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Abstract

Modelers of contaminant fate and transport in surface waters typically -
rely on literature values when selecting parameter values for mechanistic
models. While the expert judgement with which these selections are made
is valuable, the information contained in contaminant concentration mea-
surements should not be ignored. In this full-scale Bayesian analysis of
PCB contamination in the upper Hudson River, these two sources of infor-
mation are combined using Bayes Theorem. A simulation model for the

fate and transport of the PCBs in the upper Hudson River forms the basis of
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the likelihood function while the prior density is developed from literature
values.

The method provides estimates for the anaerobic biodegradation half-
life, aerobic biodegradation plus \)olatilization half-life, contaminated sedi-
mevnt depth, and resuspensibn velocity of 4400 days, 3.2 days, 0.32 meters,
and 0.02 m/year, respectively. These are significantly different than values
obtained with more traditional methods, and are shown to produce better

predictions than those methods when used in a cross-validation study.

1 Introduction

Predictions from water quality models are largely dependent on the values of the
parameters in the models. In mechanistic models, examples of model parameters
include chemical and physical reaction rates, sedimentation and resuspension
velocities, and environmental variables such as water clarity. In empirical models,
parameters are coefficients or exponents in the model, and do not necessarily have
particular physical meanings.

Within the context of a particular model specification, a modeler may be
uncertain about which value to choose for the parameter. For example, it frequently
happens that while there is some information which indicates the expected behavior

of the chemical in the environment:



there are no site-specific data,

there are no chemical-specific data,

the available data conflict with each other, or

the parameter is an aggregated one representing conditions during many

time periods or at many sites.

In these cases, it makes sense to adopt a probability distribution in which both the
uncertainty the modeler has about the parameter value and its inherent variability
can be quantified. The data upon which the investigator bases the probability
distribution as well as the judgement exercised in combining these data are referred
to as “prior knowledge”. The term refers to the information which the investigatdr
has prior to reviewing and analyzing the data set for the particular study of interest.

Sometimes modelers estimate parameter values by fitting the model parameters
to the data. In this case, the resulting parameter values are uncertain because the
modeler must use some (often arbitrary) criterion to determine the best fit. Even
parameter values obtajned from a nearly perfect fit with the data are uncertain when
the calibrated model is applied to a new input data set. There are many possible
reasons for this behavior; Beck (1987) presents a particularly lucid discussion of
this and other issues related to uncertainty.

When model fitting is done in the context of a statistical model for the mea-



sured concentrations, and the fitting criterion is to maximize the likelihood of the
observed measurements, the method is known as maximum likelihood estimation.
For example, the measured concentration may be modeled as a normally dis-
tributed random variable with mean, u, equal to the prediction from a simulation
model, and unknown variance 2. Let 6, represent the vector of unknown param-
eters in the simulation model, and 1(6,) the model prediction. The probability
density function for observing a particular concentration, y, given 8, and o, is the

likelihood function and is given in Equation 1:

(01 05.0) = Gy [—% (9—%9-”—)) } (M

Together, the parameters 6, and o comprise €, the vector of unknown parameters
to be estimated. If a set of independent observations, vy, is taken, the likelihood

function for the set is the product:

flyl0)= Hf(yzle 2

of the normal density functions from Equation 1. Usually, the logarithmic forms

of Equations 1 and 2 are used. In that case, Equation 2 becomes:

n

Inf(y|0)= ——ln 210?) Z i — wi(0 3)
=1

Maximum likelihood estimation would maximize In f(y | €) as a function of 6.
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One of the prdblems with maximum likelihood estimation and many other
methods which estimate parameters from the data is that a global optimum may
be difficult to identify when many local optima exist. A second deficiency of
the optimization approach is that it offers no formal route for prior knowledge
to enter the analysis — as a result, the optimized values may be best for the
calibration data set, but may not simulate the process well in other applications
of the parameterized model. One way to incorporate both prior information (in
the form of probability density functions) and empirical evidence (in the form
of the likelihood function) is to use Bayesian parameter estimation. An added
benefit is that the resulting point estimate of the parameter is unambiguous since
the resulting function typically has only a single optimum.

In this paper, we describe how Bayesian parameter estimation can be used
to estimate parameter values for a contaminant fate and transport model. This
is undertaken for a mechanistic model of polychlorinated biphenyl (PCB) in the
upper Hudson River. Following a discussion of Bayes Theorem, we describe the
simulation model used and the model inputs. Results of the Bayesian analysis
are presented, and compared with those resulting from the use of prior knowledge
solely, and from maximum likelihood estimation. Finally, we conclude with
some observations about the advantages of Bayesian parameter estimation in

water quality modeling (see Berger, 1985 for a thorough discussion of Bayesian



techniques for parameter estimation).

2 Bayesian Parameter Estimation for Water Quality

Models

2.1 Bayes Theorem

Bayesian parameter estimation is based on the use of Bayes theorem, published
by Thomas Bayes in 1763. This theorem is used to infer probabilities of events
or distributions of parameters, given data which are indicative of them. As Berger

(1985) writes:

The typical phrasing of Bayes’s theorem is in terms of disjoint events
A1, Ay, ..., A,, whose union has probability one (i.e., one of the A;
is certain to occur). Prior probabilities P(A;), for the events, are
assumed known. An event B occurs, for which P(B | A;) (the
conditional probability of B given A;) is known for each A;. Bayes’s

theorem then states that:

P(B | A;)P(A;)

P(A;| B) = ", P(B| A;)P(4;)

These probabilities reflect our revised opinions about the A;, in light

of the knowledge that B has occurred.



When Bayes theorem is extended to estimation of parameters, rather than the

estimation of probability of events, it takes the form:

m(0)L(y | 9)

mO1Y) = o o)c(y | 0) 0

4)

In this equation, 7 (@) represents the probability density function for , the vector
of unknown parameters, before any data are collected. This is called the prior
distribution for the parameters. 7(0 | y) is the revised probability density function
after data, y, have been collected and is called the posterior density function.
L(y | 0) is the likelihood function for y given 6. It is the probability density of y
given 0, considered as a function of 6.

The numerator of Equation 4 is regarded as the joint density of y and 8, and the
denominator is the marginal density of y; the division of the former by the latter
creates the revised conditional density of 6 given y. Since the denominator is
always a constant (i.e., not a function of @), the posterior distribution is known up
to a normalizing constant when only the numerator is evaluated. Thus, the shape
of the posterior density function may be found from evaluating the numerator only,
while the scale of the distribution requires calculation of the denominator as well.

In this paper, the mode of the posterior density function is found and it is
used as a point estimate for the parameter vector (rather than the more common

maximum likelihood estimates). Ultimately, the full value of a Bayesian analysis



should be realized with the use of the posterior distribution to yield probabilistic
statements about the parameters and predictions; the present analysis gives only

an approximation of this goal.

2.2 Fate and Transport Modeling

Bayes Theorem can be applied to fate and transport models in surface water. These
models typically take their form from the advection-diffusion-reaction equation
(Thomann and Mueller, 1987). Consider a one-dimensional form of this equation

for the fate and transport of a contaminant in a river with known loading rate W:

ac((;,t) =~__u_3_0%ﬁ N gx_ (D%’_t)) —rCm )+ W ()

where u = water velocity, D = the longitudinal dispersion coefficient, r = a first
order rate constant for loss of the compound, and C(z,t) = concentration at
location z at time t. Assume that the velocity and dispersion are known (or can
be fairly well approximated from measurements and empirical formulas) and that
interest centers around estimating the first order rate constant which governs the
loss of the contaminant. Then Equation 4 can be solved for (0 | y) with o andvr
comprising 8, and y being the vector of known concentrations, C(z,t). L(y | 6)
is the likelihood of observing y given the unknown parameters; its logarithm may

computed from Equation 3 with  equal to the predictions from Equation 5. The



joint prior density function for r and o can be computed from the multiplication of
individual prior densities for r and ¢ assuming that the investigator’s uncertainties
about each are independent.

In assessing the prior density function for r, the investigator uses all the
information available in the literature which can provide guidance on expected
loss rates. This could include the results of laboratory experiments, field tests on
the investigated water body or elsewhere, empirical equations whose structure and
parameters are fit from other data sets, and the investigator’s own intuition based
on previous experience.

The error standard deviation, ¢, originates from the concept that any one of a
range of PCB concentrations might be measured at a given site in the river at a
particular moment. Choosing a prior distribution for o requires the investigator to
assess the lack of fit in the model and the two main sources of randomness in the
contaminant data: the degree of error in the measurement technique and the inher-
ent variability which characterizes the water body. The assessment may consider
model specification error, the reliability of the laboratory analytical techniques
employed, the spatial heterogeneity of the data and the coarseness of the grid of

measurements, and the temporal fluctuations in the concentrations.
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3 The Hudson River Case Study

3.1 Fate of PCBs in the Hudson River

Polychlorinated biphenyl (PCB) contamination of the Hudson River dates from
approximately 1950 when General Electric began discharging PCBs from its elec-
trical equipment manufacturing plants in Fort Edward and Hudson Falls, NY.
(Schroeder and Barnes 1983). Over 230,000 kilograms of PCBs (mostly in the
commercially available forms of Aroclor 1016 and Aroclor 1242 (Bopp, 1979))
were discharged into the Hudson River at these sites between 1950 and 1977 (Tof-
flemire et al. 1979). Due to the hydrophobicity of PCBs*, most of the chemical
sorbed to river sediments. This material has migrated downstream, contaminating
the Hudson River sediments with PCB from Fort Edward to New York Harbor
(Figure 1) and serving as a source of PCB loading to the water column. Figure 2
shows measurements of PCB concentrations (ppm) from 243 sediment cores taken
in the upper Hudson River® from 1976-1978.

Besides downstream transport into the lower Hudson River and into the New

4There are 209 different forms (congeners) of PCBs; Hawker and Connell (1988) estimate that
the octanol-water partition coefficients for PCB congeners vary from 2.9 x 10* to 1.5 x 108, with

hydrophobicity generally increasing as the number of chlorine atoms in the molecule increases.
5The upper Hudson River is defined as the Hudson River from its origin in the Adirondack

Mountains to Troy N.Y. (just south of Waterford). Between Troy and New York Harbor, the river

is tidally influenced.
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York Harbor, loss of PCB mass in the upper Hudson River is due primarily to
three mechanisms: volatilization, aerobic biodegradation, and anaerobic dechlo-
rination. A brief discussion of the importance of these mechanisms follows. A
more complete discussion can be found in Steinberg (1994) and in the referenced
publications.

Volatilization of PCBs in the laboratory has been demonstrated by Doskey
and Andren (1981), Dunnivant (1988), and Warren et al. (1987). Investigations
of the fate and transport of PCBs in the natural environment typically include a
determination of the volatilization flux; Baker and Eisenreich (1990) calculated
volatilization rates of PCBs in Lake Superior and Thomann et al. (1989) estimated
the effect of volatilization on PCB mass in the lower Hudson River using a simu-
lation model. Larsson et al. (1990) showed that volatilization of PCBs occurred in
the Rivér Em in Sweden using a floating sampler. Calculations using Whitman’s
two-film model indicate that half-lives on the order of 3.5 days are likely.

Aerobic biodegradation is a biological removal process in which PCB molecules
are converted to intermediate products such as benzoic acids. These products may
later be completely mineralized by other bacteria (Furukawa et al. 1979). Aerobic
biodegradation of PCBs has been observed in the laboratory (Bedard et al. 1986;
Bedard et al. 1987; Furukawa et al. 1978); and in situ under artificial stimulation

in the upper Hudson River (Harkness et al. 1993). Half-lives computed from these
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experiments are on the order of 0.08 days to 8 days.

Anaerobic dechlorination is a biological transformation process in which chlo-
rine atoms in highly chlorinated PCB molecules are removed and incorporated into
metabolic products or by-products. This results in an increase in the number of
less-chlorinated PCB molecules and a decrease in the number of highly-chlorinated
PCB molecules. Anaerobic dechlorination has been observed in laboratory ex-
periments (Quensen et al. 1990; Rhee et al. 1989), and existence in the natural
environment has been deduced from field data in the Hudson River (J. Brown et al.
1987a,b). Half-lives for the loss of PCB mass (due to the loss of chlorine atoms
attached to PCB molecules) of 200 to 2000 days have been calculated from the

published data (Steinberg et al. 1994).

3.2 The simulation model

The simulation model for PCB fate and transport in the upper Hudson River is
derived from the advection-diffusion-reaction equation . A number of simplifying
assumptions were made in deriving the form of the simulation model. These
assumptions were driven by the lack of observational data to support more complex

model formulation. They are detailed below.
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3.2.1 Simplifying Assumptions:

Overall PCB physical/chemical behavior PCB fate and transport models are
always complicated by congener and homologue specific rates of sorption, degra-
dation, and volatilization. While the original mixture of PCB congeners discharged
into the river may be crudely estimated from General Electric records of Aroclors
bought (Bopp, 1979), there are no observational data until 1990 with which to
calibrate congener or homologue specific concentration predictions. Furthermore,
reaction rates and removal rates for individual congeners and homologues are
largely unknown and would have to be estimated from the data; the Hudson River
data set is not sufficiently large to identify so many additional parameters.

In this simulation model, the model parameters reflect the overall behavior of
PCBs in the upper Hudson River. Individual congener and homologue behavior
is accounted for in the creation of the prior density functions for degradation and
volatilization (see Steinberg et al. 1995). Experimental results and empirical
predictions used to derive the prior density functions were weighted by the mix
of Aroclors believed to have originally been discharged into the Hudson River as
documented in Bopp, 1979. The partition coefficient for PCB is calculated using

the same weighting (see Section 3.3).

Sedimentation and Resuspension Few measurements of resuspension and sed-

imentation in the upper Hudson River have been reported. Data to parameterize a
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model with segment-specific sedimentation and resuspension rates have not been
collected in the upper Hudson River. In light of this difficulty, a single overall
resuspension rate was chosen to represent the behavior Qf sediment in the upper
Hudson River. The rate of sedimentation was calculated based upon the assump-
tion of no net build-up or removal of sediment. Thus, the flux of sediment onto
the river bottom was set equal to the flux of sediment from the river bottom into
the water column. Although there may be net deposition in some regions and
net scouring in others, the delineation of these areas is not known, the amount
of yearly change is not known, and the movement does not lend itself to one-
dimensional modelling (in which we average over cross-sections) because it tends

to be a localized phenomenon.

Interstitial Diffusion The model is also simplified in that it does not include
a term for interstitial diffusion of dissolved PCB between the sediment and the
water. This process may be of particular importance in returning PCB to the wélter
column during low-flow periods. In trying to reduce the number of parameters in
the model, we did not include this term specifically because we believe that the
effects of interstitial diffusion are reflected in the resuspension velocity parameter
estimate. The resuspension velocity is responsible for moving PCB from the
sediment to the water column and therefore its posterior value reflects all processes

which do this, including the interstitial diffusion.
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A Single Sediment Layer The sediment was modelled as a single, mixed layer
of PCB-laden sediment. Core data were averaged vertically over the depth of the
PCB-contaminated layer to set initial PCB concentrations in the sediment.

We had expected core samples to reveal a consistent profile of concentration
variation with depth, reflecting the time pattern of deposition and degradation.
The four core sample data sets used in this study showed no such profile, even
for multiple cores taken in a single segment of the upper Hudson River. This
absence of a characteristic concentration profile suggests that such patterns either
are widely variable, or else do not persist over time. This leads us to suspect that
mixing arising from storm events, other natural phenomena, or perhaps human
intervention has destroyed any continuous record of PCB accumulation at the core
locations. For this reason, we did not choose to model variations in the PCB
concentration with depth in the benthic sediment; rather, we elected to model the

benthic sediment in aggregate as (locally) well-mixed.

3.2.2 Model Specification

The simulation model for PCB fate and transport in the upper Hudson River is
derived from the advection-diffusion-reaction equation. It consists of two coupled
differential equétions, Equation 6 and Equation 7. Equation 6 simulates c,, the
total PCB concentration in the water column, and Equation 7 models c;, the PCB

concentration in the sediments. In addition to transport terms (1), Equation 6
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includes a first order reaction term for volatilization and aerobic biodegradation
in the water column (2), a term for increases in ¢, due to resuspension of bottom
sediments (3), and a term for loss of PCB mass due to sedimentation from the
water column (4). Symbols in Equation 6 include: u, the water velocity; D, the
longitudinal dispersion coefficient; k.o, the volatilization rate constant; k,, the
aerobic biodegradation rate constant; F, the fraction of PCB which ié dissolved;
v, the sediment resuspension velocity; z, the water column depth; and v, the
sediment sedimentation velocity.

Changes in the concentration of PCB in the bottom sediment, c;, are modeled
with a term for concentration increase due to sedimentation of PCB-contaminated
particles from the water column (5), and a term for concentration decrease due
to anaerobic dechlorination and resuspension of PCB-contaminated sediment (6).
The sedimentation velocity is modeled as the complement .to the resuspension
velocity. Its value is set as required to ensure that the flux of material resuspended
is compensated by an equal flux onto the bed. In this way, no net scour or fill at any
cross-section is simulated®. Symbols in Equation 7 include: ¢, the thickness of the

contaminated sediment layer and k,, the anaerobic biodegradation rate constant.

8This approach is suggested by the results of Lane and Borland (1954), Culbertson and Dawdy
(1964), Colby (1964), and Andrews (1979), each of whom reported cycles of fill and scour and

little net deposition or fill over the time period studied.
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The simulation model was solved numerically using implicit finite differences
with timesteps Qf approximately one day and spatial gridding of 1000 m (see Smith
(1978) and Richtmyer and Morton (1967) for a discussion of finite difference
methods for solving partial differential equations).

In the next section, we present the basis for calculation of input values for
the solution of Equations 6 and 7, including the river velocity, the longitudinal
'dispersion coefficient, the fraction of dissolved PCB, suspended sediment concen-

trations, and boundary conditions.

3.3 Simulation Model Inputs

River velocity was calculated from the equation of continuity using flow rates
reported by the United States Geological Survey (USGS) and assuming rectangular
channels with width measured from USGS topographic maps.

River depth was calculated from the empirical weir equation:
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Q=KLH

with K equal to 1.77(SI units), Q equal to the flow rate, L equal to the weir length,

and H equal to the height of the water over the weir. Weir lengths and heights were

obtained from the New York State Department of Environmental Conservation.
The longitudinal dispersion coefficient was calculated using Fischer’s equation

(Fischer et al. 1979).

D =0.
00112 723 ®)

where w is river width (estimated from USGS topographic maps), ¢ is gravitation
acceleration, and S is the slope of the water surface (estimated from 10-year flood
elevations from Federal Emergency Management Agency floodway studies).

Fyy is the fraction of PCB dissolved in the water column, and is calculated

from:

1

Fy =
v 1+sK,

where K, is the partition coefficient and s is the suspended solids concentration.
The partition coefficient, K, is calculated using the K,, estimates of Hawker
and Connell (1988) for PCB congeners, and averaging the estimates to reflect

the composition of the Aroclor 1016/ 1242 mixture originally discharged into



19

the Hudson River. K,. was estimated from the Karickhoff (1979) relationship:
log,o Koe = log;g Kow — 0.21. This yielded a log K, of 5.36. The fraction of
organic carbon, f,., was taken as the median f,. measurement of the upper Hudson
River core samples. This resulted in an estimate of f,. of 6.3%. Multiplying 10°-3¢
by 0.063 yields a Kp value of 14400 and this was the value used in the simulation
model.

Suspended sediment concentrations are sampled daily at Fort Edward, Stillwa-
ter, and Waterford. Missing samples were imputed using regressions of the logs
of suspended sediment concentration on flow or using regressions of suspended
solids concentration on suspended sediment concentrations at adjacent stations.

The simulation model also requires boundary PCB concentrations in the water
column. In order to predict missing days, the log of PCB water column mea-
surements taken at Fort Edward and at Waterford were regressed against flow and
year.

Initial PCB concentrations for use in the simulation model were calculated
from 243 core samples taken from the upper Hudson River in 1976, 1977, and
1978. Each core had been sectioned; the PCB concentrations of the sections were
averaged after removing all bottom sections of O ppm concentration. The average
concentrations were assigned to 50-meter reaches of the river based upon where

the sample had been taken. All cores belonging to the same 50-meter reach were
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averaged, and this value was assigned as the reach PCB concentration. Reaches
where no PCB measurements were taken were assigned O ppm concentrations, on
the understanding that cores had been taken at locations where it was thought that
PCB would most likely be found. Initial concentrations at each node of the model

were estimated as the average of the nearest 10 reaches on either side of the node.

4 The Bayesian Model

It is assumed that several of the parameters in the model are uncertain and should
be characterized by prior probability density functions. These include the anaer-
obic dechlorination rate constant (k,), aerobic biodegradation rate constant (k,),
volatilization rate constant(k,.;), resuspension velocity (v,), and the thickness of
the contaminated sediment layer (). The estimation of the prior probability den-
sity functions for each of these parameters is discussed in Steinberg et. al 1994.

In summary, the distributions were estimated as follows:

e k,and k,: estimated from the results of laboratory studies on dechlorination

and biodegradation,

o k,,: estimated from empirical equations relating chemical properties and

environmental conditions to the volatilization rate,
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e v,: estimated from resuspension data collected in other rivers (no data

available for the upper Hudson River), and
e (: estimated from sediment cores taken from the upper Hudson River.

Also in Steinberg et. al (1994) is a discussion of how the prior distributions for
k.o and k, were combined into a single distribution for k4, a new parameter repre-
senting the combined effects of &, and k,. This reparameterization was required
because neither parameter is individually identifiable from Equations 6 and 7.
Then, for greater interpretability, the density functions for k, and k, were trans-
formed into distributions for half-lives due to anaerobic dechlorination (¢,) and
aerobic biodegradation plus volatilization (%4).

A fifth unknown parameter, o, appears in the likelihood function (Equation 3).
A discussion of the derivation of the probability density function for o, the un-
known variance of the PCB concentration, may be found in Steinberg et. al (1994)
and Steinberg (1993).

Under the assumptlon of independence of these dlstnbutlons i.e. that knowl-
edge of one parameter is not informative about the dlstrlbutlon of another, they
may be multiplied together to form the joint probability density function, (),

for the suite of parameters:

() = m(ta)m(ta)7(ve)7(C)7 (o) 9
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The result is a multivariate lognormal density function with mode located at the
parameter values shown in Table 1. These are the same parameter values found at
the mode of the individual prior density fuﬁctions.

The likelihood function is constructed from Equation 3. We used measured
PCB concentrations in the sediment taken in 1984, 1985, and 1990 as y and
predictions of sediment PCB concentrations from the simulation model as . The

suite of five unknown parameters (¢,,t4,vr,(, and o) comprises 6.

5 Results

5.1 The Posterior Distribution

By Bayes’ theorem the posterior density function is proportional to the product of - .
the prior density function and the likelihood function. Even without knowing the
proportionality constant (which would require a high-dimensional integration) the
shape of the posterior distribution can be explored, particularly in a neighborhood
of the posterior mode where it attains its maximum. The mode itself can be used as
a parameter point estimate, replacing the point estimates commonly used by water
quality modelers that are based solely on expert opinion (i.e., prior information) or
on ad hoc model calibration exercises; see Schnoor et al. (1987). As computing

hardware and integration algorithms improve it will soon become practical to base
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parameter estimates and_model predictions on the full posterior distribution, better
reflecting all sources of variability and uncertainty.

Even locating the posterior mode is difficult in a statistical model this com-
plex. Evaluating the posterior density function at each single point 6§ requires
approximating the numerical solution to coupled partial differential equations,
taking about half a minute on a 20 MIPS computer; both inherent variability and
numerical approximations lead to non-smooth posterior density functions, making
efficient derivative-based optimization routines ineffective. We used a polytope
direct-search method (DUMPOL,; see IMSL, 1985).

Achieving convergence with DUMPOL when searching for a maximum in the
five-dimensional parameter space required good starting values. These were ob-
tained by methodically varying 2 parameters at a time (a total of 40 combinations
for each pair of parameters was used), and using DUMPOL to search the remaining
three-parameter space for the maximum value of the posterior density function.”
For each pairing of parameters, a contour plot of the maximized posterior den-
sity function was constructed by interpolating the 40 calculated posterior density
function values. The contour plots indicated the regions in two-dimensional pa-
rameter space where the highest values of the posterior density function were

found. These regions were used to establish several good starting points for the

"The optimization is actually performed by minimizing the negative log of the posterior density.

This is equivalent to maximizing the posterior density itself.
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complete five-dimensional optimization of the posterior density function. When
the optimization was performed with these starting points, the optimal parameter
values shown in Table 2 were found. Since these are the parameter values at which
the posterior density function is maximized, these are the values of the parameters
which determine the mode of the posterior density function.

It is interesting to explore the shape of the posterior distribution in the vicinity
of the mode to determine if there is a sharp drop-off in the posterior density
function around the maximum, or whether the function tends to be very flat in this
area. A flat posterior would indicate that many combinations of the parameters
will yield nearly the same posterior density, and hence all would be equally valid
to use as a point estimate. This analysis also indicates which parameters are
especially influential in determining the posterior density function in the area of
the maximum. The results of the analysis are shown in Table 3. The table shows
the change in the value of the negative log of the posterior density function. The
changes are generated by holding four of the five parameters constant at the values
shown in Table 2 while varying the value of the fifth parameter by £5%, +10%,
and £50%.

It can be seen from Table 3 that the error standard deviation has the greatest
impact on the posterior density in the neighborhood of the posterior mode. The

combined volatilization and aerobic biodegradation rate constant shows little im-
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pact on the posterior until the change becomes greater than £10%. The three
remaining parameters appear to bé approximately equally influential in the neigh-
borhood of the posterior mode. Thus, the table indicates that in the neighborhood
of the posterior mode, the posterior density function is relatively flat in the di-
mension representing volatilization and aerobic biodegradation, very steep in the
dimension representing the error standard deviation, and mildly steep in the dimen-
sions representing the anaerobic biodegradation rate constant, the contaminated

sediment depth, and the resuspension velocity.

5.2 The Likelihood Function

Maximization of the likelihood function is another method for selecting parameter
values. This method considers only the information contained in the data, and
not the knowledge that an expert or well-informed investigator might have about
likely values for the parameters. Maximum likelihood estimation is concerned
with finding the values of the parameters which maximize the probability of y
given 0. Thus, it is expected that the maximum likelihood estimator for 8 will
provide better fits to this particular data set than either the posterior or prior mode,
but that the posterior mode would provide better fits to future data sets collected
from the Hudson River because of the additional information supplied by the prior

distribution.
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Finding the maximum likelihood estimate of the parameter involves a series of
optimizations similar to that undertaken to find the posterior mode. Two alternative
explorations of the likelihood were used. First, the shape of the likelihood function
in the neighborhood of the posterior mode was investigated by changing one
parameter value at a time. The results of this analysis are shown in Table 4.
They indicate that changes in any one of the parameters except the combined
volatilization and aerobic biodegradation rate constant will improve the likelihood
function. This emphasizes the point that the posterior mode is not a maximizing
point for the likelihood function.

For the second exploration of the likelihood function, the locations of local
maxima are found by using a variety of starting points for the optimization. It
is not expected that this likelihood function will have a single optimum for two
reasons. First, the effects of one parameter may be compensated for by the effects
of another parameter. For example, a large value for the contaminated sediment
depth will minimize the effects of resuspension on the benthic sediment PCB
concentration, while a fast anaerobic biodegradation rate will decrease the benthic
sediment PCB concentration quickly. This was not a problem with the posterior
distribution, since unlikely values of the parameters yielded small values of the
prior density, and hence two extreme parameter values could not cancel each other

out. Second, since the likelihood function is determined by ¢ and the difference
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between vy and the predictions, when two parameter vectors have nearly the same
o and one produces concentrations ¢ ppm greater than the measurements while
the other produces concentrations = ppm less than the measurements, both will
yield the same likelihood function value.

When a starting point close to the posterior mode was used, a local optimum

was identified nearby at:

o = 39 ppm
tqa = 0.35 days
to = 5200 days
(=061lm

v, = 0.001 m/yr

When a different starting point was used, the DUMPOL algorithm failed to
identify a minimum after 200 iterations, but did locate several points which appear
upon investigation of nearby points to be local optima and which yield the same

likelihood function value. Two such points are shown in Table 5.

5.3 Fitted Values and Predictions

The fitted PCB concentration values obtained from the modes of the prior and

posterior density functions, and from a local maximum of the likelihood function
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were compared with measured PCB concentration values. In general, the fitted
values from the prior density function sériously underestimated the measured
values while the parameter values from the posterior density function provided
much closer fits. Fitted values from the likelihood function were closest (in the
root mean square error sense) to the measured concentrations, since minimizing
the squared error term is the sole criterion for fitting the likelihood function.

These results are summarized in Figure 3 which presents boxplots of the
absolute value of the residuals obtained from each of the three parameter estimation
techniques. The shaded boxes indicate the interquartile range. The upper whiskers
are 1.5 x the interquartile range and the lower whiskers are located at the smallest
residual value. The horizontal lines represent outliers.

The median values of the residuals in the boxplots do not differ much (10.5
ppm, 8 ppm, and 12 ppm for the prior density, posterior density, and likelihood
function, respectively). However, the inter-quartile range is considerably larger
for the prior density function than for the other two methods. This effect is also
apparent in the values of the root mean square errors for the fitted values which are
52 ppm, 45 ppm, and 43 ppm for the prior, posterior, and likelihood, respectively.

Although the likelihood function produces fitted values closest to the actual
measured values, it is expected that parameter estimates obtained from the like-

lihood function will not predict concentrations at new points in time or space as
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well as those obtained from of the posterior density function. In other words,
it is believed that existing scientific knowledge concerning processes and reac-
tion rates, as expressed in the simulation model and the prior distribution, is of
value for prediction. When this prior information is combined with that from the
observational data set, the resultant posterior distribution is expected to provide
the best fits to other (including future) data sets collected from the upper Hudson
River. Ideally, one would like to have a validation data set on which to test this
assertion. In the absence of a validation data set, the existing data set was divided
into two sets. One set consisted of 1984 data and a second set of 1985 and 1990
data. The first set was used to find a local maximum of the likelihood function
and the posterior mode. Then, the resulting parameter values were used to predict
concentrations in 1985 and 1990.

When the predicted values are subtracted from the measurements and squared,
the squared error obtained with predictions from a local maximum of the likelihood
function is almost double that obtained with predictions from the posterior mode
(3899 ppm? versus 7256 ppm?). This indicates that under the squared loss criterion,
the posterior estimator gave better matches to the 1985 and 1990 data set than did

the likelihood estimator.
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6 Conclusions

Reliance on complex mechanistic water quality models has tended to divert atten-
tion from underlying uncertainties about the aquatic systems under investigation.
While models grow more complex, séientists’ ability to provide rate constants
and other process values which are appropriate for the particular chemical and
site under study may not keep pace. Bayesian statistics provide a method for
selecting parameter values for water quality models which updates limited infor-
mation from experimentation with chemical-specific and site-specific data. The
method also explicitly incorporates the spatial and temporal variability in “cali-
bration” data (observations of concentration) which results from the heterogeneity
and non-stationarity of environmental processes.

In the Hudson River PCB case study, it was shown that information on the
behavior of PCBs in the natural environment is often contradictory (for example,
PCB half-lives of 200 to 2000 days) or is dependent on site-specific proceéses
for which data are not available (for example sediment resuspension rates). The
Bayesian paradigm of beginning with prior information, updating with observa-
tions, and recalculating parameter values offered a way to combine all existing
information, producing more chemical-specific and site-specific parameter values.
The updating was reflected in the difference between the modes of the posterior

density function and the prior density function. The posterior density was simple



31

to calculate, requiring just the multiplication of the likelihood function by the
prior density function. The posterior density was found, as expected, to have a
global maximum, and the location of this maximum was found with little difficulty.
The likelihood function, on the other hand, had multiple optima. Furthermore,
cross-validation analysis showed that predictions made with the posterior estima-
tor were better (in the squared error sense) than those obtained with the maximum
likelihood estimator.

The updated parameter estimates (located at the mode of the posterior density
function) were: 37 ppm for the measurement standard error, 3.2 days for the
combined volatilization and aerobic biodegradation rate constant, 4400 days for
the anaerobic biodegradation half-life, 0.32 meters for the contaminated sediment
depth, and 0.02 m/year for the resuspension velocity. In the neighborhood of the
mode, the posterior density function was steepest in the directions of the error
standard deviation and the anaerobic biodegradation half-life, indicating that these
two parameters were the most influential in determining the posterior density
function value at the mode.

Modelers should be aware that data on which to base parameter estimates may
be sparse, contradictory, or irrelevant upon closer examination of the modeling
problem at hand. Use of the Bayesian paradigm requires the modeler to sort

out these discrepancies and inconsistences, and to account for them in a prob-
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ability density function. By bringing in calibration data in a rigorous way, the
Bayesian analysis produces parameter estimates which incorporate this parameter
uncertainty as well as spatial and temporal variability in the measurements. As
in this study, the resulting parameter estimates may be significantly different than
estimates obtained through more traditional methods.

One result of the Bayesian analysis may be the realization that parameter
uncertainty is quite high, and that the resulting predictions will be highly uncertain,
leading to management decisions with little scientific support. In this case, it
may be more useful to pursue a simpler model, or an empirically-derived model,
from which parameters and predictions can be calculated with greater certainty.
Ultimately, the most useful models are likely to result from a compromise between
scientific feasibility, as characterized by uncertainty, and management desirability,

as characterized by decision maker information needs.
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Figure 3: Boxplot showing the absolute value of the residuals (ppm) for each of

the three parameter estimation techniques.



Table 1: Parameter values at the mode of the prior distribution

0 | description parameter
value

o | measurement error 28 ppm

tq | volatilization + aerobic 3.1 days
biodegradation halflife

t, | anaerobic biodegradation 1400 days
halflife

¢ | contaminated sediment depth 0.07 m

v, | resuspension velocity 0.09 m/yr
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Table 2:

Optimal parameter values for the posterior distribution

0 | description parameter
value

0 | measurement error 37 ppm

ta | volatilization + aerobic 3.2 days
biodegradation halflife

t, | anaerobic biodegradation 4400 days
half-life

¢ | contaminated sediment depth |  0.32m

v, | resuspension velocity 0.02 m/yr

46
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Table 3: Increase in the negative log of the posterior density as a function of

changes in parameter values in the neighborhood of posterior mode

parameter % change in parameter value

varied +50 | +10| +5 5| -10 -50
o 6.20 | 0.55 | 0.22 | 0.03 | 0.28 | 27.44
ta 0.23 |1 0.04 | 0.04 | 0.03 | 0.03 | 0.36
ta 049 |0.14|0.11 | 0.12 | 0.14 | 0.54
¢ 027 1 0.09 { 0.09 | 0.12 | 0.14 | 0.54
Up 0.35/0.16 | 0.14 | 0.09 | 0.08 | 0.50
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Table 4: Change in the negative log of the likelihood function as a function of

changes in parameter values in the neighborhood of the posterior mode

parameter % change in parameter value

varied +50 | +10 +5 5| -10 -50

o 2.05|-0.25|-025| 0.16 | 0.64 | 26.66

ta -0.08 | -0.12 | -0.12 | -0.13 | -0.13 | -0.13
a -045 1 -0.19 | -0.13 | 0.04 | 0.15| 1.19

¢ -0.60 | -0.21 | -0.13 | 0.04 | 0.15| 1.23

Up 0.65| 0.12 | 0.04 | -0.13 | -0.23 | -0.80




Table 5: Two locally optimal points of the likelihood function

Point 1 Point 2

o = 38 ppm o = 39 ppm

tq = 5.0 days tq = 5.1 days

t, = 7600 days t, = 8600 days
(=0.7Tm ¢(=092m

v, = 0.004 m/yr v, = 0.003 m/yr
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Appendix. Notation

C(z,t) concentration at location z at time ¢
water column PCB concentration
sediment PCB concentration
longitudinal dispersion coefficient
fraction of PCB which is dissolved
fraction of organic carbon
gravitational acceleration

height of water over the weir

weir length

weir equation constant

partition coefficient

anaerobic dechlorination rate constant
combined rate constant for aerobic biodegradation and volatilization
aerobic biodegradation rate constant

FrrmRmSmepNue e

kow octanol-water partition coefficient

kol volatilization rate constant

L likelihood function

n number of observations

r first order rate constant

S slope of the water surface

s suspended solids concentration

te anaerobic dechlorination half-life

ta combine aerobic biodegradation and volatilization half-life
U river velocity

Up sediment resuspension velocity

Vs sedimentation velocity

w river width

Y vector of observations

z water column depth

0, vector of unknown parameters

L mean '

s probability density function, either prior or posterior
o variance :

¢ thickness of the contaminated sediment layer
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