions, model validation; tuning of computer models to
physical data; statistically derived fast prototype simulations.

Issue: Testing. Effects of proof tests on components (currently assumed negligible) must be eval-
uated. Data from proof and verification tests must be combined informatively to predict
performance. Nondestructive means are required to probe the state of components in service;
resultant data must be incorporated effectively into predictions.

Statistical strategies: Statistical estimation of functional relationships; combining informa-
tion; tuning of computer models to physical data; experimental design for nondestructive
evaluation.

Issue: Environmental effects and degradation. Dependence of component performance on time
histories of load and environment, which are observed neither accurately nor completely, must
be represented. Feedback effects on materials properties may exist.

Statistical strategies: Dimension reduction;!? statistical estimation of functional relation-
ships; stochastic modeling of load and environment processes, as well as observations of
them, and feedback on materials properties; model validation; tuning of computer models to
physical data.

1.6.2 Materials Properties

Issue: Prediction of properties from microstructure. Microstructure—property relations are re-
quired to enable informed, efficient design and synthesis of materials with desired or optimal
properties. Active microstructural variables must be identified. Physical data must be sup-
plemented with data from numerical experiments.

°In this case, performance as a function of material, component geometry, fabrication, . ..
10As opposed to direct measurement/estimation of model parameters; see §3.
11Simplified, fast running approximations of detailed simulations, derived by statistical means and used to facilitate
more complete exploration of model behavior. See §3.
12Statistical identification of informative low-dimensional approximations of high-dimensional data, for purposes
of application of other statistical strategies, as well as interpretation and visualization of data.
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Statistical strategies: Estimation of functional relationships; dimension reduction; stochastic
models of microstructure; design of physical and numerical experiments; combining data from
physical and numerical experiments; tuning of computer models to physical data.

Issue: Environmental degradation. Microstructural mechanisms by which materials deform and
degrade, and their effects on properties, must be modeled, together with partially observable
environment processes. Microstructure and properties must be measured and inferred nonde-
structively.

Statistical strategies: Stochastic micromechanical models; statistical estimation of func-
tional relationships; dimension reduction; model validation, statistically derived fast proto-
type simulations, combining information from physical and numerical experiments; design of
experiments.

Issue: Validity of computer simulation models. Applicability and limitations of numerical sim-
ulations'? (for example, finite element and spring network models) of microstructures and
microstructural processes need to be characterized. Effects of discretization of data (e.g.,
digital images) and computational algorithms (e.g., finite element codes) require clarification.
Representative elements of microstructure must be identified for various purposes.

Statistical strategies: Model validation; tuning of computer models to physical data; statis-
tically derived fast prototype simulations.

Issue: Tools for microstructural design. Credible, “user-friendly” tools for microstructural de-

sign, in the form of software packages incorporating microstructure—property relations, must
be developed.

Statistical strategies: Visualization and interpretation of complex data [122, 123].

1.6.3 Materials Structure

Issue: Characterization and quantification of microstructure. Three-dimensional microstruc-
ture must be inferred from two-dimensional data. The complex, hierarchical nature of mi-
crostructure must be reduced to a small number of context-dependent statistical descriptors
(for example, to serve as inputs to microstructure—property relations). Differences among
microstructures must be characterized, and important physical properties, such as anisotropy,

detected. The experimental process should be informed by identified microstructural descrip-
tors.

Statistical strategies: Stereology, especially for higher-order properties; “direct” averaging
of grain shapes;'* dimension reduction; statistical estimation of functional relationships;

13We use the term “simulation” broadly, to describe all models simulating physical reality, regardless of whether
they are Monte Carlo models.

14 Allowing definition of microstructural features as functionals of average grains, in addition to averages of func-
tionals of grains.
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design of physical and numerical experiments.

Issue: Models of microstructure. Improved models of microstructure are needed as inputs to
models that simulate responses of materials to external factors. These models should reflect the
hierarchical nature of microstructure and facilitate identification of appropriate “representative
elements,” yet reflect adequately local variations in structure. They must also represent
interfacial structure and processes, which are crucial to performance.

Statistical strategies: Stochastic models of microstructure permitting dependence among

grain shapes; design of numerical experiments; dimension reduction; tuning of computer
models to physical data.

Issue: Fracture surfaces. Fracture surfaces should be used as data for materials microstructure
as well as failure processes. Statistical descriptors of fracture surfaces must be identified.
Models of fracture surfaces are necessary, possibly involving fractals, and must be related to
micromechanical models of the processes that produce them.

Statistical strategies: Stereology; self-similar stochastic processes; dimension reduction;
statistical estimation of functional relationships; statistically derived fast prototype simula-
tions.

1.6.4 Materials Processing

Issue: Microstructural evolution. Models of microstructural evolution during processing are
needed; together with microstructure—property relations, they lead to process—property re-
lations enabling fabrication of materials with desired or optimal properties. Models of in-
completely observable processing states are required, to be used in conjunction with models
of microstructural evolution in order to create tools for microstructure-based process design.

Statistical strategies: Stochastic micromechanical models; statistical estimation of functional
relationships; dimension reduction; model validation; combining information from physical
and numerical experiments; tuning of computer models to physical data; statistically derived
fast prototype simulations.

Issue: Constitutive equations. Parameters associated with constitutive equations describing ma-
terials processing must be estimated from sampled time trajectories of materials properties
and applied stresses. Values of processing variables leading to desired material responses
must be identified, in order to facilitate prediction for process design. Unobservable internal
variables must be constructed.

Statistical strategies: Parametric estimation; statistical estimation of functional relationships;

dimension reduction; model validation; combining information from physical and numerical
experiments.
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1.7 Research Priorities

The consensus of workshop participants, despite inter- and intra-community diversity, was that five
research issues are the most pressing:

1. Developing techniques for characterization and quantification of microstructure;
Constructing design tools for prediction of component performance;
Developing tools for microstructural design of materials with prescribed properties;

Accommodating time-dependent effects, particularly environment and degradation;

A

Understanding and evaluating the role of complex computer models in research in materials
science.

There was also consensus that significant progress on each one of these issues requires and will
result from cross-disciplinary collaboration between materials and statistical scientists.

In several ways, microstructural characterization is the pivotal issue, since progress on other
questions, especially microstructure—property relations and microstructural evolution, requires, as

a prerequisite, informative, low-dimensional statistical characterlzatlons of microstructure derived
from experimentally accessible data.

1.8 Communication Between Statistical and Materials Scientists

Productive collaboration requires communication. Initiating communication between statistical
and materials scientists was a principal goal of the workshop. Even though participants were
selected on the basis of a priori willingness to try to communicate, the process was not easy nor
was it brought to closure.

The “extreme cross-disciplinarity” of the workshop, as one attendee characterized it, was
striking. The most apparent manifestation of this was each group’s lack of familiarity with the
“other field’s jargon.” To statisticians, such fundamental concepts as stress, strain and the finite
element method, let alone more advanced notions, were unclear. Even the definitions of material
and ceramic were uncertain. Conversely, materials scientists, even those with some appreciation
of the key statistical concepts of variability and independence, were uninformed regarding more
“exotic” statistical strategies, such as function estimation and Bayesian methods for combining
information. The language barrier was greater than anticipated, and was overcome (albeit only
partially) through determined efforts of the participants. Appendices C and D attempt to lower the
language barrier for readers of this report.

Participants were virtually unanimous that future workshops are necessary and desirable, in
order to continue and enhance the communication process.!® Ultimately, of course, workshops will
report on results of collaborations, rather than just exploring their desirability or urgency.

15To facilitate attendance by at least one community, these might be held in conjunction with society meetings.
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1.9 Other Barriers

Compared to the “inability to communicate,” other barriers to collaboration between statistical
and materials scientists appear relatively minor, and are more excuses than true impediments.
Many are generic barriers to cross-disciplinary research,'® which history has demonstrated to be
surmountable:

o Individual barriers, such as inertia, reluctance and (self-characterized) lack of knowledge of
“the other field.” Most of these are rationales, not true barriers. In particular, lack of knowledge
can be overcome, initially by communication of the kind initiated by the workshop, and more
fully in the course of cross-disciplinary collaboration. Statistical and materials scientists need
not know everything about each others’ fields in order to collaborate. On the contrary, one
key tenet of team-based, cross-disciplinary research is that communication can overcome
educational disparities.

e Institutional barriers, not only in regard to partnerships involving industry, government
laboratories and universities, which cross-disciplinary research in materials science demands,
but also within classes of institutions, as well as individual institutions. These include
questions of intellectual property, publishability of research results, distribution of financial
gains, and institutions’ reward systems and “mores.” There exist workable models for
overcoming all of these.

o Differing scientific styles, including, for example, the role of postdoctoral fellows, the per-
ceived scientific value of collaboration and the scale of projects. These are not an issue when
there are true desire and need to collaborate.

¢ Funding is an obstacle currently because of pervasive shortages of funds rather than negative
attitudes on the part of funding agencies toward cross-disciplinary research. On the contrary,
agencies increasingly assign high priority to cross-disciplinary projects. Especially in the case
of materials science, which is already acknowledged to be of national importance [29, 77],
and which has cross-disciplinary roots of its own [77, 79], this appears not to be an issue.

o Asymmetry, in the sense that collaboration between materials scientists and statisticians may
be seen as contributing only to materials science, is perhaps the most real risk, not only in
reality, but also because its perceived existence is a deterrent. These fears are unfounded.
Were all needs for statistics in materials science fulfillable by extant techniques, this would
have happened already; the workshop produced compelling evidence that it has not. That

hard problems in materials science will engender only trivial problems in statistics is simply
not the case.

16For further discussion, see [50, 79, 106].
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2 Data in Materials Science

Before proceeding, we describe some primary forms of data available in materials science, and
their characteristics.

The various forms of data are not, of course, collected or applied in isolation from one another.
They are linked in order, for example, to predict component performance from materials properties
or properties from microstructure. Often, the links are manifested as computer models, which must
be tested and evaluated.

2.1 Component and Materials Performance

Component performance, although in principle complex and multi-dimensional, is often reduced
to dichotomous “reliability” terms: a component either performs as intended or it fails. Data are
direct measurements (counts) of failures of components under controlled loads or in service, in
which case loads may be unknown. Controlled-load tests may force failure (verification tests) or
correspond to a nominal or design service load (proof tests). When components are costly, sample
sizes are small (tens) for verification tests, and may be only in the hundreds for proof tests.

Data for components in service may go beyond their having survived; for example, nonde-
structive evaluation may yield information about current structure and properties. To the extent
that predicted performance depends on history, such data are extremely important; however, rela-
tively scant attention has been directed to their collection and analysis, or to incorporating them in
predictive models.

Problems with performance data include small sample sizes and incomplete load and environ-
mental measurements. Complicated component geometry limits opportunities to combine data
from different kinds of components.

2.2 Materials Properties

Ordinarily, materials properties are measured from laboratory specimens (with known, simple
geometry) under controlled circumstances. Physical properties may be

® Measured directly, for example, fracture strength of ceramics.

e Calculated from other measurements, using established physical relationships or validated
models. In some instances, this may be a matter of experimental convenience; in others (e.g.,
when direct measurement would destroy a specimen), “indirect” measurement is unavoidable.

Phenomenological properties are parameters of models of materials rather than attributes of
materials themselves, and pose additional difficulties. By definition, they are not measurable
directly, and must instead be inferred statistically. The extent to which they describe materials as
opposed to models is sometimes problematic, as is their interpretation.
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Phosphor Bronze A Superconducting Oxide
Figure 3: Two Examples of Microstructure

Quality of properties data ranges from very high to fairly low, as a function of experimental
technique and care, instrumentation and the nature of the property. Sample sizes, likewise, are
highly varied. Other potential problems include measurement variability and experimental design,
for example, sampling design and control for other variables.

2.3 Materials Structure
Physical data regarding microstructure is of two general classes:

e Visual data consist of micrographs, almost always in the form of digital images, that show
a “picture” of the material. Experimental tools include not only older techniques such as
light microscopy and ultraviolet spectroscopy but also more recently developed tools, for ex-
ample, scanning tunneling microscopes and electron microscopes. Different magnifications,
corresponding to different levels in the hierarchy of structure, are possible. Micrographs may
comprise planar sections of the material (Figure 3) or may be fractographs depicting fracture
surfaces (Figure 4). Chemical or other treatment of surfaces may be employed (Figure 5)
in order to help reveal three-dimensional structure. Techniques from image analysis may be
used to “enhance” digital data, for example, to aid in identifying grain boundaries.

o Inferential data constitute physical responses of specimens, from which microstructure is
inferred by means of (verified) models or standards. Examples include bulk X-ray mea-
surements, differential scanning calorimetry, electrical resistivity measurements and neutron
scattering. Models used in this context are, in effect, microstructure-property relations (see
§3.3), used to deduce structure from properties.
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Figure 4: Scanning Electron Micrograph of a Fracture Surface in Alumina (Al,Os)

Figure 5: Data Revealing Three-Dimensional Structure of Silicon Nitride (SizN,)
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Microstructure data is generally plentiful, and occasionally overwhelming. The most evident
shortcoming, discussed at some length in §3.4, is that the data is two-dimensional, but microstruc-
ture is three-dimensional. Also important are questions of adequacy of models used to analyze
inferential data. Additional problems associated with microstructure data per se include noise and
other distortions in visual data, which are particularly acute in regard to interfaces and insufficient
resolution to detect features of interest. In addition, different imaging modalities (e.g., light and
electron microscopy) yield data at disparate length scales.

2.4 Materials Processing

There is a striking dearth of “real” data pertaining to materials processing. Key variables are
inaccessible experimentally, for example, because appropriate sensors do not exist or because the
process is physically impossible to monitor (e.g., sintering of ceramics). In almost all instances,
measurement would interfere with the process. Data collection may be seen as too costly, especially
if meaningful uses of the data have not been demonstrated. The value of data concerning existing,
possibly immutable, processes is problematic. Data collected for other purposes, such as process
control, may be discarded once it is used, and be unavailable for other purposes.

The principal problem seems to be a lack of persuasive uses of data, compounded by general
inattention to instrumentation in the U.S. [77] and a shortage of models to inform measurement
design and data collection. The key issue is to define the entire process of measurement.

On scientific level, data regarding microstructural evolution are often merely time-dependent,
time-sampled measurements of properties and microstructure. Comparable data on environmental
and processing factors may be absent.
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3 Materials Science Issues and Statistical Strategies

Here, we describe in more detail the crucial materials science issues raised at the workshop, together
with statistical strategies applicable to them. This applicability ranges from rather apparent in some
cases to speculative in others. Nevertheless, it is real in all, and stands ready to be realized by
means of cross-disciplinary research between materials and statistical scientists.

The ordering of topics (materials performance, materials properties, materials (micro)structure,
materials processing) represents a “top-down” approach to design: performance needs define
properties needs, which in turn define desired microstructural characteristics, and, finally, processes
must be devised that impart those characteristics.!”

3.1 Statistical Strategies

Several “non-traditional” statistical strategies occur throughout this section. Rather than explain
repeatedly, we summarize them here, and also provide references.!®

3.1.1 Combining Information

This set of techniques, most “Bayesian” in nature, for informative fusion of data from disparate
sources, is discussed in §8.

3.1.2 Design and Analysis of Numerical Experiments

A computer experiment is a number of runs of a complex computer model with various inputs.
If the model is demanding computationally, only a few runs are possible. Design of numerical
experiments deals with selection of inputs at which the model will be run, while analysis pertains
to using the resultant outputs to meet various objectives, for example, to predict the response of
the model at untried inputs or to optimize some functional of the response.

Three particular strategies discussed here — model validation, tuning computer models to
physical data and statistically derived “fast prototype” simulations — address various aspects of
numerical experiments. See [19, 82, 83, 84, 85, 103, 104].

3.1.3 Dimension Reduction

Statistical data is often characterized by complexity and high dimensionality: data sets may consist
of many points, and individual observations may be complicated and high-dimensional. Techniques
for data reduction are meant to alleviate such complexity, while minimizing the concomitant loss

"In terms of causality, the flow is reversed: processes define structure, which engenders properties, which —
together with external effects — define performance.
18Definitions are given in Appendix D as well.
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of information. Ordinarily, this occurs by forming lower-dimensional, perhaps data-dependent,
functions of the original data.

Dimension reduction can serve to

Reduce sample size, by encapsulating key features of a large data set in a few summary statis-
tics. For example, given data X;, ..., X,,, the n-dimensional vector (X1,...,X,) might be
summarized in terms of the sample mean X = 2 %, X; and the sample standard deviation

S = \/ —- 37 (X; — X)?, reducing the effective dimension to 2.

Simplify data points, by taking some function of individual data points. Suppose that X, ..., X,
are m-dimensional observations, where m is large. Dimension reduction is then effected by
means of a function K : R™ — R¥, where k < m, with X; replaced by the lower-dimensional
vector X} = K(X;). Insimple cases, K does not depend on the data,'® but most in interesting
cases, K depends on the entire data set. For example, in principal components analysis [96],
K is a projection onto a subspace of R™ determined by all the data.

3.14 Estimation of Functional Relationships

Observed data often take the form of input-output pairs (z;,;) for some physical system. The

system may be conceived as a function F', which is at least partially unknown. The observations
have, for example, the form

yi = F(z:) + e, (3.1)

where the e; are random errors. The inputs z; may or may not be random.

Estimation of the functional relationship between inputs and outputs, then, requires estimation
of the function F' in (3.1), or of whatever aspects of it are not known.
Two main classes of function estimation problems?® are

Parametric problems, in which F' is of known qualitative form, but with (finitely many) unknown
parameters. The simplest example is a linear model

¥i = (a + bz;) + e;,
where a and b are unknown constants.

Nonparametric problems, in which F is entirely unknown, or specified only to the extent that it
belongs to some large (i.e., infinite-dimensional) class of functions.

For details, see [8, 32].

19For example, K might be a projection onto a k-dimensional subspace.
20Statistical function estimationis in fact somewhat broader, pertaining to any statistical model in which the unknown

“parameter” is a function. Density estimation is one example of a function estimation problem that cannot readily be
put in the form of (3.1).
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3.1.5 Model Validation

Consider a computer model of the form (3.3), and suppose now that the observed physical data are
modeled as

yi = F(z;,¢) + 0 Z(z;) + e, (3.2)

where F'° represents the computer model, whose outputs are a function of inputs ¢ and a vector ¢
unknown parameters and e; are errors.

In (3.2), Z is a stochastic process of known structure and o is an unknown constant. The term
oZ represents systematic departure of the computer model from “true theory:” if ¢ = 0 there
is no departure, and so the model is “valid”. Thus, the model validation problem is to test the
statistical hypothesis Ho : o = 0 that there is no deviation of the observed data from the theory.
Suitable assumptions allow determination of a likelihood function, which can be used to estimate
all unknown parameters, including ¢, and validation may be tested by means of a likelihood ratio
test. See [14, 19, 103, 104] for details.

3.1.6 Tuning Computer Models to Physical Data

Computer simulation models of complex physical processes frequently involve parameters with no
physical meaning, which therefore cannot be measured, even in principle.?! Statistical techniques
for estimating these kinds of parameters are said to “tune” the model.

If physical system is envisioned as an unknown function F' satisfying

Observed output = F’ (Observed input) -+ Error,
then the physical data are inputs z4, . . ., z, and corresponding outputs y; given by (3.1), where e;
is the error associated with the ith observation. Both inputs and outputs may be multi-dimensional.

The computer model has the general form

Model output = F*© (Observed input, Model parameters).

That is, for the same inputs @, . . . , z,, it produces outputs
yf = Fc(xh c): (33)
that are also functions of the model parameters ¢ = (cy, . . ., ck).

Tuning the model involves selecting values for the ¢; in such a manner that the model outputs
have maximum fidelity to the observed outputs. One approach [14] is to view F'° as a realization
of a stochastic process.

21Sometimes such parameters ‘are termed phenomenological.
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3.1.7 Statistically Derived “Fast Prototype” Simulations

Consider a (validated or tuned) computer model of the form (3.3):
y© = Fe(z,c”).

Computational demands may prevent this model from being run on more than a few inputs
zi,...,Z,, yet the outputs at other inputs may be of interest. A fast prototype simulation is a
statistically derived, easier to evaluate, approximation Fe, possibly viewing F'° as random, in the
manner of [14], and using techniques for function estimation.

Fast prototypes can also be used to address model calibration issues, which arise when inputs
are subject to variation but with unknown distribution. If there are physical output data available,
then a fast prototype F© can be used in lieu of F* in order to match the parameters of the unknown
distribution of the inputs to the observed data.

We now move on to discuss the relevance of these and other statistical strategies to key problems
in materials performance, properties, structure and processing.

3.2 Materials Performance

Materials or component performance is concerned with predicting and improving how materials
behave in service. Performance links inherent properties of materials with product design, engi-
neering capabilities, cost and operating environment. Among the key issues are reliability, life
prediction, life extension, life cycle cost, energy efficiency and safety for materials in service under
varying, incompletely known operating conditions.

The fundamental issue is prediction, to which end there is particular need to understand fail-
ure modes and internal degradation. Computational modeling — of fabrication, deformation,
degradation and failure — is a key tool.

3.2.1 Lifetime Prediction from Diverse Data

Materials performance is often expressed in reliability terms, with emphasis on estimation of very
low failure probabilities (10~%). Characterization of associated uncertainties, for use in deriving
confidence, tolerance and prediction bounds, is crucial as well. The probability that a component
fails in a given situation depends on properties of the material(s) from which it is made, its geometry,
the techniques by which it was fabricated,?? the load and consequent internal stresses to which is
subjected, and other features of the operating environment, for example, temperature and exposure

to corrosive chemicals. For some of these variables, their entire history (as opposed to only current
values) is relevant.

22Sometimes, the major flaws in a component result from machining.
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The data from which lifetimes are to be predicted vary in nature, number and quality. For
ceramic components, data include measurements of properties of “laboratory” specimens and
planned experiments, together with limited direct measurements of failures (or not) of the same or
similar components in verification tests (in which failure is forced, regardless of the load required)
and proof tests in production (in which loading approximates that anticipated in usage). Testing
conditions comprise specimens and components of different sizes, varying loading conditions and
multiple failure modes. Sample sizes are of the order 100 for specimens, 1020 for verification tests,
and 100 for proof tests. In addition, there may be data from nondestructive testing of components
in service.

Properties data are linked to component performance by a model. Symbolically, the component
failure probability is

P.=F(P,o(-,S,E),E). (3.4)

Here, P comprises materials properties,?® E represents environmental variables, and o = o(z, S, E)
is the internal stresses within the component, which given by a function of location z, of environ-
ment and of external stresses and component geometry, denoted collectively by S. In (3.4), F is
a function that models component reliability. Its form may or may not be known. The “external”
variables P, E and S may be unknown or random, may vary over time, and in any event are
observable only partially. The model (3.4) incorporates known or putative failure mechanisms,
and may also entail scaling assumptions (e.g., those associated with Weibull moduli and inherent
strength [56, 57]). There may be embedded numerical calculations of internal stress distributions
(via finite element codes) and of environmental effects.

Thus, there is need for physically confirmed models, sound statistical tools, efficient algorithms
and computing power. Among applicable statistical strategies are:

o Design for physical and numerical experiments;

e Methods for combining information;

e Bootstrap, Gibbs sampling and likelihood ratio techniques for characterizing uncertainties
associated with reliability estimates;

o Nonparametric methods for estimation of functional relationships;
e Techniques for “tuning” complex computer models to physical data;
e Statistical approximation to provide fast prototype simulations.

These strategies can also inform the experimental process, answering such questions as: What is
the right data? What are the right experimental techniques?

Models are needed as well that incorporate heterogeneity, for predicting performance of mate-
rials, especially ceramics, whose microstructure is varied deliberately over different regions of a
component. In the context of (3.4), the materials properties P become functions of z.

23Themselves a function of microstructure; see §3.3.
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3.2.2 Models of Failure and Fracture

The links between materials properties (measured from laboratory specimens) and component

performance are micromechanical models of the failure process, represented in (3.4) by the function

F'. Some of these are analytic, but most are computerized simulations, some of which are stochastic.

Failure models are ordinarily phenomenological in nature,?* and are based on parameters (e.g.,

Weibull modulus) associated with the models themselves rather than direct observation.
Statistical strategies can be used to address important needs for models that

e Depict additional failure modes for materials, such as ceramic components and in situ-
toughened ceramics, to which “pure” weakest link scaling?® is inapplicable;

e Incorporate heterogeneity of components, especially ceramics, in which microstructure is
varied intentionally over different regions;

e Accommodate time dependence of materials parameters.

These strategies include semiparametric and Cox-type models of tails of performance distributions;
alternative failure models [129, 135]; model validation; tuning of computer models to physical
data and statistical approximation to provide fast prototype simulations.

3.2.3 Environmental Effects and Degradation

For ceramics and other brittle materials that fail catastrophically, modeling and assessing environ-
mental effects and concomitant degradation become critical. Component reliabilities may depend
not simply on current loads and environmental conditions, but on entire time histories of these
processes. Incorporating histories converts (3.4) to

P.=F(P,0(-,8,€),€), (35

where P, 8 and € are the time histories of materials properties, external stresses and the environment,
none of which is known completely, even ex post facto, and where F is a more complicated version
of the function F' in (3.4).

Further complications ensue from feedback effects of loading and environment on materials
properties.

The key issue remains prediction of performance given available information, including that
from nondestructive evaluation of components in service. Such prediction requires statistical
strategies such as stochastic modeling of environmental processes and their effects on materials
properties (see also §3.5), function estimation, dimension reduction (the function F' in 3.5) is
infinite-dimensional), validation and tuning of computer models and combining information. Ob-
servability of load and environment processes must be modeled as well. Statistical strategies are
needed to inform experimental design and nondestructive evaluation.

24That is, they model observed phenomena of interest but are not derived from first principles.
25Which leads to Weibull distributions of strength.
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3.3 Materials Properties

Properties are quantitative descriptors defining functional attributes of materials. They are envi-
sioned as associated with a material itself, rather than specific objects fabricated from it. Broadly,
properties include mechanical, electrical, magnetic, optical and thermal responses to external stim-
uli such as stresses, electric fields or thermal gradients. The workshop dealt mainly with mechanical
properties.2é

The crucial issue is to design materials with desired properties, as well as the processes by
which they are produced. This can be done by relating properties to microstructure, and designing
the microstructure.

3.3.1 Prediction of Properties from Microstructure

Current and foreseeable measurement, modeling and computing technology do not allow prediction
of properties directly from atomic structure. An attractive alternative is to relate statistical features
of microstructures to macroscopic properties of materials, by means of microstructure—property
relations. This is feasible because, unlike atomic-level structure, microstructure, which is inter-
mediate between the atomic and continuum levels, is accessible via experiment, and tools can be
developed to describe and simulate it (§3.4).

Properties are a function of microstructure and environmental variables such as temperature.
Symbolically,

Properties = F (Microstructure, Environment) (3.6)

for some high-dimensional, unknown function F.2” Knowledge of F would identify microstruc-
tures yielding a desired set of properties under specified environmental conditions, enabling mi-
crostructural design of materials.

The principal goal is to estimate F' from available data, which consist of micrographs and
other physical data, properties measured from laboratory specimens, simulated microstructures
and computer simulations of materials properties associated with real or simulated microstructures.
Statistically, this is a context marked by complicated, high-dimensional functions and small data
sets of diverse types. Available strategies include dimension reduction to identify “active” mi-
crostructural variables associated with properties of interest, which also informs the processes of
physical experimentation and microstructural quantification, tuning of computer models to phys-

ical data, nonparametric function estimation, and combining data from numerical and physical
experiments.

26For ceramics, relevant mechanical properties include mechanical strength, fracture toughness, hardness, tribolog-
ical (lubricating) characteristics, and resistance to erosion and corrosion.
2TPossible time dependence of structure and environment is considered in §3.5.
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3.3.2 Validity of Simulation Models

Physical data alone are often inadequate to test validity of proposed microstructure—properties
relations, and numerical experiments are required as well.

Applicable tools include models of microstructure itself, such as pixellated grain growth models
[33] and other Monte Carlo models [1, 114], which can serve as input to other numerical models
that represent physical processes linking structure to properties of interest.

Several simulation models relating properties to microstructure were discussed at the workshop.
They link global properties, such as effective conductivity and effective elastic moduli, to local
behavior, such as current densities and stress distributions. Examples of materials and phenomena
they represent include fiber-reinforced composites, cement pastes, interpenetrating phase compos-
ites, scaling in fracture, fracture of disordered microstructures, sintering, granular materials and
polymer fracture.

Because they are implemented on computers, these models are discrete. The primary physical
relationship of interest:

Microstructure <=> Properties
is realized in the model in the discrete form

Digital Image <= Finite Elements. 3.7

Despite intense investigation, many numerical models are of unestablished (and publicly ques-
tioned) validity: it is simply not clear whether they represent the structures and phenomena of
interest sufficiently well to be useful for prediction or design. Resolution of these questions is one
of several important statistical issues:

Discretization, which is tied intimately to the question of representative elements. As noted in
(3.7), numerical models discretize structure and its evolution. Comparison with experimental
data is necessary to determine whether, in each case, the level of discretization is appropriate
to the properties of interest.

Model validation and tuning. Discretization affects model validation. In turn, validation leads
to questions of model tuning, since the models contain (phenomenological) parameters that
must be estimated from physical and numerical experimental data.

Fast prototypes. With embedded, repeated finite element computations, many of these models,
especially those also incorporating randomness in structure or evolution, are too complex to

permit more than a few runs. Statistically derived fast prototypes aid in evaluation and use of
such models.

3.3.3 Microstructural Design of Materials

Designing materials at the microstructural level, by means of statistically derived microstructure—
property relations, holds promise of attaining desired properties systematically (rather than fortu-
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itously) and, ultimately, of optimizing properties.
In conceptual terms, microstructural design involves the inverse of the function F in (3.6):

Requisite Microstructure = F~* (Speciﬁed Properties, Anticipated Environment) . (3.8)

In order that (3.8) be useful, the microstructural characterization must be low-dimensional and be
based on variables that can be manipulated during processing and fabrication.

Since even F itself must be estimated statistically, estimation of F'~! is even more difficult,
and is complicated by the inaccessibility of F~! as a function of environment. Moreover, the
computational demands entailed by (3.8) are almost inevitably severe.

Beyond establishing microstructure—-property relations themselves, it is necessary to develop
design tools embodying them. Most of these tools will be software packages. In addition to
questions of “user friendliness,” statistical issues of visualization and interpretation of complex
data (e.g., three-dimensional microstructure and multiple properties) must be addressed [122, 123].

3.4 Materials Structure

The most salient characteristics of materials structure are its complexity and its hierarchical nature.
Structure is simultaneously interesting, important and experimentally accessible at levels from
the atomic to the component (or object, or structure). Depending on the level, relevant physical
theories range from quantum physics to thermodynamics to continuum mechanics.

For metals and ceramics, interest focuses on the microstructure, centered at the scale of 108 m.
As depicted in Figure 3, the microstructure of a real material is a complicated arrangement of grains,
surfaces, interfaces and defects, involving phase volume fractions, orientations, sizes, shapes and
spatial distribution of phase domains and connectivity of phases. A metal, for example, typically
has grains, grain boundaries, precipitates of second phases, dislocations and solute elements. For
ceramics, defects in the form of porosity and microcracks (both deliberate and inadvertent) are
present as well.

Materials structure is linked intimately with experimental data. Understanding and charac-
terizing microstructure depends heavily on instruments for measuring and probing structure, and
equally on statistical methods for analyzing, comprehending and visualizing the resultant data. By
far the most salient aspect of that data is that microstructure is three-dimensional, but virtually all
of the data is (at most) two-dimensional. In particular, the data depicts surfaces, whereas materials
properties are driven by “interior” as well as surface structure.2?

3.4.1 Characterization and Quantification
Techniques are needed in order to

e Identify low-dimensional, statistically-based characterizations of microstructure;

?8Neither can be neglected. For example, surface and interior flaws induce different failure modes in ceramics.
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e Determine whether two microstructures differ, and to characterize the nature of the difference;

e Determine whether important physical properties, e.g., anisotropy, are present in a given
material or microstructure, and to what extent;

e Develop improved simulation models of microstructure. These may then be linked to other
models that simulate response to external factors, such as stresses, in order to elucidate
microstructure—property relations.

Some specific statistical issues are:

Inferring three-dimensional microstructure from two-dimensional data. Stereology [55, 98,
116, 117] provides procedures to infer some aspects of three-dimensional structure via analysis
of lower-dimensional data, such as transects, slices and projections.??

Prior emphasis has been on mean behavior of functionals of shape, such as grain volume,
number and surface area, total surface curvature, line length and curvature, and number
of triple points. Recently, interest has turned to second-order and higher properties, which
provide a more refined description of the material. Continued development of these techniques
is necessary.

Other statistical strategies combine “conventional” stereology with stochastic geometry and
morphology to yield “direct” averages of shapes [125], from which functionals can be com-
puted. That is, rather than® the customary approach that microstructural features are averages
of functionals of structure, features can be taken as characteristics of an “average” structure:

Microstructural features = Functionals of averages of structure.

Differences between averages of functionals and functionals of averages will also be infor-
mative. '

Inference for topology (e.g., connectivity of phases in multiphase materials such as ceramic
composites or cements [33]) cannot be based on stereology; new tools are required.

Dimension reduction. The complexity of microstructure entails need for low-dimensional char-
acterizations. These will be statistical in nature. This is particularly necessary for derivation
of microstructure—property relations (§3.3), because dimensionality of inputs to the function
F in (3.6) must be tractably small.

Informed experimentation. To date, stereology has been driven by experimental accessibility
(“What can be measured easily?”) and mathematical tractability (“What can be estimated
easily?”) more than by need (“What should be estimated in order to derive microstructure—
property relations?”). Statistical identification of such relations (§3.3) creates impetus for new

298ee §4.1.
300, in addition to.
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data needs, at the same time as progress in experimentation and instrumentation may yield
means of fulfilling these needs.

Even in “conventional” stereology, sampling considerations can be crucial, Statistical proper-
ties of some stereological estimators derive from randomness in the sampling process rather
than assumed randomness in the material structure (either within one specimen or from

specimen to specimen). Populations of probes (lines, planes) must be defined and sampled
carefully. See §4.1.

3.4.2 Models of Microstructure

Numerical experimentation for derivation of microstructure-property relations and development
of tools for microstructural design require stochastic models of microstructure. Marked point
processes [59] are prime candidates for bases of such models, which may then be linked to
computer models that subject the material to stresses or other environmental influences. For
example, crack growth and fracture [112, 136, 137] can be analyzed in this manner. Design of
numerical experiments for the computer models is needed for selection of informative sets of input
parameters. Fast statistical prototypes are needed when many runs of one of the linked models are
required; models must be tuned (calibrated) to physical data; validation of the models is essential.
Microstructural modeling involves issues of particular importance:

Hierarchical aspects. Even at the scale of microstructure, the hierarchical structure of materials is
evident, with length scales of interest spanning several orders of magnitude. Characterization
and quantification are necessary over several length scales simultaneously. This raises issues
of data relevance, compatibility and combination and of model linking.

Representative elements and local variation. To set of microstructural features, there correspond
representative elements of a material, over which one can average in a given sample (e.g., a
micrograph) in order to derive a statistical summary. At one level, average grain “size” may
suffice, while at another, grain “sphericity” may be required as well. Additional phenomena,
such as fracture of ceramics, are thought to be driven primarily by local variability, and
no averaging may be possible. In every case, of course, there is trade-off between the
simplification associated with representative elements and concomitant loss of information
regarding variability.

Heterogeneity. At sufficiently small length scales, most materials other than single crystals are
heterogeneous. Indeed, microstructural characterization is aimed at reducing heterogeneity to
manageable proportions. Some materials, however, such as ceramic matrix or metal matrix3!

31Such composites consist, for example, of single crystal ceramic whiskers, ceramic fibers or ceramic particulates
embedded in a matrix of controlled microstructure. The “fibers” provide strength, stiffness and fracture toughness,
and are bound together in proper orientation by the matrix. Composites of a ceramic fiber in a metal matrix have
mechanical properties superior to those of the individual phases. Ceramic fibers are very strong at short lengths, but
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composites, are deliberately heterogeneous, even at relatively large length scales. Models are
necessary that represent relevant heterogeneity.

Micromechanical models of interfacial structure and processes. For metals and ceramics, prop-
erties of interest are driven by the structure of grain boundaries and other interfaces, or by
their evolution during processing or in service. Spring network models [20, 21, 100] represent
grain boundaries in a simplistic but nevertheless useful manner; however, details of geometry
and energy considerations associated with crack formation and propagation are suppressed.
Improved models of microstructure incorporating micromechanical properties of grain bound-
aries, crack bridging, and detailed treatment of energy are needed. These will be computer
simulations, which require validation and tuning to experimental data. The computational
burdens may be enormous, and statistically derived fast prototypes may be appropriate.

In the same way that most microstructural data is two-dimensional, so are most models depict-
ing interfacial processes. Three-dimensional models, for example, of nonplanar crack growth,
are needed; however, their development has been retarded by lack of three-dimensional data
and extreme computational demands. Both of these issues can be addressed statistically, the
former as described below and the latter via fast prototypes.

3.4.3 Fracture Surfaces

Inference from fracture surfaces (based on fractographs, such as Figure 4) presents additional
challenges and opportunities. Data from fracture surfaces are of interest as another basis of
inference for microstructure, and may also yield information about the nature and mechanisms of
failure.?? Fracture surfaces are very complex [74], rendering dimension reduction more necessary
and difficult than for planar sections. At the same time, further summary parameters become
available, such as surface roughness, an important feature of the fracture behavior of concrete [66].

Most stereological procedures assume the sampling mechanism to be independent of the
material,®® which is not the case for fracture surfaces. For inference about material-wide mi-
crostructural characteristics, this may cause problems. However, if fracture occurs largely along
grain boundaries, then a fractograph may be very informative about grain shapes. For inference
about fracture itself, of course, fracture surfaces are mandatory.

3.4.4 Other Data Issues

Several other issues are associated with microstructural data:

have severe size effect. Metal matrices, though less variable, may have lower stiffness and yield strength, and be
susceptible to severe creep at high temperatures. The composite can have high strength, acceptable variability, high
creep resistance and reasonable fracture toughness.

32Inference from fracture surfaces is relevant as well to component reliability (§3.2), where it is of interest to
reconstruct the temporal development of fracture from the fragments of the failed component.

33See §4.1.
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Three-dimensional data. Asnoted previously, most visual microstructural data is two-dimensional.
This remains literally true even in cases where two-dimensional data contains more-or-less
direct information about three-dimensional structure, as in Figure 5 or fractographs (Figure 4).
Ultrasound tomography, used in nondestructive evaluation [102], yields “genuinely” three-
dimensional data, albeit not at resolutions relevant to microstructure. It is important to devise
methods for collection and analysis of three-dimensional data.

Inexactness in digital image data. Digital micrographs are noisy and discretized, so that essential
features may be obscured or lost. Image analysis can be useful for obtaining enhanced visual
data [28, 101, 102, 134], but has seen only limited application. Strategies are necessary to
attenuate effects of noise and discretization, and to characterize their propagation through
analyses and models.

Edge effects. Awareness of edge effects in visual data® is not new. Nevertheless, stereological
and related procedures making full use of information at the edges of visual microstructure
data need further development.

Combining multiscale data. Integrating visual data from two or more different modalities falls
under the general rubric of image registration, which has been studied previously in the context
of medical imaging. For microstructure, the problem is more complicated (and the potential
usefulness enhanced) because different forms of data may represent different length scales.

3.4.5 Experimental Needs

The logical flow between experiment and instrumentation, on the one hand, and description and
quantification of microstructure, on the other hand, is not unidirectional, even though historically
descriptions of structure have been driven by available experimental data. Identification of key
statistical descriptors of structure, via derivation of microstructure—property relations will drive
data collection and development of instrumentation.?® To some extent, this is happening already:
various models have defined needs for

Three-dimensional measurements of structure, which will facilitate validation and tuning of
models of microstructure, or detection of specific features of microstructures, such as anisotropy.
Among these are measurements of connectivity and other topological properties that cannot
inferred from two-dimensional data.

Data obtained nondestructively, which are of particular importance in regard to materials and
components in service, in order to assess environmental effects and predict future properties.

Enhanced resolution, which is, of course, a perpetual need. In the future, it may be driven mainly
by increased modeling sophistication and computational capabilities.

34Especially in other contexts, for example, spatial statistics.
35The latter is noted in [77] as neglected in the U.S.
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Measurements of local variation, such as microstress, which at the scale of grain size are highly
non-uniform, as well as residual stress and grain orientation.

Data involving interfaces. The crucial role of interfaces and grain boundaries has been noted in
§3.4; however, relatively little “direct” data regarding interfaces and their characteristics is
available. Grain boundaries appear as edges in digital microstructural data, which makes
them particularly susceptible to noise and distortion introduced by image processing.

3.5 Materials Processing

Materials processing and synthesis are identified in [77] as weaknesses of materials science and
engineering in the United States.

Materials processing is the control of structure to produce materials with desired properties
and, ultimately, components with desired performance. It is an enabling activity. Processing is
typically effected by means of macroscopic manipulations — for example, application of stress,
pressure or temperature — that cause microstructural changes. Metal alloys, for example, can be
created by melting or mechanical alloying or deposition techniques. Subsequent processing can
include hot or cold rolling, forging, extrusion and thermal treatments. Other examples are grain
growth and other aspects of origins of microstructure, coarsening, sintering of ceramic powders,
recrystallization, directional grain growth, phase transformations during annealing, particle stacks
and spinodal decomposition. Since processing entails control and manipulation of interfaces, better
understanding of interfacial structure and processes is required.

In the same way that microstructural design (§3.3) uses microstructure-property relations to
tailor materials properties, materials processing can be viewed as requiring analogous process—
property relations, of the generic form (compare (3.6))

Properties = H (Initial microstructure, Processing history, Environment). 3.9

This formulation is, however, too general. Two more specific approaches — microstructural
evolution and constitutive models — are feasible and useful.

3.5.1 Microstructural Evolution in Processing

Building on microstructure—property relations, one can predict time-varying behavior of properties
by tracking microstructural evolution, that is, changes over time in microstructure.®® Understanding
and modeling this evolution enables prediction of materials properties.

In the context of materials processing, at an elementary level, one can build on (3.6). With ¢
representing time, P(t) properties at ¢, M () microstructure at ¢, a simple model would take the

36We use the term generally, to connote development of microstructure during synthesis as well as changes to extant
microstructure during processing or in service.
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form
P(t) = F(M(t)), | (3.10)

where F' is (effectively) the same function appearing in (3.6). This assumes no dependence of

properties on processing history, which is plausible initially, if not ultimately. Otherwise a variant
of the form

P(t) = F(M(2),8(t)) (3.11)

is necessary, where §(t) processing history (compare (3.5)) at ¢, representing, for example, stress,
temperature and pressure.

If microstructure changes qualitatively, as in in situ toughening, then a “different” function F'
and a more complicated M may be necessary in (3.10).

If F has been estimated already, the sole issue is to model microstructural evolution, which
might be done via a “evolution equation” (cf. (3.14))

M'(t) = G(M(t),8(t)). (3.12)

In some contexts, a “processing state” S(t) might suffice in place of the history 8(t).

Most models of microstructural evolution are computer simulations [1, 33, 35, 114, 136].
They might involve constitutive equations (discussed momentarily), cellular automata, Monte
Carlo methods, time-dependent Ginsburg—Landau theories with random noise or tesselation-based
models.

Materials science issues and statistical strategies germane to microstructural evolution include:

Models of microstructural evolution, corresponding to the function G in (3.12). These will be
computer simulations based on stochastic micromechanical models of relevant interfacial
processes. Their construction requires function estimation, dimension reduction, model
validation, tuning of computer models to physical data, fusion of data from physical and

numerical experiments and fast prototype simulations, the latter because of the complexity of
the computer codes.

Models of processing states, that is, of the process S(t) in (3.12). These may be constitutive mod-
els (discussed momentarily). In addition to issues of stochastic models, function estimation,
dimension reduction, model validation and model tuning, the process S(t) is only partially
observable. The partial observability itself, as well as its consequences, must be modeled.

Feedback effects. Implicit in (3.10) and (3.12) is an assumption that properties do not feed back
to modify the microstructure. There are cases in which this assumption fails: for example,
deterioration of concrete depends on the interaction between permeability and microstructure
[75, 119]. In other cases, an external stimulus causes microstructural or morphological
evolution that alters the response of the material to the original stimulus [137].
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Process design. Tools to design processes yielding desired or optimal properties are necessary in
order that progress on microstructural evolution affect manufacturing practice. Ordinarily
these will be realized as software packages. “User-friendliness,” especially insofar as it
pertains to display and interpretation of complex data [122, 123] is of particular concern.

Models that incorporate cost (see §1.3.1) are needed; essentially none has been developed to
date.

3.5.2 Constitutive Equations

Constitutive equations relate time-varying stresses applied to a material to resultant properties. The
ultimate engineering goal is to produce components with desirable characteristics.” In some ways,
they may be construed as particular realizations of the evolution equation (3.12).

A set of constitutive equations consists of state and evolution equations. A state equation, of
the generic form

P(t) = F(T(t),€'(t), S(t),9), (3.13)
expresses a vector P of materials properties as functions of controlled, external variables, such as

temperature T and strain rate ¢’ (the time derivative of strain), a vector S of “internal variables,”

which represents microstructure, and a vector § of unknown parameters characterizing the specific
process.

The internal variables satisfy an evolution equation
S'(t) = G(T(t),€'(t), 5(2),6). (3.14)

They serve as surrogates for real phenomena occurring during processing, may have no specific
physical significance, and are not necessarily measurable, even in principle.

Constitutive equations are viewed as valid pointwise, at representative small elements of the
microstructure. The qualitative forms of F' and G are dictated by the laws of mechanics, but are
not necessarily available as analytical expressions.3® Instead, they may be embedded in computer
models, such as finite element algorithms.

The observed data are experimentally measured time trajectories, sampled at discrete times, of
P, T and €'; in some cases, only final values are known. The observations are subject to noise and
measurement error.

Specific issues include:

Estimation of 6, a parametric estimation problem, but not standard because of the unusual nature
of the data and the absence of analytical expressions for F' and G. Variability of estimators is
of particular concern, as are model validation and tuning.

37For example, ultimate properties of a metal undergoing extrusion, forging or rolling are strain, deformation and
micro-hardness.

381n this parametric formulation of the problem, F and G are of known form, but involve the unknown parameter
0. Nonparametric alternatives are discussed momentarily.

35



Statistics and Materials Science §3. Materials Issues and Statistical Strategies

Prediction, in the direct sense of predicting properties associated with input values other than
those treated experimentally, and also in the process design sense of determining values of
the processing variables T'(t) and €’(¢) leading to prescribed properties.

Identification of internal variables. In the example of [105], there are two internal variables. One
represents the combined effect of all dynamically recoverable defects (which disappear if stress
is removed or the material is heated), and the other, the combined effect of microstructural
features that cannot be recovered during deformation, such as permanent hardening of the
material. Statistical strategies can identify effective, low-dimensional internal variables.
Recent advances in computational methods allow incorporation of experimental data.

Nonparametric models, which posit only that the functions F' and G in (3.13) — (3.14) belong to
some large, qualitatively defined class of functions, rather than treating them as known except
for the value of . These models have the advantage of being more flexible and powerful, but
may be ineffective when there is only limited data.

3.5.3 Environmental Degradation

The response of materials to deterioration® is similar conceptually to processing. Under load or

environmental stress, the microstructure of a material changes, and so do its properties. Microstruc-

tural mechanisms by which materials in service deform, degrade and fracture, for example, contact

damage, metal creep, fatigue and corrosion, are central processes to be understood and modeled.
By analogy with (3.6) and (3.10), a basic model takes the form

P(t) = F(M(2),&(t)), (3.15)
where P(t) denotes materials properties at ¢, M(t) is microstructure at ¢, and £(¢) is the environ-

mental history at t, including loads as well as “external” effects. Evolution of microstructure and
the environment must be modeled as well: symbolically,

M) = G(M(t),&(t)) (3.16)
&) = H(ew). (3.17)

Feedback effects, which would convert (3.16) to
M'(t) = G(M(t), (t), P(t)), (3.18)

may be important, too.
Issues resemble those for microstructural evolution, but while some physical processes involved
with processing and degradation are similar, the data and models are quite different.

39 crucial aspect of the nation’s problem of deteriorating physical infrastructure [25].
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Modeling of environmental processes, corresponding to the process &(t) and the function H in
(3.16). Stochastic models of environmental conditions require dimension reduction to identify
key variables, function estimation and model validation, all of which must account for the
incomplete observation of the environment.

Measurement of properties and microstructure. For materials in service, ordinary measure-
ments of microstructure and properties may not be possible. Components may be physically
inaccessible, or carrying out the measurements might require removing them from service
or destroying them, neither of which may be allowable. Instead, emphasis must be on data
obtained via nondestructive evaluation, which may differ qualitatively from that discussed pre-
viously. Even “classical” questions, such as characterization of variability of measurements,
require novel statistical strategies. Data from diverse sources must be combined. Issues of
experimental design (“What should be measured?” “How should inputs be varied?”) are
relevant as well.

Modeling of degradation, as represented by the functions F' in (3.15) and G in (3.16) involves
function estimation, dimension reduction, model validation and tuning of computer models.

Several processing-related questions with significant statistical content were not addressed at
the workshop:

e Materials synthesis, the chemical and physical means by which atoms and molecules are
assembled to produce (new) materials, albeit similarly dependent on microstructural manip-
ulation, operates on a smaller scale than processing, and often need not address of issues of
efficiency, cost and control. Statistically derived process—property relations, supplemented
by techniques of experimental design, would enable rapid synthesis of new materials with
desired properties, lessening the level of “guesswork” involved.

¢ Novel, improved production techniques for extant materials and machinery for processing.

e Robust, nondestructive sensors and process control models and methods.
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| Dimension | Feature | Property Classes

3 Grain | Volume a, B
Number
Connectivity

2 Surface | Area aa, of, B
Total Curvature
Spherical Image

1 Line Length aaa, aaf, afBB, BB
Dihedral angle
Curvature

0 Point | Number aaaa, acaf, acBf, aBBB, BBAA

Table 1: Microstructural Features

4 Quantification and Inference for Microstructure

This section and the four that follow contain details of the presentations at the workshop. They are
organized in the “scientific” order of microstructure, microstructure-property relations, materials
performance and materials processing.

4.1 Stereology

Professor DeHoff’s talk, “Stereology and the Quantification of Microstructural Geometry,” an
overview of the subject, focused on microstructural features, stereological measurements, stereo-
logical relationships and sampling design strategies.

4.1.1 Microstructural Features

Consider a two-phase granular material with phases a and 3. Key microstructural features may be
categorized as in Table 1. The classes form a co-dimension: grains are only « or 3, a grain boundary
can between two « grains, two 3 grains or one of each, (and so has a 2-dimensional classification) a
triple line, along which three grains meet, can be of four types (and has a three-dimensional classi-
fication), and quadruple points, of five kinds, have a four-dimensional classification. Interpretation
of these as microstructural features entails an implicit “per unit volume” qualification. For the o
phase, the grain volume feature is the volume fraction v,, that is, the fraction of the volume of the
material comprised of phase a.*!

These features are illustrated in Figure 6. It is important to understand that since this figure is
two-dimensional, only features of co-dimension 2 or lower can be shown, and each feature loses
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Figure 6: Classes of Microstructural Features

| Probe | Example Counting Measurement |

Point | Point counts of different phases

Line | Line intercept count of grain boundaries
Plane | Area point count

Feature count

Tangent count

Table 2: Stereological Probes and Counting Measurements

one dimension in the process of projection. Thus, in two-dimensional data, quadruple points are
not observed at all, grain boundary surface becomes a line and a triple line becomes a point.
4.1.2 Stereological Data

Three-dimensional microstructure is (in general) not accessible directly; rather, it is sampled by
means of stereological probes:

o Volume probes, parametrized by 3-dimensional position;

e Plane probes, parametrized by 2-dimensional orientation and 1-dimensional position;
e Line probes, parametrized by 2-dimensional orientation and 2-dimensional position;
e Point probes, parametrized by 3-dimensional position.

In reality, most microstructural data is two-dimensional, sampled with point probes, line probes
and area probes. These probes provide various stereological counting measurements, some of
which are given in Table 2. Data of any of these sorts ordinarily represent repeated probes of the
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same microstructure.
Not all data is “complete.” Edge effects, which arise because samples of microstructure are

finite in extent, are a particular form of incompleteness, and have not, in general, been dealt with
successfully.

4.1.3 Stereological Relationships

The link between stereological data and microstructural features is provided by stereological
relationships, which are derived from assumptions regarding the nature of the material, the sample
and the sampling process.

To consider one example, the volume fraction v, can be estimated from point probe data. Let
N be the number of point probes and N, the number of those yielding phase . Then, N,/N is a
plausible estimator of v,, and, under certain hypotheses, is unbiased:

E[Ny/N] = va. (4.1)

The hypotheses undérlying (4.1) pertain mainly to the sampling mechanism. They are generically
to the effect that “the population of (possible) probes has been sampled uniformly” and that the
(planar section) data are “representative” of the three-dimensional microstructure. For probes
selected randomly, this means that the expectation in (4.1) is solely with respect to the sampling
mechanism.*? The particular microstructure is taken as fixed rather than sampled from some class
of microstructures, and v, is regarded as simply an unknown physical constant.

If probes are selected systematically (to “span” the space of probes), but the microstructure is
still taken as fixed, then it is unclear how to interpret the expectation in (4.1).

When individual microstructures are regarded as sampled from a class of microstructures (one
possible definition of a “material”), then the volume fraction becomes a random variable V,,
whose mean v, is a characteristic of a material rather than objects. Under uniformity assumptions
regarding probes, (4.1) is valid conditionally on V:

E[N./N|V,] = V4, (4.2)
and if sampled microstructures are representative® of the material, in the sense that
E[V,] = va,

then once more (4.1) holds.

0As opposed to the “engineering” order of performance, properties, structure and processing.
1To the extent that these features are taken as features of a material, rather than a particular sample, issues of
representative elements and local variation (§3.4) are germane.

*2The possibility that different parametrizations of the set of probes engender different manifestations of uniformity
seems to be neglected.

43See the discussion of representative elements in §3.4.

40



Statistics and Materials Science §4. Microstructure Characterization

4.2 Stochastic Geometry: Average Shapes

Professor Vitale, in his talk “Stochastic Geometry,” described an approach to microstructural
quantification in which the

Features = Averages of functionals of structure 4.3)
paradigm inherent in stereology (embodied in (4.1), for example) is supplanted or supplemented

by
Features = Functionals of averages of structure. (4.4)

Some versions of (4.4) are based on a concept of average shape. To illustrate, one measure
of size for a single grain G is the effective radius r(G) = vol'/ %(@). To estimate (@) using the
approach of (4.3), suppose that from grains Gi,...,G, in three dimensions one samples not the
“true” effective radii r(Gy), . ..7(G,), but instead stereologically derived estimates #(G;). Then,
an estimated value for the effective radius is

lr, .
7= ;[T(Gl) +. + (G
To employ (4.4) is this context, Minkowski addition [72] of sets can be used to form the mean
grain
1 e
~[Gy+...+ Ca] & {§[m1+...+zn] (21 €C,... 20 C G,,},
and its data-dependent version
— 1¢a .
G = —[G1+...+G,,],
n

where the G; are stereological estimates of the grain shapes themselves. Then, the effective radius
7(G) can be computed. This provides a different summary parameter for the sample, since [126]

7 <r(G). (4.5)

The “gap” r(G) — 7 yields information about possible anisotropy in the material: it is larger when
grains are oriented randomly than when the material is anisotropic.
Similarly, lower bound in the inequality

' 1/3
7 < vol /3 &f (11_1[\:01(&) +...+ vol(G,,)]) . (4.6)

is identical to that in (4.6); comparing their upper bounds leads to the functional vol — vol(G),
which may provide a novel way to quantify the overall sphericity of grains within the sample.

Many extant techniques of this kind require that individual grains be convex and that grains in
the sample be (stochastically) independent, neither of which is true in real materials. Research is
necessary in order to overcome these limitations.
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A. Continuum Version
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B. Discretized Version: Hexagonal Grid with Random Holes

Figure 7: Elastic Sheets with Random Holes

'S Microstructure-Property Relations

In [81], structure—property relations are identified as one of “the four most important R&D priori-
ties.” Models are a necessary (or even crucial) component of such relations. "

Professor Day, in his talk on “Microscale Elastic Simulations for Random Materials and Com-
posites,” and Dr. Jagota, who spoke on “Property Simulations via Spring Networks and Finite
Element Models,” discussed two key classes of large, computerized simulation models that relate
properties to structure:

o Finite element models (§5.1);
e Spring network models (§5.2).

Both classes of models simulate global properties from assumptions regarding local behavior.

Computer models are not the only avenue to structure-property relations. One widely pur-
sued alternative, with roots in the field of mechanics, is analytically derived bounds on effective
properties.** See [119].
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Figure 8: Young’s Modulus for Elastic Sheets with Random Holes

5.1 Finite Element Models

The finite element models described by Professor Day are directed at computation of global
properties of materials, for example, effective conductivity and effective elastic moduli, from
simulations of their structure and its response to stress or other stimuli. Two particular models
were presented, one for elastic moduli of sheets containing circular holes [24], and the other for
interpenetrating two-phase composites. ‘
These models are based on finite element computations. A continuum (for specificity, an elastic
sheet subject to tensile stress) is discretized into a grid (for example, triangular, rectangular or
hexagonal) of finite elements, with nodes at grid points. It is assumed that the strain ¢ at any
interior point of an element can be calculated from the displacements u of the nodes. Then, the
elastic energy of the system can be expressed as a quadratic function E(u) of the displacements,
and equilibrium corresponds to minimization of E(w), which can be performed numerically. See

[5].

5.1.1 Elastic Sheets with Random Holes

Consider an isotropic (two-dimensional) elastic sheet, perforated by randomly located holes (for
simplicity, all of the same diameter), as in Part A of Figure 7, which is subjected to a tensile stress.
The goal is to investigate the effective elastic modulus of the sheet as a function of the (expected)
fraction of it occupied by the matrix.
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The model reported in [24] discretizes using a 210 x 210 hexagonal lattice, (as in Part B of
Figure 7), which is taken as the representative element in a doubly periodic system.

Results for this model are shown in Figure 8, which depicts the effective elastic modulus as a
function of the area fraction p of the sheet occupied by the matrix.

5.1.2 Interpenetrating Two-Phase Composites

These models are used to investigate properties of two-phase composites in which each phase is
topologically connected throughout the microstructure. Examples include porous ceramic filters,
certain glasses and rocks [15] and bones.

A basic simulation model [15] functions as follows:

* A random field Io(z,y, z) is constructed by assigning a random number Io(z,y, z) in [0, 1] to
each point (z, y, z) in a 3-dimensional cubic lattice.

e The initial random field is smoothed, by convolution with a Gaussian kernel, to form another
random field

1

I@y.2) = G

///Io(a:',y', zl)e—[(a:—z’)z+(y—y’)2+(z—z')2]/2w2 d:z:'dy'dz'.

The parameter w controls the degree of smoothing.*®

e The random field I(z,y,2) is thresholded to produce the simulated two-phase material
M(z,y,2). There is a cutoff value ¢; € (0, 1), interpreted as the concentration of phase
1, such that M(z,y, z) is assigned to phase 1 if I(z,y, z) < ¢; and to phase 2 otherwise.

Full interpenetration (“percolation”) does not occur for all values of ¢;, but does occur for 0.3 <
¢; < 0.7 (approximately). ‘
The phases have different properties, e.g., conductivity o and Young’s modulus E, and the goal
is to calculate effective properties of the composite as a function of the concentration of phase 1.
The computations are done on lattice of size (on the order of) 1002, using finite element codes,
by minimizing an energy function, with the composite subjected to an electric field or stress, as
appropriate. An advantage is that this permits calculation of local as well as global properties.
The results that follow pertain to composites in which phase 1 has low conductivity o; = 1 and
high Young’s modulus E; = 10, while phase 2 has high conductivity o, = 10 and low Young’s
modulus F, = 1.
The finite element approach allows computation, for example, of histograms of current mag-
nitude, shown in Figure 9, with ¢, decreasing from .95 to .05. The principal peaks interchange
places, yet there is not complete symmetry. When phase 1 dominates, the current magnitude is

*4Some participants noted the relative absence of this approach among presentations at the workshop.
451n reality, of course, the integral is a sum.
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Figure 9: Current Distributions in Simulated Two-Phase Composities

peaked sharply at oy, but when phase 2 dominates, the peak at o, is smaller and a visible peak at o
remains. Strategies are not yet available to make effective use of the detailed information in these
histograms.

The effective conductivity o.g is simply the mean value of the current distributions in Figure 9,
and is shown in Figure 10. Model outputs accord with calculations made using effective medium
theory.

Similar results obtain for the effective Young’s modulus E.g.

5.2 Spring Network Models

Dr. Jagota addressed the use of spring network models [20, 21, 100] in representing properties
of materials, especially fracture behavior of disordered microstructures. These models represent
grain boundaries (or any element of the material) as elastic springs, capable of withstanding some
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Figure 10: Average Current in Simulated Two-Phase Composities

combination of normal forces, transverse forces and moments. Springs may fracture at a critical
force or a critical energy, or they may fail stochastically, based on energy, stress or strain. When
a spring fractures, the resultant distribution of stresses on the remaining springs is calculated.
Ultimately, the model material “fails.”

These models capture many of the subtleties and issues associated with use of complex computer
models in materials science.

5.2.1 Structure of Spring Network Models
Spring network models have the following general structure:

e A digitized lattice, such as the triangular lattice in Part A of Figure 11, along which grain
boundaries lie.*® This lattice is the basic unit of discretization for microstructure as modeled.
As shown, not all lattice elements need be grain boundaries.

® Grain boundaries, modeled as (perfectly elastic) springs. Depending on the model, springs
may resist
— Central forces only, and be characterized by a single elastic constant k™;
— Both central and transverse forces (the Born model), and be characterized by constants
k™ and kt;
— Moments, in addition to central and transverse forces;

#6Both deterministic and random lattices have been employed.
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Figure 11: A Spring Network Model

— Bond bending, with adjacent intergranular springs connected by other springs.
Ordinarily, the characteristic constants vary randomly from spring to spring.

o An external stress, shown in Figure 11 as pure tension, but which might instead have a shear
component as well.

e A “fracture” criterion for springs, which may be based on a critical force or a critical energy.

e A numerical code, which, each time a spring fractures, is used to calculate the resultant
distribution of stresses on remaining springs.

As springs fracture, broken bonds become “cracks,” as in Part B of Figure 11. If the stress
is sufficiently high, then ultimately, the model material “fails,” in the sense that it becomes
disconnected, as shown Part C of Figure 11 and for a real material (alumina) in Figure 12.

In more complicated models, lattice elements not corresponding to grain boundaries may also
be represented by springs (typically, stronger than those representing boundaries), which allows
depiction of trans-granular fracture as well as inter-granular fracture.

47



Statistics and Materials Science §5. Microstructure-Property Relations

Figure 12: Microstructure of Fractured Alumina

Spring networks have been used to model a variety of phenomena, including

e General elasticity [49];

e Scaling in fracture [115];

e Fracture of disordered microstructures [20, 21];
¢ Sintering [53].

Most of these models are two-dimensional.
Limitations of spring network models include:

o Computational restrictions, which, with current capabilities, limit two-dimensional lattices

to sizes on the order of 1000 x 1000, and effectively preclude meaningful 3-dimensional
investigations.

e Inability to depict important physical phenomena, especially those, such as crack bridging
(Figure 16), crack deflection, microcracking and crack pinning?? that attenuate the brittle
character of ceramics. All of these can be regarded as forms of heterogeneity.

¢ Incomplete understanding of their relationship to continuum models. In some cases, spring
network models are meant as discrete approximations of continua.*® Whether they are appro-
priate discretizations is not known.*® Resolving this issue requires more refined knowledge of
the inverse process of homogenization (passing from the discrete to the continuous) as well.

“TThese mechanisms inhibit formation of stress concentrations large enough to cause macroscopic failure [68].
“81n other cases, they are simply exact models of discrete systems.

*9Known difficulties exist even for the “canonical” problems of uniform strain and cracks in homogeneous, isotropic
materials.
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e Lack of empirical validation. Some relationships between parameters of spring network
models and effective properties (for example, Young’s modulus) of large networks are known,
but effectively nothing has been done to validate or tune these models in the sense of §3.

5.2.2 Quasi-Brittle Behavior in Two-Phase Microstructures

One particular application is to modeling of two-phase microstructures in which the phases have
different coefficients of thermal expansion. When such a microstructure is cooled, residual stresses
are created because grains constrain each others’ shapes. Roughly speaking, grains with the higher
coefficient of expansion shrink more, and become subject to tensile stress, while grains with the

lower coefficient become subject to compressive stress. Three parameters can be varied in the
model:

e The disorder of the microstructure, that is, the degree of residual stress;*°

o The volume fraction of the phases;
o The scale of the microstructure, that is, the number of grains.

Figure 13 depicts the effect of varying the disorder. Interestingly, as the disorder increases, the
behavior of the microstructure changes from brittle to quasi-brittle. In the brittle case, the stress
increases as the strain does until the material fractures, as in Part A of Figure 13. At this point,
its stress-carrying capability vanishes. By contrast, in the quasi-brittle case in Part B of Figure
13. There, as strain increases, the material undergoes a series of “partial” failures that decrease the
stress, but not to zero, and further strain is possible. In consequence, while the maximum stress is
less, the ultimate strain increases.

Figure 14 shows similar effects of varying the volume fraction v of the phase under tension.
When v is high, the material is brittle, but while v is low, it becomes quasi-brittle.

0Roughly, the mismatch between the coefficients of thermal expansion.
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Figure 14: Behavior in a Spring Network Model as the Volume Fraction Varies

Effects of varying the scale of the microstructure remain to be elucidated.

5.3 Microstructure and Fracture Behavior

In his talk on “Microstructure and Fracture of In-situ Reinforced Silicon Nitride,” Dr. Li treated
the relationship between microstructure and fracture behavior for in-situ toughened SigNy.

Silicon nitride exhibits “R-curve” behavior, as depicted in Figure 15: crack resistance increases
with crack size.’* Nevertheless, silicon nitride does not have high strength. Related qualitative
properties are that

o Weibull modulus®? of grains increases with grain size;
e Fracture toughness®® increases with grain size.

Linearly elastic fracture mechanics is unable to account for this behavior.

Large grains are thought to be the predominant means of fracture origination in silicon nitride,
because grain strength decreases with grain size. Crack growth is retarded by bridging, which
is illustrated in Figure 16: grains lying across the path of the crack inhibit its growth, until
under sufficient stress they either fail or debond (are pulled bodily away from neighboring grains).
Bridging is relevant only in a bridging zone behind the crack tip.

51See Appendix C.
52See Appendix C.
$3See Appendix C.
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Figure 15: R-curve Behavior of In Situ Reinforced SizNy

Figure 16: Crack Bridging in SizN,

The talk serves as a case study of proceeding from data to a microstructure—property relation,
in this case relating grain size — specifically, grain width — to two parameters describing fracture
behavior: "

e The grain strength oo, which is expected to decrease with grain size;

e The debonding length L4, at which the bridging zone collapses and fracture occurs, and which
is expected to increase with grain size.

The data are 13 batches of SizNy, of which Figure 17 is an example, each leading to approxi-
mately 50 samples, for which were recorded:

e Grain size distributions: length, width and (apparent) aspect ratio;
e Strengths, from which Weibull moduli were estimated;
e Flaw size distributions, from each of which is calculated an equivalent flaw size co.
The key grain size variable is taken to be dyo, the average width of the widest 10 percent of grains.

This reflects the known importance of width of bridging grains in attenuating crack growth.
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Figure 17: Micrograph of In Situ Reinforced SisN,
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Figure 18: K. and Dy, as Functions of Grain Size d;q

From the data, the fracture toughness K., which peaks at an intermediate value, and the length

Dy, of the bridging zone are calculated by means of the stable crack growth model (see (C.1)in
Appendix C)

K 1c
Yo+ Dy’
where o is the critical stress, at which fracture occurs, and Y is a material constant. Values
associated with the thirteen samples are shown in Figure 18.

Two crucial microstructural parameters are po,,, the maximum observed bridging stress, and
Umax, the maximum crack opening, in which the influence of microstructure is embedded. These
are related to K. and Dy, by the Dugdale model: under uniform bridging stress,

O, =

5.1

Ki. = Ko+ \/g Pmaxy/ €0 + Dy cos™? (L) (5.2)
T co + Dy
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K + Dy) —
Uax = \/ o/(e0t Do) i + LPmaxco ) (c° +D ") . (5.3)
E'\/co + Dy TE’ Co

On the basis of the data, as shown in Figure 19, py., decreases with grain size, while (although
more ambiguously), umax peaks at an intermediate grain size. This is consistent with expected
qualitative behavior of oy and £gy,.

Finally, from the micromechanical relations

Pmax = f Oo (5 4)
Lawog
Umax = 9E, 5.5

where f is the area fraction of bridging (which also is a function of the microstructure) and E, is
the Young’s modulus, it is possible to derive estimated values of o and £y, as functions of grain
size. From these, and the relation

Pmax X (dgoldb)l/m,:

it is possible to recover the Weibull modulus m' of grains, which is of the order of 5, and is
consistent with values determined by other means.
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Figure 20: A Silicon Nitride Turbocharger Rotor

6 Materials Performance

6.1 Component Performance

Dr. Johnson, in a talk entitled “Probabilistic Aspects of Ceramic Failure,” illuminated a number of
issues associated with development of a comprehensive strength/life prediction methodology for
ceramic components. :

Ceramics are of interest for structural applications — including diesel and turbine engines
(Figure 20), industrial dies and cutting tools, bearings and armor for military vehicles, filters
and coatings — because of their high melting point, chemical stability, fracture strength, fracture
toughness and lubricating (tribological) properties. See [9, 54, 61, 73, 121, 127] for details.

The fundamental relationship between strength and flaw size in ceramics and other brittle
materials is the Griffith criterion:5* the fracture strength o (stress at fracture) is given by

_ ch
= —_Y\/E’

where K. is the critical stress intensity factor (a property of the material), Y is a geometric factor

representing flaw shape and position, and a is the flaw size, which is determined by processing
history.

gf

6.1)

34For a derivation based on thermodynamic considerations, see [68].
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Flaws in ceramic components arise from

¢ Materials fabrication;55

® Machining processes in component manufacture;5®

e Damage during service, for example, as a result of impacts or corrosion.
Inevitably, flaw sizes are non-uniform, with two important consequences:

e High component-to-component variability in fracture strengths;

® Dependence of average strength on specimen size, with larger specimens weaker than smaller.
The latter is a consequence of “weakest link” scaling assumptions: a component fails if the stress
at any single flaw is large enough.
6.1.1 Weibull Failure Models
A simple model for brittle fracture under uniaxial stress assumes

® A spatially homogeneous Poisson process of flaw locations X, ..., Xy in the material;

¢ Independent, identically distributed flaw sizes Ai, ..., Ay, independent of the location pro-
cess, whose distribution function F reflects the material and the processing;

* Astressdistribution o(z, S, E ), Where z is location, § denotes external stresses and component
geometry, and E represents environmental variables (for example, temperature);

o The Griffith failure mechanism of (6.1): the ith flaw causes component failure if 0 ( X;, S, E ) >

K/ /A,

If1 - H(a) = (ao/a)™? for all a > a9, and if o(z, S, E) < K/./aq for all z, then after
rescaling [57, 59], the probability that the component fails is

P.=1-exp [— fV (M> d:z:] . (6.2)

0o

This is a form used widely in applications, in which material properties are encapsulated in two
phenomenological parameters: the Weibull modulus m and inherent Strength .

35Structural ceramics are produced from extremely pure, extremely fine powders, which are densified at high
temperatures, via several processes, two of the most important of which are sintering and hot isostatic pressing. Sintered
components can be formed at low temperatures, into green bodies, which may be machined before densification Hot
forming processes, such as hot isostatic pressing, combine can forming and sintering into one operation.

56Machining of ceramics, because of their hardness, is particularly difficult, and is a significant source of flaws.

55



Statistics and Materials Science §6. Materials Performance

Fracture Stress (KSI)
30 40 50

0.999

| Sintered SiC
@ 4—Point B (all)

o
©

40.5

Ln Ln 1/(1-P)

Veibull Modulus = 15.31 |
Sigma Zero = 420.8
Linear Regression (P on S) 0.005°%

300
Fracture Stress (MPa)

Figure 21: Failure Data for Sintered SiC

Size (mm) | Load Geometry®® [ n | X s | m 60 |
20x2x1.5 3-point 18 | 388.11 | 33.36 | 14.57 | 430.99
20x2x1.5 4-point 17 | 312.85 | 34.83 | 9.43 | 459.24

40 x4 x 3 3-point 18 | 350.96 | 31.12 | 12.20 | 449.93

40 x4 x 3 4-point 48 | 303.31 | 24.17 | 14.28 | 430.28

80 x 8 x 6 3-point 18 | 325.65 | 21.69 | 16.39 | 418.83

80 x8x 6 4-point 18 | 283.78 | 22.35 | 14.48 | 441.08

Table 3: Data and Estimators for Sintered SiC Specimens

6.1.2 Estimation of Component Reliability

Data regarding laboratory specimens comes from 3- and 4-point bend tests; an example is illustrated
in Figure 21.57 The estimated values there — 7 = 15.31 and 0o = 420.8 — were obtained via
maximum likelihood estimation.?®

Different data sets arise from variations in the kind of test, specimen size and loading geometry.
In the most complicated situation, multiple specimen sizes and geometries are tested, but component
size and geometry differs from that of specimens. In such cases, (6.2) is assumed valid for both
specimens and components. Estimators 7% and &, are constructed from specimen data, and then
the estimated component reliability is

B=1-exp [— /; (”(“’—SE—)) da:] : (6.3)

(4]
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This is a statistical estimator, via dependence on 7 and 6, and, ordinarily, also involves numerical
approximation, in computation of ¢ as a function of z and calculation of the integral.

The estimators 7 and 6, in (6.3) may be computed from individual tests (different sizes and
geometries) or pooled data. Table 3 shows the former. There, n is the sample size, X and s are the
sample mean and standard deviation of specimen strengths and the estimated values are obtained
via maximum likelihood.

Alternatively, the data may be pooled, which leads to 72 = 14.22 and &, = 433.1.

Confidence and tolerance bounds are required in order to employ such estimators, and may be
produced by several methods, such as linear regression, maximum likelihood, likelihood ratios and
parametric and nonparametric bootstraps [57]. Some of these are very intensive computationally.

6.1.3 Life Prediction Methodology

Future design needs make a comprehensive life prediction methodology highly desirable. Such a
methodology two main components:

Modeling needs. Models are required that accommodate

e Reversible strength changes (mainly associated with temperature);

e Irreversible strength changes, resulting, for example, from high temperature slow crack
growth, stress corrosion, cyclic fatigue and creep;

e Creation of new flaws, for example, by oxidation, corrosion, impact or proof testing;
¢ Anisotropic flaw populations;
e Non-planar crack growth;

e Multi-axial stress states and failure criteria.
Statistical needs. These include

e Efficient estimators from unpooled and pooled data;
e Confidence, tolerance and prediction bounds;

e Bias corrections for estimators and bounds;

e Tests for goodness of fit and homogeneity;

e Efficient experimental design;

5This probability plot contains the pairs (X, (i)1 [§ — 1/2]/n), where n is the sample size and the X ;) are the order
statistics of the failure stresses Xj;.

58See Appendix D.

%9In a 3-point bend test, the specimen is supported (from below) at the ends and stress is from above applied at its

midpoint. In a 4-point bend test, the stress is applied at two points, located one-quarter of the length of the specimen
from either end. '
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o Integration with data from proof tests and nondestructive evaluation of components in
service.

All of these are accompanied by needs for computational power, efficient algorithms and “user-
friendly” design tools.

6.2 Failure Models for Fibrous Materials

In his talk “Probabilistic Models for Microstructural Failure: the Bundle of Fibres Model and its
Extensions,” Professor Smith presented a series of stochastic models for failure of parallel fiber
composite materials, which differ in regard to the stipulated physical structure of the material and
the mechanism via which loads from failed fibers are re-distributed among surviving fibers.

6.2.1 Parallel Fibers

A simple model [22, 87] illustrates the key features of the analysis. Consider a bundle of n fibers
in parallel subjected to a tensile load. Assume that

e Individual fiber strengths X; are independent, identically distributed random variables with
distribution function F';

e If some fibers have failed, the load is shared equally among those remaining.

Since the bundle will support n times the strength of the weakest fiber, or n — 1 times the strength
of the second weakest fiber, ..., or the strength of the strongest fiber, its strength expressed in
terms of load per initial fiber is

S = max (n—k+ I)X(k)
" 1<k<n n ’

(6.4)

where X ) <X <... <X, (n) are the order statistics of Xj, . . ., X,,.8° An alternative expression,
with F;, the empirical distribution function®! of the fiber strengths, is

Sn = oHax z[l — Fu(z)]. (6.5)
Exact (recursive) expressions for the distributions of the S, are available, but in cases of physical
interest, n is so large that appeal may be made to asymptotics. With z* the value of z maximizing

z[l — F(z)],m = 2*[1 — F(z*)] and s = 2*/F(2*)[1 — F(z*)], then for each y,

lim P {\/n[S, —m]/s <y} = 2(y), (6.6)

®0That is, the values of X1, ..., X, arranged in increasing order.
®1The (discrete) distribution function with mass 1/n at X7, .. ., X;.
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denotes the standard normal distribution function [16].

6.2.2 The Chain of Bundles Model

This model [39, 40] is a more complicated variant. Consider an object, as depicted in Figure 22,
composed of m bundles, each composed of n parallel fibers, in series. Each bundle is § long,
where § represents an ineffective length, on the order of microns, beyond which bundles do not
interact. There is local load-sharing, described momentarily, within bundles, but no load-sharing
among bundles, so that the chain fails when its weakest link does. Thus, with F,, , the distribution
function of the strength of one n-fiber bundle of length £,

1= Foms(2) = [1 = Fy 5(z)]™. 6.7)

Local load-sharing within a bundle means that when a fiber or group of fibers fails, the load
is redistributed preferentially to nearby unfailed fibers. This may assume a variety of forms,
depending on geometry and stress concentration factors: if r adjacent fibers fail, their load is
distributed over g, neighbors with stress concentration factors K, .52

Exact analysis of this model is very demanding computationally. Regarding asymptotics, let
F{*)(z) be the probability of failure, under load z, of k contiguous elements somewhere in a system
of n elements. Suppose that a system of n elements contains ¢(n, k) possible configurations of k
elements, and that for each such configuration, the failure distribution satisfies

F®(z) ~ 68 (i)k", z]0.

T

®2For the simplest case, of linearly arrayed fibers, K, = 1 + r /2.
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| k 1 | 2 3 4 | 5 6 7 8
Scale parameter || 0.82 | 2.01 | 2.57 | 2.82 | 2.92 [ 2.96 | 2.96 | 2.96
Shape parameter | 5.6 | 11.2 | 16.8 | 22.4 | 28.0 | 33.6 | 39.2 | 44.1

Table 4: Experimental Data for a Chain of Bundles Model

where by, is a constant representing the local mechanics of the system. Then,

k
| — F¥)(z) ~ exp [—Sbkc(n, k) (wi) "] . 6.8)
1

This implies a Weibull distribution for k-failures.

The relationship of this model to experimental data for bundles of carbon fibers is treated in
[129]. Estimated scale and shape parameters in (6.8) for various values of k are given in Table 4.
The “critical” value of k, at which the estimated scale parameter stabilizes, is approximately 6.

In terms of dependence on length £, one can simplify (6.8) to

Fy(z)=1—exp [—l(m/mo)ﬂ] .

An alternative
Fy(z) =1—exp [-—Z"‘(ax/wo)ﬂ] ,
where 0 < a < 1, depicts component failure by modes other than the “weakest link.”

6.3 Phenomenological Models

Professor Krajcinovic’ talk “Failure of Fiber Bundles” treated similar issues, with the goals of
evaluating micro- and macro-responses (to stress) of brittle elastic solids weakened by a large
number of microcracks, and of determining effective properties and the onset of the critical state
(i.e., failure). Specific goals are to select an appropriate damage parameter; to determine the range
of validity of local theories; to relate the damage model to fracture mechanics; and to study the
brittle to quasi-brittle transition.® The underlying premise is that damage is a random process
dependent on local stress concentrations and weaknesses in the material.
Three general classes of models are:

¢ Micromechanical models, which are accurate and unambiguous at the expense of computa-
tional demands and need for large data bases;

e Phenomenological models, which are efficient computationally, but ambiguous and require
selection of materials parameters;

63See also §5.2.
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| Parameter Notation

Specimen size L
Size of representative volume element L,
Distance between adjacent defects L.
L4

4

L

Decay length for local stress fluctuations
Size of cluster defect
Intrinsic length of microstructural disorder®*

Table 5: Length Scales Relevant to Specimen Failure

¢ Models from statistical physics, which accommodate defect geometry and critical phenomena,
but are burdensome computationally.

The approach below falls within the second of these.

6.3.1 The Role of Geometry

An insightful formalism for dealing with multiple length scales is to introduce a family of length
parameters, given in Table 5. These lengths may be used, for example, to identify various special
cases and situations of interest, such as

® Macro-homogeneous solids, for which L > £ > ¢ and L. > Lg;
o The case of defect interaction: L. < Lg;

¢ Non-existence of representative volume elements: £ — £,

o Cell models, for which £ = ¢;

e Failure, where £ = L.

6.3.2 A Parallel Bar Model

A version of the parallel fiber model in §6.2.1 illustrates how a seemingly simple model can exhibit
interesting, subtle behavior. The model is a system of N parallel bars, whose random strengths
have density function p on the interval [ fmin, fmeax)-

Suppose that the system is subjected to tension, and that if some bars have failed, the load is
sharing equally among those surviving. Then, in equilibrium the expected force needed to sustain

64The desired resolution of finite element models is £, which for polycrystalline ceramics is on the order of the grain
size.
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D(u)

A. Brittle (Ordered) B. Quasi-Brittle (Disordered)

Figure 23: Brittle and Quasi-Brittle Damage Behavior

a displacement u (relative to the no force condition) is

F(a)=kux N [ p(f)df, 69)

where k is the stiffness of the material. The latter term in (6.9) is simply the expected number
of surviving bars. The distribution function of rupture strengths is one possible damage function,
representing the expected fraction of bars ruptured as a function of elongation.

For example, if the strengths are uniformly distributed on [0, fuax], then

F(u) = ku[l — ku/ frax)
and

D(u) = ku/ frmax-

Other alternatives, such as Weibull distributions, are possible, as are other measures of damage.

6.3.3 The Brittle to Quasi-Brittle Transition

A key parameter is the bandwidth
In the limiting case that A f =, all bars break at the same strength fos,.
More generally, suppose that bar strengths are uniformly distributed on [fmin, fmin + Af]. If

Jmin > A, then, as in Figure 23, the response is brittle: the damage at maximum force is zero. On

the other hand, if fmin < Af, the response is quasi-brittle, in the sense that the partially damaged
system can withstand additional force.
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Scale Displacement Force Force / Displacement
At Maximum Force | At Maximum Force | At Maximum Force
4 1.09 0.54 0.495
8 - 1.83 0.92 0.503
16 3.08 1.54 0.500
24 4.17 2.09 0.501

Table 6: The Secant Modulus in Scaling

6.3.4 Lattice Models

Failure in real materials results from the interaction of stress concentrations and irregularities, such
as weak links and hard spots, in the microstructure of the material. Lattice models with randomly
distributed rupture strengths, for example, the spring network models of §5.2, are one avenue to
study such phenomena. ‘

Because these simulations entail finite element computations, mesh size must be of the order
of the stress fluctuation decay length Ly in Table 5. In consequence, only small meshes can be
simulated, so it is of interest to seek parameters that are scale independent.

6.3.5 Scaling Effects

The goal of studies of scaling effects is to determine extrinsic properties of large structures from
(some combination of) simulations of small lattices and tests of lab specimens.

As an example, for central force lattices, with L denoting the specimen size, F' denoting force
and A denoting displacement, there are constants 3 and + and a function ¥, such that

(F) = LPU(A/L"). (6.11)

Simulations lead to the data in Table 6, which identifies the secant modulus, that is, the ratio of
force to displacement at maximum force, as a size-independent damage parameter.
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7 Materials Processing

As expressed by Dr. Richmond, materials processing extends from synthesis through recycling,
and should be viewed in terms of product design based on evolving product states. See §1.

7.1 Microstructural Evolution

Dr. Garboczi, in a talk entitled “Simulation of Microstructural Development: Geometry and

Topology,” treated simulation models of microstructural evolution of cement-based materials. A

basic goal is to develop models that, combined with microstructure—property relations (§5), allow

calculation of time-varying materials properties, such as elastic moduli, fluid permeability, electrical

and thermal conductivity, and thermal expansivity during hydration of cement (to form concrete).
The overall approach employs a paradigm discussed in §3.5:

e Microstructure at ¢ is a digital image M (t);®

e Properties at ¢ are
P(t) = F(M(t)),

where F' is a function, in this case a finite element-based computer code, that relates properties
to microstructure.

The models below are computerized approximations to evolution equations (compare (3.12))
M'(t) = ¢(M()), (7.1)

in which G, which is likewise available only as a computer algorithm, involves randomness but
not additional state variables.

7.1.1 Models for Hydration of Cement

Concrete is a complex composite material produced from rocks, sand particles and cement via the
chemical process of hydration [75], one of whose effects is to form calcium silicate that “fills in”
initial pores in the material. During the course of hydration, the microstructure of the concrete
develops; the process requires months to become substantially complete. Multiple length scales
are relevant, from centimeters (rocks) through millimeters (sand particles) to microns (reacted and
unreacted cement particles) to nanometers (pores). The models presented were at the scale of 25
microns.

The hydration models are computerized Monte Carlo simulations, with the microstructure a
digital image, in which each pixel may correspond to undissolved cement paste, dissolved species,
pores, or reacted concrete. See Figure 24 for an example. The models have the following structure:

%3A 1024 x 1024 x 256 color image is a function from {0, . . ., 1023} x {0, ..., 1023} to {0, . .., 255}; the colors
are a means of display without intrinsic significance.
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Figure 24: Digital Model of Hydration of Cement

e The initial point is a suspension of cement particles in water, in which particle shapes may
either be simulated (by another model) or obtained from experimental data;

e The hydration process itself is simulated iteratively, by representing

— Dissolution of cement particles in water, modeled with a single probability of dissolution;

— Diffusion of dissolved cement particles, modeled as a random walk in pores of the
microstructure;

— Reaction of dissolved particles to form calcium silicate, thereby generating the mi-
crostructure of the concrete. This is the “hardening” that fills pores with lower density
(than the paste itself) particles, and occurs by “agglomeration” onto existing structure,
modeled in conjunction with diffusion and the current state of the microstructure, or
spontaneous crystallization.5®

(Additional effects, for example, formation of }nicrocracks that affect damage behavior, are
not represented in current models.)

Related models [33] include

® Multiphase models, which depict more faithfully the heterogeneity of real cements. These
entail more complicated hydration rules as well.

® Models of single interfaces (between sand or rock and cement paste), whose properties are
crucial to performance of concrete in service [34]. See Figure 25.

¢ Models to test the effect of different constituents of the cement paste, for example, micron-
sized particles of amorphous silica that fill pores more effectively.

86 Adjustments are made to maintain the correct volume stoichiometry, based on initial composition.

65



Statistics and Materials Science ' §7. Materials Processing

Figure 25: Simulation of the Interfacial Zone in Cement

7.1.2  Models of Connectivity

Yet another class of three-dimensional lattice models [34] (see also §6.3) can be used to address
connectivity of phases in multiphase materials. This is especially important in light of the inacces-
sibility of connectivity data by means of stereological measurements.

In the case of hydration of cement, whether the reacted concrete phase is connected, which
closes off the pore space, producing a stronger material, is precisely such an issue. The lattice
models have been applied to this question, with numerical results shown in Figure 26. Here the key
parameters are the initial water to cement ratio W/C and the fraction of matrix that is connected.
The more water present initially, the more hydration (in terms of time) is necessary to achieve
connectivity; if W/C > .6, connectivity is not attained.

7.2 Constitutive Models for Manufacturing Processes

In his talk “Some Statistical Issues in Materials Science,” Dr. Richmond described the role of
constitutive equations in modeling evolving product states during product manufacturing and
service.

Constitutive equations are sets of nonlinear differential and algebraic equations describing the
material response to all possible thermomechanical histories (trajectories of strain and temperature).
Responses include both structure and properties. A set of constitutive equations consists of

e State equations, which express materials properties as functions of controllable external
variables, such as strain rate and temperature, and microstructural variables;
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Figure 26: Capillary Porosity Percolation for Cement

o Evolution equations for the microstructural variables.

Constitutive equations are local, applying to a representative small element of the material, raising
the “representativeness” theme discussed in §1.5 and 3.4. Unlike conservation equations, however,
constitutive equations are typically ordinary rather than partial differential equations.

For example, as discussed in §3.5, a set of constitutive equations arising in hot rolling of
polycrystalline metals, such as aluminum, consists of the state equation

o(t) = f('(£), T(t), 51(t), 5a(2)) (7.2)

and-the evolution equations

$(8) = @), T(t), s1(t), 5(t))
s3(t) = a('(t), T(), 51(t), 52(t))

where o is the stress with the material, €’ is the strain rate, T is temperature and s; is porosity and
82 is hardness [105]. The functions f, g; and g, must be determined, an issue discussed below.5”

Constitutive equations — in the example, the functions f, g; and g, — are generated in several
ways:

® Empirically, from observation of actual trajectories, such as mechanical testing data, usually
corresponding to strain rates and temperatures that are constant over time but may be varied

from experiment to experiment. The data are curves (possibly time-sampled), to which
differential equations must be fit.

8"More generally, there are actual or surrogate microstructural variables sy, s, ..., representing, for example,
dislocations, precipitates, grains, pores, microcracks and corrosion damage.
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e From unit cell periodic array models, by means of micromechanical computations, which
can be combined with empirical data. Here again, the “representative element” issue must be
confronted.

e From nonperiodic array models, which are necessary for phenomena, such as fracture and
failure, that are driven by extreme values, clustering and other percolation-like effects.

Porosity in ductile materials under simple tension, an illustrative example, is represented by the
state equation

(—:—)2 + 2f™ cosh (%) -1+ ) =0, (7.3)

together with the evolution equations

d _ _n a(ﬁ)””
de ~ 1-—f \s

df _ 3mf™(1 — f)sinh(mo/2s)
de  20/s+mfmsinh(mo/2s)’

Here, tensile stress o remains the response variable, while the microstructural variables are the
volume fraction f and the matrix hardness s. The parameter m is a material constant representing
strain hardening. The development of (7.3), which in its original form omitted the power m, was
effected by combining measurements with micromechanical computations on a unit cell model.
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8 Combining Information

Professor Berliner’s presentation “Combining Information” addressed an issue that permeates
science: means by which “information from a variety of sources in natural and social sciences is
combined to produce more informative summaries and better decisions than those possible based
only on each individual information source” [78].

Information, in this context, is of two primary forms:

Data, usually in the form of measurements or observations;

Judgement, in the form of “expert opinions,” which can be embodied in subtle ways, such as
selection of physical or probability models and structure of variables.

Combining information, then, is a form of learning for purposes of decision making and
prediction. The major issue is Zow to combine information.

The discussion that follows pertains to combining information from “similar” experiments in
order to reach stronger or more refined conclusions than are justified by the experiments individually.
There is great unmet need to combine information from dissimilar experiments.

8.1 Approaches to Combining Information

In broad terms, approaches to combining information may be categorized as statistical or not.
Within these categories, some key methodologies are

Statistical: Meta-analysis; random effects models, empirical Bayes procedures, hierarchical Bayes
procedures and models of space and time dependence.

Non-Statistical: Fuzzy sets, expert systems, artificial intelligence, neural networks, pattern recog-
nition, adaptive learning and genetic algorithms [36, 63, 76].

To illustrate some statistical approaches, consider K different experiments intended to measure
the same physical constant ¢, which produce (unbiased) statistical estimators é&; with (known or
estimated) variances V;.68 One means of combining these to obtain a single estimator éqomp, is to
form the weighted sum

étmmb 1_1 ct/V

t—l 1/ V

Relatively more precise estimators (those with smaller variances) contribute more to the weighted
sum.

(8.1)

®®These might reflect measurement devices and sample sizes, for example.
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8.2 The Bayesian View

In fact, the very notion of what constitutes a “constant” may be questioned, and one may conceive
of two classes of constants:

e “Traditional constants,” such as the speed of light [47];

e Observables in complex physical settings, which are ordinarily functionals of lower level
states, such as the thermal conductivity of copper [71].

For traditional constants, the key measurement problem is bias, or systematic error. For the ith
experiment in the setting of §8.1, this occurs if E[¢;] # c.

For complex observables, on the other hand, the key issue is variability. In the context of the
example in §8.1, the experiments may be regarded as having their own values cy, . . ., cx, where
these values are unknown, but somehow similar.8® Then, as an alternative to individual estimators
&, it is possible, by combining information, to “borrow strength” across experiments to improve
individual estimators. This may be effected, for example, via estimators

é: = aiéi + (1 - ai)écomb, (82)

where 0 < o; < 1 and éomp is a combined estimator of the average of the ¢;, possibly although
not necessarily that in (8.1).” Borrowing strength improves the overall mean squared error of the
estimators, and sometimes all of the individual mean squared errors.
More generally, the Bayesian view of combining information is to conceive properties as
random, and to calculate their (conditional) distributions given the observed data.
Mathematically, this view exploits the property that a joint distribution of random variables can

be written as a product of conditional distributions. In the case of three random variables, for
example,

P{X1 = (B]_,Xg = 2}2,X3 = 23} = P{Xl = :l:]_IXz = (Bz,X3 = 2:3} (83)
XP{Xz = £2|X3 = 123}
XP{Xa = :Bg}.

Often, the terms on the right-hand side of (8.3), especially under certain simplifying assumptions,
are easier to understand or more informative than the left-hand side, or provide improved modeling
capability.™

Controversy regarding “Bayesian statistics” has nothing to do with (8.3), but rather with what

is regarded as random and what values are assigned to the components on the right-hand side of
(8.3).

9The mathematical concept of exchangeability makes “similar” precise.
"0 Empirical Bayes procedures provide means of calculating the c; from the data. See also §8.3.
1 Among other useful consequences of (8.3) is Bayes’ theorem; see Appendix D.
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8.3 Example: Hierarchical Linear Models

The example on §8.1 may be used to illustrate, by means of a hierarchical Bayes linear model for
the experimental situation there. One such model stipulates that

¢ Underlying all K experiments is a physical constant cg.
e There is a random perturbation C* of ¢, common to all the experiments.”2

e Associated (only) with experiment 7 is a random effect (“experimental effect”) Z;. Thus the
“true” underlying value for this experiment is

Zi=co+C" + 7.

Note that the Z; are then correlated, because the definition of each involves the common effect
C.

e Hierarchically, then, ¢; is the sum of Z; and measurement error associated with experiment z:
&=2Z+E=co+C + 7 +E:. (8.4)

The model is put with the conditional distribution context of (8.3) by a series of assumptions,
for example,

¢ The common perturbation C* is normally distributed with mean 0 and variance 72.

¢ Conditional on C*, the random vector Z = (Zi,. .., Zk) is normally distributed with mean
vector (co + C*, ..., co + C*) and covariance matrix D,.

o Conditional on C* and Z, the random vector (¢i, . . ., éx ) has a joint normal distribution with
mean vector Z and diagonal covariance matrix D; = diag(V4,...,Vk), where Vi, ..., Vk are
constants.

An alternative interpretation is that the Z} are independent of each other and of C*, and normally
distributed with mean 0, while the E; are normally distributed, and independent of each other, of
the Z; and of C™*.

For example, if 72 = 0, that is, C* = 0, then (8.4) implies that (é,...,¢éx) is normally
distributed with mean (co, .. ., ¢o) and covariance matrix D; + D,, which is the model

& =co+ 2 + E;, (8.5)

where Z; represents systematic error associated with experiment ¢ and E; is measurement error.”

In this same setting, if D, = diag(oy, ..., 03) (the experimental perturbations have the same
variance o2), then in (8.2), one can take éeomp = (1/K) Y X | &, and the weights become o; =
o?/(V: + o%). The more precise experiment 7, in the sense that the error variance V; is small, the
more weight given to ¢;.

"2For example, all might use the same time standard, whose value differs randomly from the “true” time, but which
is the same for all experiments.

"Note that even though the mathematical roles of Z} and E; are identical, their interpretations differ.
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B Workshop Program

Monday, July 26, 1993

9:30 AM Introductory Remarks
* R. Lundegard (NIST)
* A, Karr (NISS)
Plenary Lectures
* O. Richmond (Alcoa): Some Statistical Issues in Materials Science
*  C.-W. Li (Allied-Signal): Microstructure and Fracture of In-situ Reinforced
Silicon Nitride

1:30 PM  Quantification and Inference for Microstructure
* R. DeHoff (University of Florida): Stereology and the Quantification
of Microstructural Geometry
* E. Garboczi (NIST): Simulation of Microstructural Development:
Geometry and Topology
* R. Vitale (University of Connecticut): Stochastic Geometry

7:30 PM Informal Session

Tuesday, July 27, 1993

9:00 AM Materials Performance
* C. Johnson (General Electric): Probabilistic Aspects of Ceramic Failure
* R. Smith (University of North Carolina at Chapel Hill): Probabilistic Models
for Microstructural Failure: the Bundle of Fibres Model and its Extensions
* D. Krajcinovic (Arizona State University): Failure of Fiber Bundles

1:30 PM  Structure-Property Relations
* A. R. Day (Marquette University): Microscale Elastic Simulations
for Random Materials and Composites
* M. Berliner (Ohio State University): Combining Information
*  A. Jagota (Du Pont): Property Simulations via Spring Networks and
Finite Element Models

Wednesday, July 28, 1993

9:00 AM  Panel Discussion: Key Research Issues and Opportunities
*  Moderator: A. Karr (NISS)

* Panelists: E. Fuller (NIST), S. Kurtz (Pennsylvania State University),
W. Tucker (General Electric)
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Young’s Strength Weibull | Max Use

Material Modulus | Density | 30° C [ 600° C | Modulus Temp

(GPa) (g/lcc) | (MPa) | (MPa) “cO

Hot pressed SizN, 290 33 830 805 7 1400
Sintered SizN, 290 33 800 725 13 1400
Reaction bonded SigN, 200 2.7 295 295 10 1400
Hot pressed SiC 430 33 550 520 10 1500
Sintered SiC 390 32 490 490 9 1500
Reaction bonded SiC 413 3.1 390 390 10 1500
ZrO, 205 59 1020 | 580 14 950
Steel 200 7.1 1500 140 600
Aluminum 70 2.7 370 0 350

Table 7: Properties of Selected Ceramics and Metals

Figure 27: Microstructure of Partially Stabilized Zirconia (ZrO,)

C  Glossary of Materials Science for Statisticians

Terms appearing in sans serif type are defined elsewhere in the glossary.

Brittleness. Absence of plastic deformation of a material prior to fracture.” A characteristic
property of ceramics.

Ceramic. An inorganic, non-metallic, man-made solid, primarily with ionic (but also covalent)
bonding. Examples include alumina (Al303), zirconia (ZrO,), silicon carbide (SiC) and
silicon nitride (SizNy). Ceramics are characterized by high melting point, strength, chemical
inertness, light weight, low thermal conductivity and low coefficient of friction. Values of
selected mechanical properties for some common ceramics are shown in Table 7.
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The main limiting characteristic of ceramics is brittleness, which engenders size effects —
larger components are weaker than smaller — and part-to-part variability.

Ceramic components are produced by forming green bodies, ordinarily comprised of powders
of the ceramic or its constituents, together possibly with binders and other compounds, such
as sintering aids. The green bodies are then densified, by heating, perhaps in the presence
of constituents of the final product, and possibly under pressure. The principal means of
densification are reaction bonding, sintering and hot isostatic pressing [113, 121].

Properties of ceramics, such as partially stabilized zirconia (Figure 27), depend on phase
transformations during processing or induced by stresses [9].

Structural applications of ceramics include turbine and diesel engines, industrial dies and
cutting tools,” bearings and armor for military vehicles [9, 54, 61, 73, 121, 127].

Composites. Materials comprised of fibers of one phase held together by a matrix of a second
phase, and having properties superior to either phase alone. The fibers provide strength,
stiffness and fracture toughness, while the matrix binds fibers together in proper orientation.
The most common types are ceramic matrix composites [69], metal matrix composites [81]
and polymer matrix composites [81].

Constitutive equation. Equation(s) describing the time evolution of materials properties as func-
tions of structural variables and processing regime, including stress and temperature.

Crack resistance. Rate of change of surface energy associated with a crack, with respect to surface
area of the crack, measured in Joules per square meter. Intrinsic crack resistance, the integral
of cohesive stress (with respect to separation distance) is based on assumptions of linear
elasticity. In general, crack resistance depends on crack size (Figure 29), and explanations
require nonlinear models [68].

Elastic moduli. Constants of proportionality in linear relationships between stress and strain in
a material, usually expressed in units of gigaPascals (1 GPa = 10° N/m?).

For most materials, the stress required to produce small values of strain is proportional to the
strain, as expressed by Hooke’s law.™ For the three strains in Figure 30,

Ee
p = —K§
T = G

E is the Young’s modulus, K is the bulk modulus and G is the shear modulus.

T4Connotations of fragility are inapplicable; in some settings, “inductile” has been proposed as an alternative to
“brittle.”

"5The same hardness that makes ceramics desirable as cutting tools makes machining of ceramic components
especially difficult.

T6AL larger strains, the relationship becomes nonlinear, and ultimately even non-monotonic.
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A

Y

I. Opening II. Shear III. Tearing

Figure 28: Fracture Modes

Elasticity. Recoverable deformation (strain) of a material as the result of applied stress; recov-

€ry occurs when the stress is removed. Nearly all materials exhibit elastic behavior under
sufficiently small stresses.

Finite element method. Family of numerical techniques for solution of differential and partial
differential equations, especially those with non-regular boundary conditions or other discon-
tinuities that render analytical methods inapplicable. The finite element method is particularly

useful in a variety of “engineering” contexts, for example, computation of stress distributions
and in structural analysis.

In an application of the finite element method, the region of interest is discretized as the
union of geometrically simpler regions (finite elements), which are connected at nodal points.
Simple mathematical functions, such as polynomials, are used to represent the solution (for
example, displacement or stress) within each region, and these must be fit together to produce
a solution for the entire region. In the process, qualitative mathematical simplification occurs:
for example, differential equations become systems of linear algebraic equations. See [5].

Fracture. Failure of a material by progressive stretching and eventual rupture of interatomic
bonds across a crack plane, as the result of applied stress. Most models of fracture in brittle
materials are derived by viewing cracks as thermodynamic systems in equilibrium [68]: crack
extension is just on the verge of occurring.

The three main fracture modes — opening, shear and tearing — are illustrated in Figure 28.
In brittle materials, such as ceramics, opening is the principal operative mode.

Key associated materials properties include crack resistance and fracture toughness.

Fracture toughness. Critical value of the stress intensity associated with a crack, as in (C.2):
when it is exceeded, unstable fracture occurs. It is a property of the material.
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Griffith criterion. A failure criterion for brittle materials based on flaw size and fracture tough-
ness: aflaw of size a causes failure if the local stress o satisfies

ch
Yva' (C.1

where K. is the fracture toughness and Y is a constant reflecting specimen and load geom-

etry. Note the analogy to (C.2). The criterion is derived from thermodynamic considerations,
under assumptions of elasticity [68].

g >

Hardness. Resistance of a material to penetration, comprising an indication of deformation be-
havior. Hardness, measured in units of N/mm?, is determined by forcing a diamond shaped

point into a specimen under constant load and measuring the size of the resultant impression
[107].

Material. Substance defined by its chemical composition and structure, especially crystal structure,
at the molecular and macroscopic levels.”” Both composition and structure may vary over
time and within the material, sometimes in response to external conditions.

Primary classes of materials are

e Structural materials: Ceramics, composites, metals;
¢ Polymers;

e Electronic materials; semiconductors;

e Magnetic and photonic materials;

¢ Superconducting materials;

e Biomaterials.

These cannot be delineated unambiguously.

Metal. An electropositive chemical element, possessing mobile electrons. In bulk, metals are
characterized by crystalline structure, ductility, electrical and thermal conductivity, (relatively)
high melting point, denseness, opacity, luster and plasticity.

Microstructure. Structure of a material at the (approximate) scale of 1078 — 10~* m, that is,
between the atomic lattice and continuum levels. Microstructure is characterized by the size,
shape and orientation of crystalline phases, and the location, orientation and connectivity of
boundaries, defects, fibers and microcracks.

Phenomenological property. A materials property associated with a particular model rather
than direct measurement, for example, the Weibull modulus. Phenomenological properties
ordinarily can only be derived statistically.

""Composition alone does not suffice: alumina and sapphire have the same chemical composition but different
crystal structure, as do diamond and graphite.
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Ry ---/= R(c)
<——— Failure point
Go,(c)

Go,(c)

Z-- Ry

Crack size ¢
R = crack resistance; G, = global energy release rate

Figure 29: R-Curve Behavior

Plasticity. Permanent deformation of a material or object as the result of applied stress. Plasticity
may be desirable or crucial for manufacturing, but undesirable in components in service.
Brittle materials, such as ceramics, are effectively unable to undergo plastic deformation.

Poisson ratio. The ratio of the transverse contracting strain to the elongation strain in a material
subjected to a tensile stress.

Polymer. Material composed of long, chain-like molecules comprised of repeated simple molecules
(monomers) with covalent inter-molecular bonds, held together by van der Waals bonds.
Polymers are characterized by amorphous structure, low density, low thermal and electrical
conductivity and deformability.

R-curve behavior. Increasing crack resistance as a function of crack size, a phenomenon exhib-
ited by some but not all materials. A typical R-curve is illustrated in Figure 29. Explanations

typically invoke some form of crack shielding, whereby the tip of the crack is shielded from
stresses [68].

Figure 29 also illustrates a “tangency” condition for failure. The linear curve there represents
the global mechanical energy release rate, for three values o1 < 3 < 073 of the applied stress.
Equilibrium requires that R(c) = G,(c); if G, (c) < R'(c), as for oy and o5, the crack grows
stably, but when R'(c) > G4, (c), which occurs for o3, the growth becomes unstable and the
material fails. In this case, o3 is the strength of the material.

Slow crack growth. Chemically assisted fracture of a brittle material, especially during service.
See [68].

Sintering. One process by which ceramics are densified, converting a loosely bonded powder
into a dense body by means of heat. After moisture and organic impurities are “burned off,”
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€= AL/l §=AVIV v=Az/h =tanf ~ 4§

Figure 30: Stresses and Strains

further heating causes diffusion on an atomic scale that fills voids among particles. “Sintering
aids” are ordinarily needed in order to achieve full density.

Strain. Relative deformation (therefore, dimensionless) of a specimen or material as a conse-

quence of stress. Figure 30 illustrates three principal strains, which result from tension,
hydrostatic pressure and shear:

® Tensile strain e = AL/{, where £ is the original length. Longitudinal strain is (lengthen-

ing) in the direction of the tensile stress; lateral strain is (shortening) in the perpendicular
direction.

o Volumetric strain™ § = AV/V, where V is the original volume;
e Shear stain y = tan 6, where 4 is the angle by which the material deforms.

Like stress, strain is also a tensor.

Stress. Force per unit area acting on a solid object, measured in units of megaPascals (1 MPa
= 10° N/m?). The three principal stress effects — tension, hydrostatic pressure and shear —
are illustrated in Figure 30. Tensile stress is ordinarily denoted by o, hydrostatic pressure by
p and shear stress by 7.

In reality, stress in two dimensions is a tensor

Oz Ty
Tye Oy |
The shear stresses T are indexed by direction and point of application of forces: Tzy 1S the

shear stress associated with force applied in direction z to the “top” face (y-face) of the object,
while the normal stresses o, are essentially tensile stresses.

8 Also termed dilatation.
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Stress intensity factor. Under assumptions of elasticity, the constant K in approximations

K
o(z) ~ —ﬂ‘w——rf(a), (C2)

for stress o(z) at a point z in the vicinity of a crack tip. In (C.2), (r,8) is the cylindrical
coordinates of & relative to the crack tip and f is a function.

Units of the stress intensity factor are MPa m'/?; its value depends on the crack size and
shape, the loading stress and specimen geometry [68, 112].

Strength. Stress at which a material fails; taken to be a material property.™

Weibull modulus. A phenomenological property of brittle materials associated with strength.
The applied stress causing failure is taken to have a (two-parameter) Weibull distribution:

F(o)=1— e (/7)™ (C.3)

The parameter m in (C.3) is the Weibull modulus; oy is the inherent strength. Estimated
values of m for real materials range from 5 to 30.

SRather than a measure of component performance.
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D Glossary of Statistics for Materials Scientists

As in Appendix C, terms in sans serif type are defined elsewhere in this glossary. General

references are [60] on probability and [4] on statistics. The encyclopedia [64] is also exceedingly
useful.

The field of statistics should be construed broadly, as data-driven modeling and analysis.

Asymptotics. Properties of statistical procedures as the amount of data becomes infinite. The main
virtues of asymptotic theory are that it is simple and broadly applicable, whereas exact small
sample theory is difficult and situation-dependent.®°

Bayes theorem. Computational formula for conditional probabilities: if A;, A,, . . . are a partition
of the sample space of a random experiment,® then for each event B with P(B) > 0 and
each j, P(A4;|B) = P(B|A;)P(4;)] X2, P(B|A:)P(4;).

Bias. For a statistical estimator & of a parameter a, the quantity E[&] — a, the average difference
between the estimator and the quantity it estimates.®?

Conditional distribution. Given (for example) random variables X and Y, conditional prob-
abilities P{X = z|Y = y}.

Conditional probability. Relative likelihood that an event A occurs given that another event B
is known to have occurred, expressed mathematically by P(A|B) = P(AN B)/P(B).

Confidence interval. Interval®® whose endpoints are statistics, and which contains the unknown
parameter of a statistical model with prescribed (high) probability.®* Typically, the confi-
dence interval is centered at a statistical estimator. The width, construed as a measure of

the variability of the estimator, is calculated from knowledge about the distribution of the
estimator.3% '

Correlation. Linear relationship between random variables X and Y, expressed in terms of the
dimensionless correlation coefficient pxy = (E [XY] - EX|E [Y]) /oxoy, where ox and
oy are the standard deviations of X and Y .88

80For example, the data X7, ..., X, correspond to a sample size of n, and asymptotics concern behavior of various
statistical procedures as n — oo. For estimators, the key asymptotic properties are consistency, that is, convergence
of &, to «, and asymptotic error distributions, which, scaled suitably, are often normal distributions.

81They are disjoint and their union is the entire sample space.

824 is unbiased if its bias is 0.

83For higher-dimensional parameters, a more complicated set.

84The latter statement holds with respect to independent replications of the random experiment.

85Resampling techniques provide one method of approximating such distributional information when it is un-
available analytically.

85 An alternative is the covariance E[XY] — E[X]E[Y].
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Density function. For a random variable X, a function fx satisfying
t
P{X <t} = / fx(u)du, teR. D.1)

Dimension reduction. Simplifying high-dimensional data by forming lower-dimensional func-
tions of them. Linear regression and principal components analysis are examples.8
Often in applications there is attempt to identify “active” components or combinations of
components of the data X, so that dimension reduction carries a connotation of sensitivity
analysis.

Distribution function. For a random variable X, the function Fx(t) = P{X < t}.

Empirical distribution function. For data X1, ..., X, the (distribution function-valued) statis-
tic F(t) = 130, 1(X; < ¢t).

=1
Event. A set of outcomes of a random experiment.

Expectation. Weighted average E[X] of the values assumed by a random variable X, where the
weight of each value is the probability of the event on which it is assumed.®8 Also known as
the mean of X.

Experimental design. Statistical techniques for planning and analysis of physical or numerical
experiments in order to decrease cost (e.g., number of trials) or increase informativity
of the resultant data. An experiment comprises a set of trials intended to evaluate how
several parameters influence one or more responses; parameters may be controllable factors
or uncontrollable noise. The design specifies the level of each factor in each trial, with the

goal of ascertaining both main effects (of varying individual factors) and interactions between
or among factors.

A full factorial design tests all possible combinations of the factor levels; it provides the
best information for estimation of main effects and interactions, but is time-consuming and
expensive. Fractional factorial designs examine cleverly chosen subsets of factor levels, and
are represented by matrices in which columns correspond to factors and rows list the factor
levels for each trial.®® Fractional factorial designs allow fewer trials, and hence, more factors
and levels, as well as more repetition within trials,® but cannot resolve some factor effects,
especially higher-order interactions. See [6, 7, 30, 31].

87More generally, for k-dimensional data X, dimension reduction produces m-dimensional data, where m < k,
X' = H(X), where H is a function from k-dimensional space to m-dimensional space.

38If X takes values in the countable set C, E[X] = YtectP{X = t}, while if X has density fx, then
E[X]= [ ufx(u)du.

89The Taguchi method, for example, is based on pairwise orthogonal arrays of the minimal size necessary to resolve
main effects.

90Which reduces variability.
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Function estimation. Statistical models and associated techniques in which the unknown pa-
rameter « is a function. A simple case is linear regression, in which the unknown function
is linear. At the other extreme, in (nonparametric) density estimation, the unknown is the
density function of independent, identically distributed data. See [8, 32, 99].

Independence. Absence of probabilistic interaction among random variables or events. Inde-
pendence is assumed commonly in statistical models, not always explicitly.*

Integration of physical and numerical experiments. Statistical techniques specifically directed
at combining data that comes in part from physical experiments and in part from (not neces-
sarily compatible) numerical experiments.

Least squares estimation. Statistical estimation method in which statistical estimator & is
chosen to minimize a quadratic function of the parameter « and the data. Linear regression
is the leading example.

Likelihood ratio test. Procedures for tests of hypotheses in which the test statistic is

o Xy, ., X))

T= Loo; X1, .., Xn)’

where £ is the likelihood function of (D.2).%2 Large values of T are evidence in favor of the
alternative hypothesis, so the null hypothesis is rejected if T' exceeds a critical level.

Linear regression. Statistical model in which the data are random variables X (t,),..., X (t,)
satisfying
E[X(t)] = a + b,

with a and b the unknown parameters of the model. Statistical estimators & and b are usually
2 -
computed by least squares estimation, to minimize 37, (X,- —[a+ bt;]) .93

Maximum likelihood estimation. Statistical estimation technique in which & is that value of
the parameter maximizing the probability of the actually observed values of the data. The
maximum likelihood estimator is computed by maximizing the likelihood function

Loy, ..., ¢0) = Po{ X1 = 21,..., X = 2.} (D.2)

Mean. The expectation E[X] of a random variable X, interpreted as the average value of X.

91Mathematically, random variables X1,..., Xy are independent if P{X,, < t1,...,X, < to} = P{X; <
t1}---P{Xn < tp}forallty,...,t,. Events Ay,..., Ay are independent if P(ﬂier A;) = [Lier P(4s) for every
subset I of {1,...,n}.

92The interpretation is that T is the relative likelihood of observed data under a4, compared to that under c.
S3Explicit expressions are available: & = [(L2)(TX:) — (D) X))/ [Tt — (T t:)?] and b =
P2 tX: — (L) X))/ [n Xt — (X t)?].
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Mean squared error. For a statistical estimator & of a parameter a, the quantity E [(& — a)z] ,
the average squared deviation of & from a.

Method of moments. Statistical estimation technique used in cases in which the parameters of
the model are expressible as a function of (population) moments of the data. The estimators
are then the same function of corresponding sample moments. ¢

Moments. Expectations of powers of a random variable. The most important are the mean,
variance and standard deviation.

Normal distribution. The distribution function & with density function ¢(z) = (1/+/27)e=="/2
z e R.

b

Numerical experiment. An experiment in which the observed data are generated by a numerical
computer model rather than a “physical” system.

Order statistics. Given data X3, ..., X, the statistics Xa) < X(z) < ... < X(n), the values of
Xi,...,X, arranged in increasing order.

Prediction. Estimation of the value of an unobservable random variable — one not a function of
the data — by means of one that is a function of the data. Akin to statistical estimation, but
what is predicted is random and unobservable rather than deterministic and unknown.®® For
data X;, ..., X, and unobservable Z, the predictoris a random variable 7= k(X1,...,Xn)
chosen to minimize the mean squared error E [(Z — k(Xy,... ,Xn))z].

Principal components analysis. Dimension reduction, effected by means of a least squares
fit of a low-dimensional space to the data. Linear regression, which fits a line (a one-
dimensional space) is the most widely used special case.®®

Probability. A function P defined for events, which measures their likelihoods of occurrin‘g,*’7
such that P(A4) > 0 for all A; P(Q) = 1; and P(AU B) = P(A) + P(B) whenever
ANB=09%

Random experiment. An experiment, not necessarily physical, whose outcome cannot be fore-
told in advance. The “randomness” may arise from several sources, including observation
mechanisms (e.g., measurement error), sampling and other forms of incomplete observation
and factors relevant to the experiment but ignored in a statistical model of it.

94For example, if « = E[X;] is the population mean, the sample mean X = 15 1 X; is the method of moments
estimator.

95In Bayesian settings, however, the distinction blurs; see §8.

96The sample mean is the best zero-dimensional fit to the data.

97Various interpretations are possible. The two most common are that P(A) is the long-run frequency of occurrence
of A in repeated, independent trials, and that P(A) is a subjective assessment of the likelihood of A.

98This property is known as additivity of P.
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Random variable. A (real-valued) function X (w) of the outcome w of a random experiment.
Random variables are identically distributed if they have the same distribution function.

Resampling. Class of simulation techniques used to estimate distributional characteristics of
statistical estimators not accessible by means of theory or direct estimation. The basis is to
simulate additional pseudo-data from the empirical distribution function of the original data,
and to estimate the distributional characteristics (used, e.g., to produce confidence intervals
or standard errors) from these. The bootstrap [27, 37] is the most widely known of these

techniques.
Sample mean. Given data X1, ..., X,, the statistic X = o X

Sample variance. Given data X1, ..., X, the statistic .S’2 =Ly (Xi—X)2.

Sample standard deviation. Given data Xj,. .., X, the statistic S = \/ HYn (X -X)2

Simulation. Class of computer models and techniques for studying systems involving randomness,
but for which analytical solution is not feasible.

Standard error. Statistical estimator of the standard deviation of another stati_stical estima-
tor. For example, given data X3, . .., X,,, “the” standard error of the sample X = 1 Xi
is often taken to be S//n, where S is the sample standard deviation.

Standard deviation. For a random variable X, the quantity ox = \/o%, whose interpretation is
similar to that of the variance 0%, but is in the same units as X

Statistic. Inarandom experiment, any random variable that is a function of the data. Given data
Xi,...,Xn, common statistics are the sample mean, sample variance, sample standard
dewatlon and order statistics and empirical distribution function.

Statistical estimation. Techniques for estimating from data the parameter value a actually gov-

erning a random experiment, applied within the context of a particular statistical model
for the experiment.

Three general principles of estimation are maximum likelihood, the method of moments
and least squares. In some settings, two or all three of these methods lead to the same
estimators. Ad hoc methods are widely employed as well.

Statistical estimator. Statistic meant to estimate the value of the unknown parameter o of a
statistical model. Given data X;,..., X,, estimators, as statistics, are functions of the
data, and are usually denoted by carets: & = h(Xj,...,X,) for a function h specified by
the estimation procedure. Two key characteristics of an estimator & are its bias and mean

squared error. Zero bias and low mean squared error are desirable properties, but ordinarily
one is enhanced at the expense of the other.
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Statistical model. A mathematical representation of a random experiment, consisting of

o A sample space (1, the set of all possible outcomes of the experiment. Outcomes may
range from simple (“yes” or “no”) to complicated (micrographs in materials science).

e A collection of potential governing mechanisms for the experiment, represented math-
ematically as an indexed family {P, : a € I} of probabilities on . One of these
probabilities, corresponding to a specific value a, actually does govern the experiment.

e Data comprised in simple cases of random variables X1, ..., X,,,% and interpreted as
measurements or observations. The form of the data may be dictated by the “physics” of
a particular application or be under control of the scientist/statistician, who may decide
which measurements to take.

Within this setting, the goal of statistical inference is to construct and evaluate meaningful
statements concerning the mechanism actually governing the experiment, based on the data.1®

Stochastic process. A family {X; : ¢t € T} of random variables, where T is any index set,
typically representing time or space.

Systematic error. Error resulting from an inappropriate statistical model, and so caused by in-
consistency between assumptions underlying the model and the random experiment being
modeled. Examples are unwarranted assumptions of independence or inapplicable distri-

butions. Systematic error'®® potentially invalidates all inferences drawn using a particular
model.

Tests of hypotheses. Statistical procedures for ascertaining the support of the data for statements
about the unknown parameter of a random experiment. Simple hypotheses specify one
value for the parameter; compound hypotheses specify multiple values.

Hypothesis tests are expressed in terms of a null hypothesis*® Hy, for example, that o = a,
and alternative hypothesis H,, say that a = oy # ap. A test based on data Xj,..., X, is
specified by a test statistic T = h(Xa, ..., X,) and acritical region C, such that H, is rejected
if T € C. Often, the critical region is an interval.

Being based on uncertain data, hypothesis tests are not flawless. Two kinds of errors are
possible. A Type I error constitutes a “false rejection” of a true null hypothesis, while a Type IT
error is acceptance of the null hypothesis when the alternative is true. Ideally, the probabilities
of both errors should be small, but decreasing one almost always increases the other. The

%91n other instances, the data may be a sequence X1, Xz, .. . or a stochastic process.

190Customary usage designates as parametric models in which the index set I is finite-dimensional and all others as
nonparametric.

101A150 known as model mis-specification.

102Typically, a “straw man,” stating that what is suspected not to be true (for example, that a coin is fair) actually is
true.
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Neyman—Pearson paradigm minimizes the probability of type II error subject to a prescribed
upper bound on the type I error.!®® The power of the test is the probability of rejecting the
null hypothesis when the alternative holds.

Test results can also be expressed as p-values. For a (“one-sided”) test in which the rejection
region is an interval [c, co) (that is, Hy is rejected if T > ¢, where ¢ must be determined),
the p-value (sometimes, observed significance) is the smallest value of po for which the null
hypothesis would be rejected on the basis of the observed data.!®* The smaller the p-value,
the more the data support the null hypothesis.

Tuning computer models to physical data. Statistical procedures for using available physical
data to select values of parameters (“tuning constants”) in numerical simulation models.
These parameters are ordinarily phenomenological, that is, cannot be measured physically,
even in principle. Tuning differs from statistical estimation: here model outputs are only
obtainable numerically, and are not necessarily comparable to the physical data. Error may
be present in all measurements. See [14] for one formulation.

Variance. For a random variable X, the quantity 6% = E[(X - E[X])"’] = E[X?] - E[X]?,
which is the average (squared) deviation of X from its mean E[X].

Weibull distribution. Distribution function given by (C.3), developed in [130] for study of failure
of materials.

As m increases, the mean stabilizes at o, and the variance converges to zero,!°® so that
materials with higher Weibull moduli exhibit less variability.

103That is, the optimal critical region C* solves the optimization problem of minimizing P,, {T ¢ C} subject to a
constraint of the form P,,{T € C} < po, where py is the bound on type I error.
194That is, the p-value is the statistic ¢(T"), where g(t) = Pa,{T > t}, which can be calculated (from the data)
without specification of an alternative hypothesis.
195More precisely, the mean is (co/m)T'(1/m) and the variance is o3 [(2/m)T(2/m) — [(1 /m)T(1/m))?], where
—_ [ yz-1_-t H ’ .
I'(z) = [, t*~'e~tdt is Euler’s gamma function.
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