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ABSTRACT
Adjustment procedures for multiplicity are investigéted, including the traditional Bonferroni
technique, a sequential Bonferroni technique developed by Hochberg (1988), and a sequential
approach proposed by Benjamini and Hochberg (in press) for controlling the false discovery
rate (FDR). The procedures are illustrated and compared, based on examples from several
data sets, including the National Assessment of Educational Progress (NVAEP) and the NAEP
Trial State Assessment. One advantage of the FDR procedure is shown to be its consistency
about the statistical significance of comparisons over alternative choices of family size.
Simulation studies show that all three procedures maintain a false discovery rate bounded
above by o (or 0/2). For both uncorrelated and pairwise families of comparisons, the FDR
technique results in greater power than that for the Hochberg or Bonferroni procedures and the
power advantage of the FDR procedure increases with the number of comparisons. We
recommend that in reporting results from the Trial State Assessment, NAEP discontinue use of
the Bonferroni procedure in favor of the FDR technique.
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Controlling Error in Multiple Comparisons,
with Special Attention to the National Assessment of Educational Progress

"If enough statistics are computed, some of them will be sure to show structure."
— Diaconis (1985)

Two questions often asked about one, or several, observed comparisons are: (a)
whether we should be confident about the direction — the sign — of the corresponding
underlying population comparison, and (b) for what interval of values should we be confident
that it contains the value for the population comparison. Most often, each comparison will be
a simple difference between two separately estimated quantities. The present report focuses on
(a), above, in the interest of presenting some basic issues as starkly as possible. It expands on
concepts introduced by Tukey (1991, 1993) and by Benjamini and Hochberg (in press).

Assume that we need statistical procedures to control some kind of error rate at a
conventional value (o = .05, perhaps). For a single comparison, 0/2 provides a bound related
to the probabilities of combinations of

« deciding with confidence that a population comparison goes in one direction

« while the corresponding population comparison actually goes in the opposite

direction (has the opposite sign). '
This formulation assumes, as experience has taught us, that no population comparison is
exactly zero (to many decimal places).

For a given critical value, the probability o, considered as a function of the (never
zero) value of the population comparison, approaches a flat maximum when the population
comparison approaches zero. Therefore, the conventional emphasis on "the null hypothesis" is
not surprising. The importance of the null hypothesis is not that it is null, but rather that

* as a limit, it is the least favorable case, and

» situations with small non-zero values of the population comparison ("perinull”

situations) behave much as if they were at that limit.

The probability of erroneous confidence, defined more generally than above, is
discontinuous by a factor of two depending on whether the population comparison is zero or
near-zero. This is so because confidence in either of the two directions is erroneous if a
population comparison is exactly zero, but only one direction is erroneous when the population
comparison is not precisely zero; also, so long as the true difference is close to zero, values
beyond the selected critical value are very nearly as likely to be of one sign as the other.

The probability, o, is the probability of the traditional "Type I error." Frequently —
and rather misleadingly — it is considered to be "the probability of deciding to be confident
about the direction of an observed comparison when the population difference is exactly zero."
Instead, we recommend thinking of «, in the simplest case, as "a bound on twice the



probability of being erroneously confident about the direction of the population comparison.”

Multiplicity arises in situations where more than one comparison is assessed. Unless
some correction is incorporated, the overall (simultaneous) Type I error rate — the probability
that the decision for any one or more comparison will be in error — will exceed (often very
substantially) the nominal o (which still would apply to any single comparison whenever that
comparison can be taken alone). When a number of comparisons are assessed together, it is
appropriate — and usually essential — to adjust for the increased probability of (simultaneous)
Type I error, i.e., the probability of finding at least one erroneous confident direction. See
Shaffer (1994) for a current review of the range of multiple comparison adjustments that have
been proposed to control one kind or another of an overall Type I error rate.

The Bonferroni adjustment is a simple and trustworthy statistical procedure for
assuring simultaneously that the probability of any Type I error is no greater than o.

However, in the trade-off between the control of Type I error and statistical power, power is
severely reduced when the simultaneous error rate is made no greater than o by the use of the
Bonferroni adjustment.’

Two sequentially-rejective techniques described in Benjamini and Hochberg (in press)
provide greater statistical power than the Bonferroni correction while still attempting to control
the rate of erroneous declarations of confidence. One of these, the Hochberg procedure
(Hochberg, 1988), controls the family-wise error rate at o, which is then a bound on the
probability of making any (one or more) Type I error in a given family of comparisons; this
bound is very nearly sharp when all population comparisons are zero. In contrast, the
Benjamini and Hochberg False Discovery Rate (FDR) technique attempts to control the
fraction of false discoveries, roughly, the average fraction, among all confident directions
asserted, that are errors; therefore, 0/2 provides an approximate bound for a given family of
comparisons on the expected value of the ratio of (a) the number of erroneous declarations of
confident differences to (b) the total number of declarations of confidence plus 1. (See
Appendix A for discussion of false discovery rates and false discovery proportions, especially
near the null hypothesis.)

Let p,, be the tail area (usually for each of two tails) of the null sampling distribution
of the test statistic for any single comparison being judged by a multiplicity-respecting
procedure. Each procedure will stipulate a probability of error or average fraction of error that
is bounded by o when assessing confidence (or nonconfidence) of direction. The value of p
will depend on the sort of confidence to be attained. Let m be the number of comparisons and
i =1, ..., m be the rank of the p-value of the statistic for the comparison concerned when
ordered from smallest to largest, so that the observed p-values — p,, for the i comparison —
are weakly increasing from i = 1 to i = m. Four distinct approaches are defined as follows:

Bonferroni: the traditional Bonferroni-adjusted (two-tailed) p-value; the critical value
of the statistic is such that p_;, = pony = 0/2m in each tail of the distribution of that statistic.

Hochberg: according to Hochberg (1988), be confident of the observed direction of the



i" comparison when, beginning with i = m and continuing toward i = 1, p;, < Pese = Proc(i) =
o/2(m—i+1); then stop and declare a confident direction for all comparisons for which j < .
Thus, pyoc(i) = m/(m—=i+1)pgey.

FDR: according to Benjamini and Hochberg (in press), be confident of the observed
direction of the i” comparison when, beginning with the m" comparison, p, < p.; = Prpr(d) =
iol/2m; then stop and declare a confident direction for all comparisons for which j < i; thus,
Pror(d) = iPgon:

Unadjusted: the unadjusted test; be confident if p < p.; = pyna = OW/2. Thus, pyy, =
MPyoN-

Because

1<m/m-i+1)<i<m,
it must be true that

Pson < Proc < Pror < Puna 5
the four collections of confident directions corresponding to these four approaches are nested,
with the unadjusted p,;, value the largest and the Bonferroni smallest.

Each of the four procedures operates in terms of a critical area, p.;. For any data set
involving standard errors based upon a single number of degrees of freedom, p.; can be
directly translated, first into a single critical #-value, ., and then, if all standard errors are the
same, into a single critical effect size, d_, such that

ly; = }’jl 2 dg
is the condition for confidence in direction.

To illustrate the calculations called for by the four procedures, we present those
calculations in An Election Example, for the Main Effects for Election Year (below). Because
in this example a common standard error is used, there is a unique critical effect size, d_,
which corresponds to a vertical line in Figure 1 and Figure 2. In this simple situation, the four
vertical lines, one for each procedure (shown in the figures by the four edges of two gray
stripes) tell almost the whole story.

An Election Example

This illustration applies the four techniques to an example- involving multiple
comparisons, taken from Tukey, Mosteller, and Hoaglin (1991). The data are the proportions
of state-by-state vote for Franklin D. Roosevelt in the four U.S. Presidential elections from
1932 to 1944 for 39 states. The states were organized by Tukey, Mosteller, and Hoaglin into
13 Groupings of three geographically contiguous states each, and they assessed the main
effects for Election Year and for Grouping, and the effects for State nested within Grouping.
Here, we perform similar analyses, and we replicate, as well, an analysis of Election Year by
Grouping interaction performed by Tukey and Hoaglin (1991). In all cases, we set o = .05.



Main Effects for Election Year

The first set of pairwise tests involves six comparisons of four presidential election
years — 1932, 1936, 1940, and 1944 — each with each other. For these elections, the
percentage of vote for Roosevelt was 63%, 65%, 59%, and 56%, respectively.

To compare rates of confident decisions about the direction of differences, #-statistics
were computed using the standard errors of the differences between Election Years (based on
the Election Year x Grouping interaction) and the degrees of freedom provided by Tukey and
Hoaglin (1991, p. 339). The comparisons are ordered from i = 6 (largest p-value, smallest
absolute value of ) to i = 1 (smallest p-value, largest absolute value of f), as presented in
Table 1.

Table 1.
Critical values of pyxa» Pror(0)> Proc(i), and pyey for the Main Effects for Election Year from
the Election Example (df = 36).

Comparison (i) ¢t p-value Puna  Pror@) Puoc(®)  Pson

1932 - 1936 (6) -1.49 .07152 .025 .02500 .02500 .00417
1940 — 1944 (5) 1.63 .05556 .025 .02083 .01250 .00417
1932 — 1940 (4) 2.79 .00417 .025* .01667* .00833* .00417*
1936 — 1940 (3) 4.29 .00006 .025% .01250* .00625* .00417*
1932 — 1944 (2) 4.42 .00004 .025* .00833* .00500* .00417*
1936 — 1944 (1) 5.92 .00000 .025% .00417* .00417* .00417*

The critical values for each approach — unadjusted, FDR, Hochberg, and Bonferroni
— are shown in the respective columns, pyxa, Pror()s Proc(i), and ppoy. Recall that pyy, =
0/2, and pyon = 0/2m, regardless of i. The FDR and the Hochberg techniques are both "step-
up" procedures; for each, we start by testing the least significant comparison (here, i = 6) and
then work toward the most significant.

With the Hochberg technique, beginning at i = m = 6 comparing 1932 and 1936, the
p-value(6) = .07152 > pyoc(6) = 0/2(m—i+1) = .025, so we may not infer a confident direction
of difference between 1932 and 1936. For the comparison of 1940 and 1944, i = m—1 = 5, the
observed p-value, again, is greater than the critical p-value for the Hochberg technique, p-
value(5) = .05556 > pyoc(5) = 0125, and we may not be confident at, o0 = .05, of the direction
of the difference between 1940 and 1944. For the 1932-1940 comparison, i = m—2 = 4, the
p-value(4) = .00417 < pyoc(4) = .00833; we conclude with confidence that the proportion of
the vote for Roosevelt in 1932 was sufficiently greater than the proportion in 1940 to be
attributable to other than chance variability. At this point, we end the Hochberg procedure
without testing any further comparisons; all remaining comparisons in the specified family,



together with the one last tested, comprise confident directions. Because, for percentage of
vote for Roosevelt, |differencel > 4% leads to confidence about the direction of the difference
of the vote while |differencel < 3% leads to lack of confidence, nonconfidence of direction can
be separated from confidence of direction anywhere between 3% and 4% of the vote, with
3.5% a natural choice.

Applying the FDR technique, we again begin with i = m = 6 for the 1932-1936
comparison. The observed p-value for this comparison, p-value(6) = .07512 > pgpe(6) = io/2m
= .025; therefore, we are not confident about the direction of the difference between 1932 and
1936. Next, for the comparison between 1940 and 1944, i = m—1 = 5, we are not confident
about the direction of the difference between 1940 and 1944 because the p-value(5) = .05556
> pror(9) = .02083. We test next the comparison between 1932 and 1940, i = m-2 = 4;
because the p-value(4) = .00417 < pppr(4) = 01667, we are confident of the direction of this
difference. We conclude, as for the Hochberg technique, that this difference (i = 4), together
with the remaining comparisons (i = 3, 2, 1), represent confident directions of differences.

For this example, all four test procedures yield the same conclusions, which also agree
with those reported in Tukey, Mosteller, and Hoaglin (1991) using the Bonferroni: We are
confident that Roosevelt's percentage of the vote in both 1932 and 1936 was sufficiently
higher than that in 1940 and 1944 to be attributable to other than chance variation. However,
the vote for Roosevelt in 1932 did not differ in a confident direction from that of 1936, nor
did the 1940 vote differ in a confident direction from that of 1944. (All this assumes that the
error term reflects the sort of variability that should be included in the standard errors.)

Main Effects for Grouping
A second set of tests compares each of the 13 Groupings of states with each other
Grouping. Here, #-statistics for each of 78 (= 13x12/2) paired comparisons are calculated.
The numbers of confident decisions about direction are found to be 29 for the unadjusted
approach, 20 for the FDR procedure, 12 for the Hochberg technique, and 11 using the
Bonferroni procedure. Each of the discrepancies between the Bonferroni and the FDR
adjustments involve comparisons of one of the Groupings of southern states — Grouping #8
(GA, NC, SC), #9 (AL, KY, TN), or #10 (AR, MS, OK) — with one of the Groupings (from
#1 to #7 or from #11 to #13) from other regions, reflecting the observed pattern of stronger
support for Roosevelt in the South. Figure 1 represents these comparisons graphically:
* on the vertical scale is the average percent of the vote for Roosevelt for each
Grouping;
* the two 45° lines emanating (to the right) from the location of each Grouping on the
vertical scale are lightly drawn;
* there are 78 intersections of upward 45° and downward 45° lines, one representing
each comparison;
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Figure 1.

Confident directions between Groupings: Election Example (df = 33.4).

Unadjusted = O, FDR = ®, Hochberg = @, Bonferroni = @

Note: The broad gray stripe indicates Unadjusted, but not FDR, confidence; between the stripes:
Unadjusted and FDR, but not Hochberg, confidence; the narrow gray stripe: Unadjusted, FDR, and
Hochberg, but not Bonferroni, confidence.



« intersections are marked with solid circles (@) for comparisons that are Bonferroni-
confident of direction (11 intersections);

« the lone intersection corresponding to Hochberg-confidence, but not Bonferroni-
confidence, is marked with a circle and plus sign (®);

« the 8 intersections which are FDR-confident, but not Hochberg-confident are marked
with a circle with a dot (®);

« the 9 additional intersections that are unadjusted-confident, but not FDR-confident,
are marked with an open circle (O).

States within Grouping

Tukey and Hoaglin (1991; pp. 360-363) investigate differences between States within
Grouping, taking into account the nested structure of the Election Example data (13 Groupings
of 3 States each). Because their analysis utilizes the Studentized range for the triplets of states
— so that they have only one statistic's value for each Grouping — they use pyoy = .05/13.
The analysis presented here, however, involves mean differences between all within-Grouping
pairs of states, three pairs within each Grouping, so m = 39 is required. Table 2 presents the
findings in a format similar to that of Tukey and Hoaglin (1991, p. 362).

Table 2.

Confident directions between States within Groupings for the Election Example, by the
Bonferroni procedure (df = 78). (Additional confident directions by the FDR are
parenthesized.)

Grouping Direction
Bonferroni, (FDR)

1 New Hampshire >> Vermont (Maine)

5 Minnesota (North Dakota) >> South Dakota

6 Missouri >> Kansas (Nebraska)

7 Virginia >> Maryland, Delaware

(Maryland >> Delaware)

8 South Carolina >> Georgia >> North Carolina
9 Alabama >> Tennessee >> Kentucky

10 Mississippi >> Arkansas >> Oklahoma

11 Montana >> Wyoming

12 Arizona >> New Mexico
Note: No confident directions within Groupings 2, 3, 4, and 13.

For all 16 comparisons that are shown by unparenthesized state names, we are
confident of the direction of differences using the Bonferroni adjustment; the FDR technique
produces 4 additional confident directions for states shown in parentheses. In this case, the
unadjusted per comparison approach was confident about 21 comparisons, and the FDR, 20;



the Hochberg technique was confident about 17 comparisons, and the Bonferroni adjustment,
16 (the same hypotheses rejected by the Studentized range analysis in Tukey and Hoaglin).

Tukey, Mosteller, and Hoaglin's (1991, pp. 18-19) analysis of pairwise differences
between states, after subtraction of Grouping effects, was also replicated. This presentation
involves 741 or 39x38/2 simultaneous comparisons for these residuals, displayed graphically in
Figure 2.

The frequencies of confident directions for each of the four adjustment techniques are
presented in Table 3. There is a striking increase in power associated with the FDR technique,
but Hochberg's technique again, as anticipated, only slightly outperforms the Bonferroni
adjustment. Of the confident directions by the unadjusted per comparison approach, more than
90% also are confident by the FDR procedure.

Table 3.
Number of comparisons of the residuals from the Grouping effect with confident direction,
m = 741.

Unadjusted FDR Hochberg Bonferroni
391 369 238 232

Election Year x Grouping Interaction Effects (E X G)

Interaction effects represent the failure of the effects of changes, one in each of the
two factors, to be additive. What set of comparisons should we look at to describe and dissect
interactions? A rather naive choice is to look at all double differences (cross differences), of
which there are rc(r-1)(c-1)/4. We need pay less for multiplicity, however, by looking
instead at pairwise comparisons (in one direction) of deviations from means (in the other
direction). Equivalently, we can use interaction values defined in the usual way in place of the
deviations.

The total number of conditional comparisons required is the number of "all pairwise
comparisons within each column and ... all pairwise comparisons within each row" (Tukey &
Hoaglin, 1991; p. 351). Two things must be considered carefully here: (i) "all pairwise
comparisons within each column" refers to comparisons of interactions which reduce to
w=y)—F,—9), and (ii) because we are also looking at "all pairwise comparisons within each
row," we are using both column and row comparisons to look at the same interactions. Here,
in order to keep to an overall o of no more than 5%, we will spend 2.5% on each set of
conditional comparisons of interactions, as Tukey and Hoaglin did. For these analyses, family
size is defined as m = 78 = 13(4x3/2) for the pairwise comparisons within Grouping (rows),
and m = 312 = 4(13x12/2) for the comparisons within Election Year (columns).

For the 78 pairwise comparisons within Grouping, the unadjusted per comparison
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approach results in a total of 20 confident directions, the FDR technique results in 12
differences with confident direction, and the Hochberg technique results in 10. With the more
stringent pgoy = 00016 = .0125/78, the Bonferroni adjustment results in the detection of 9
significant differences within Grouping.

For the 312 comparisons within Election Year, the unadjusted per comparison
approach produces 79 confident directions, while the FDR technique results in 52 confident
directions. The Hochberg procedure detects 15 differences, and the Bonferroni adjustment
produces the same 15 confident directions (pgoy = .00004 = .0125/312).

See Appendix B for a presentation of alternative portrayals of interaction effects for

the Election Example.

A NAEP Trial State Assessment Example

Data from the National Assessment of Educational Progress (NVAEP) Trial State
Assessment (TSA) were subjected to an analysis parallel to the Election Example described
above. Now, the appropriate standard error varies from one comparison to another. The data
are average 8th-grade mathematics proficiency scores for the 34 states that participated in both
the 1990 and 1992 NAEP TSA (Johnson, Mazzeo, & Kline, 1993; E. G. Johnson, personal
communication, July 29, 1993).2 :

The states are classified into four geographical Regions of eight or nine states each:
Central, Northeast, Southeast, and West. The four conditions of Type I error control are
compared for the main effects for Year (1990 and 1992) and for Region, the effects for State
nested within Region, and the Year x Region interaction effects, each with o = .05.

Main Effects for Year

Because there are only two Years of data — and therefore only one possible
comparison of Years — it is not necessary to adjust for multiplicity. We are highly confident
that average mathematics performance was better for 1992 8th-graders (X,, = 266.6) than for
1990 8th-graders (Xy, = 263.4), t;; = 9.73. In fact, the 95% confidence interval for the mean
improvement is from 2.6 to 3.8 scale score points, so that the average amount of increase is at
least roughly known (almost known to one significant digit).

Main Effects for Region

To assess pairwise mean differences in mathematics performance for the four Regions,
t-statistics were calculated for m = 6 comparisons (all pairwise differences) presented
graphically in Figure 3. Regional mean scale scores are: Central X = 274.1, Northeast X =
266.9, West X = 263.7, and Southeast X = 256.4. The unadjusted per comparison approach
and the FDR and Hochberg procedures each leads to confidence for five of the six differences
— only the direction of the difference between the averages for the Northeast and the West
Regions fails to reach confidence. The Bonferroni technique provides confidence for the

11
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direction of only three of the six differences (Central vs Southeast, Central vs West, and

Northeast vs Southeast).

States within Region

Differences among States within Region were investigated by considering all pairwise
comparisons within Regions, m = 128 comparisons in all.> The results show considerable
variation in student mathematics performance among States within Region: The unadjusted per
comparison approach (pyya = -025) is confident about the direction of 100 differences, of
which 96 are also found by the FDR technique, 74 are found by the Hochberg procedure, and
71 are found by the Bonferroni adjustment (pgoy = .025/128 = .000195). Table 4 shows the
results from both the Bonferroni procedure (confident directions involve only states not in
parentheses) and the FDR technique (confident directions are for states not in parentheses as
well as for states enclosed in parentheses).

Table 4.

Confident directions between States within Region for the NAEP TSA Example by the
Bonferroni procedure (df = 30, common standard error). (Additional confident directions by
FDR are parenthesized.)

Region Direction Additional Directions
Bonferroni, (FDR) by FDR

Central ND >> (MN), NE, WI, IN, OH, MI
IA >> (NE), (WI), IN, OH, MI
MN, NE, WI >> IN, OH, MI
Northeast NH >> (CT), (N]), PA, NY, RI, MD, DE
CT, NJ >> NY, RI, MD, DE
PA >> (NY), RI, MD, DE
Southeast VA >> KY, GA, FL, WV, AR, NC, AL, LA
KY >> (AR), (NC), AL, LA
GA >> (NO), AL, LA
FL, WV >> (NC), (AL), LA
AR >> (AL), LA
NC, (AL) >> LA
West WY, ID >> (CO), OK, AZ, TX, CA, NM, HI
CO >> (OK), AZ, TX, CA, NM, HI
OK >> (AZ), (TX), CA, NM, HI
AZ >> (CA), (NM), HI
TX >> (NM), HI
(CA), (NM) >> (HI)

N = NNDNNFRNDR,~R,RARLDNOR,ONONF

An alternative approach to assessing a different aspect of the behavior of States
compared with the Region to which they belong involves computing deviations of States from
their Regions, then comparing these residuals from a Region effect for all pairs of the 34

13



states. The frequencies of confident directions of difference among the 561 contrasts for each
of the four multiple comparison techniques are presented in Table 5. Again, there is a very
large increase in power associated with the FDR technique and the number of FDR rejections
approaches the number found by the unadjusted per comparison approach. Figure 4 shows the
561 comparisons for the 34 states graphically.

Table 5.
Number of comparisons between States' residuals from the Region effect with confident
direction, m = 561.

Unadjusted FDR Hochberg Bonferroni
432 418 294 275

Year x Region Interaction Effects (Y x R)

The Year x Region interaction effects were not statistically significant when tested by
an overall F-test.* Nevertheless, we applied the four multiple comparison procedures to
illustrate their application to weakly-structured data. No cell mean differences were found to
be statistically significant using any one of pyya, Pror(®)> Proc(i)s OF Pgon-

Differences between All Pairs of States for 1992 8th-Grade Math Scores

All pairwise mean differences between the states' 1992 8th-grade mathematics
achievement scores were compared. There were 41 states which participated in the 1992
assessment, resulting in a family size of m = 41x40/2 = 820. Table 6 summarizes the number
of confident directions and Figures Sa and 5b present the graphical comparison of the four
multiplicity treatments. We use two pictures because, with different standard errors for
different states, the boundaries are not straight lines — the use of two figures gives a clearer
idea of what is happening. By the Bonferroni adjustment, there are 480 confident directions
between states; the Hochberg technique admits 13 more confident directions, and the use of
the FDR results in an additional 159. The unadjusted analysis increases the number of
confident directions beyond the FDR technique by only 6.

Table 6.
- Number of comparisons of differences between all pairs of States with confident direction,
m = 820 (df taken as 60, individual state standard errors).’

Unadjusted FDR Hochberg Bonferroni
658 652 493 480

14
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Confident directions between States for residuals from the Region effect: NAEP TSA Example (df = 30).
Unadjusted = O, FDR = ®, Hochberg = @, Bonferroni = @

Note: The gray stripe on the left indicates Unadjusted, but not FDR, confidence; between the stripes:
Unadjusted and FDR, but not Hochberg, confidence; the gray stripe on the right: Hochberg, but not
Bonferroni, confidence.
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Assessing State-by-State Change

One way of assessing year-to-year change in state mathematics achievement involves
directly testing the significanée of change in each of the 34 states. An ordinary Bonferroni
adjustment for control of Type I error, as used by NAEP, results in an effective critical p-value
of pgon = -000735 for a0 = .05. Table 7 contains the computed differences between 1990 and
1992 mathematics achievement means and the computed pooled standard errors. The table
also includes the statistical decision about confidence in direction with confident direction
indicated by an "*" in each column, for each state under the four multiplicity treatments. (For
this and previous examples, we have chosen to present critical p-values as a basis for
comparison of the adjustment procedures. The cutoff critical t-value for each procedure is also
shown in the bottom line of Table 7. In Appendix C, we show comparisons based on critical
values of # rather than critical values of p.)

The unadjusted per comparison approach is confident of direction for 15 differences,
whereas the FDR procedure is confident for 11 of these, and Hochberg's technique is confident
of direction for 4 differences, the same 4 as the Bonferroni correction.

Assessing Differences between State Change and Average Change

The results for the main effects for Year show that the average mathematics
proficiency improved substantially for the 34 states combined, X,, = 263.4 and X,, = 266.6.
The state changes can also be evaluated with this average increase removed. In fact, when this
change is subtracted out, there is no state for which we can be confident of differential change
(from the average change) when an adjustment for multiplicity is made by using any one of
the three procedures, Pepr, Procs OF Pron- (USINg pyya, the drop in performance for Arkansas
and Alabama is statistically significant, as are the two largest increases, those for Minnesota
and North Carolina.) From a further analysis, we find that when using FDR with a more
lenient o = .10, there is still no state that confidently shows greater or lesser gain than the
average of all 34 states. While we may confidently conclude an average gain for the
participating states, we cannot be confident that any state gained more or less than the average.

A NAEP Example Bearing on the Consistency of Findings
over Differing Family Sizes

The determination of family size, m, is critical to multiple hypothesis testing. Family
size is always the number of contrasts under consideration. However, there may be legitimate
ambiguities about family size for a particular set of data. A desirable feature for a multiple
comparison procedure is that it provide decisions about significance that are relatively invariant
over alternative choices of family size.

Table 8 presents mean NAEP mathematics scale scores (and standard errors) for the
nation, for both 1990 and 1992 at three grades, and for various demographic subgroups that
differ by Gender, Race/Ethnicity, Type of Community, and Region of the country (Mullis,
Dossey, Owen, & Phillips, 1993, p. 18). Of the 45 contrasts between 1990 and 1992 results,
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Table 7.
Mean (and standard error) 8th-grade mathematics achievement change by state, 1990 to 1992,

t, p-value, and p,;-values for four multiple comparison adjustments, m = 34 (df taken as 60).

State X=Xy (s€) t (p-value) Puna  Pror(d) Proc(®) Pson

GA -0.323 (1.77571) -0.18190 (.42814) .025  .025000 .025000 .000735
AR -0.777 (1.48529) -0.52313 (.30141) 025 .024265 .012500 .000735
AL -1.568 (2.01745) -0.77722 (.22004) .025 .023529 .008333 .000735
NI 1.565 (1.92728) 0.81203 (.20999) 025 .022794 .006250 .000735
NE 1.334 (1.52772) 0.87320 (.19320) .025 .022059 .005000 .000735
ND 1.526 (1.68552) 0.90536 (.18445) .025 .021324 .004167 .000735
DE 1.374 (1.34651) 1.02042 (.15581) 025  .020588 .003571 .000735
MI 2.215 (1.84727) 1.19906 (.11761) 025  .019853 .003125 .000735
LA 2.637 (2.07943) 1.26814 (.10482) 025  .019118 .002778 .000735
IN 2.149 (1.63556) 1.31392 (.09694) 025  .018382 .002500 .000735
WI 2.801 (1.96269) 1.42713 (.07936) .025 .017647 .002273 .000735
VA 2.859 (1.92992) 1.48141 (.07187) 025 .016912 .002083 .000735
wv 2.331 (1.39639) 1.66930 (.05013) 025  .016176 .001923 .000735
MD 3.399 (1.92320) 1.76737 (.04113) 025  .015441 .001786 .000735
CA 3.777 (2.11460) 1.78615 (.03956) .025 .014706 .001667 .000735
OH 3.466 (1.85022) 1.87329 (.03295) .025 .013971 .001563 .000735
NY 4.893 (2.53195) 1.93250 (.02901) .025 .013235 .001471 .000735
PA 4.303 (2.20545) 1.95108 (.02786) .025 .012500 .001389 .000735
FL 3.784 (1.93266) 1.95792 (.02745) .025 011765 .001316 .000735
wY 2.226 (1.09641) 2.03026 (.02339) 025 * 011029 .001250 .000735
NM 2.334 (1.14816) 2.03282 (.02325) 025 * 010294 .001190 .000735
CT 3.204 (1.53443) 2.08807 (.02052) .025 * .009559 .001136 .000735
OK 4.181 (1.75467) 2.38278 (.01018) 025 * .008824 .001087 .000735
KY 4.327 (1.61804) 2.67422 (.00482) 025 * .008088 * .001042 .000735
AZ 4,994 (1.85110) 2.69785 (.00452) 025 * 007353 * .001000 .000735
ID 2.956 (1.06775) 2.76845 (.00374) 025 * .006618 * .000962 .000735
X 5.645 (1.88770) 2.99041 (.00202) .025 * 005882 * .000926 .000735
CO 4.326 (1.38868) 3.11519 (.00141) 025 * .005147 * .000893 .000735
1A 4.811 (1.48805) 3.23309 (.00100) 025 * .004412 * .000862 .000735
NH 4.422 (1.35399) 3.26591 (.00090) .025 * .003676 * .000833 .000735
NC 7.265 (1.58701) 4.57779 (.00001) .025 * .002941 * .000806 * .000735 *
HI 5.550 (1.17134) 4.73817 (.00001) .025 * .002206 * .000781 * .000735 *
MN 6.421 (1.35226) 4.74836 (.00001) 025 * .001471 * .000758 * .000735 *
RI 5.097 (0.94844) 5.37407 (.00000) 025 * .000735 * .000735 * .000735 *
t, 2.00 2.47 3.30 3.33

crit

* Confident direction of change.
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Table 8.
From the NAEP 1992 Mathematics Report Card for the Nation and the States (Mullis, Dossey,
Owen, & Phillips, 1993, p. 18).

TABLE 5 Average Mathematics Proficiency by Gender, Race/Ethnicity, Type of
Community, and Region

Assessment .
Years Grade 4 Grade 8 Grade 12
Male 1992 220(0.8)> 267(1.1)> 301(1.1)>
1990 214(1.2) 263(1.6) 297(1.4)
Female 1992 217(1.0)> 268(1.0)> 297(1.0)>
1990 212(1.1) 262(1.3) 292(1.3)
White 1992 227(0.9)> 277(1.0)> 305(0.9)>
1990 220(1.1) 270(1.4) 300(1.2)
Black 1992 192(1.3) 237(1.4) 275(1.7)>
1990 189(1.8) 238(2.7) 268(1.9)
Hispanic 1992 201(1.4) 246(1.2) 283(1.8)>
1990 198(2.0) 244(2.8) 276(2.8)
Asian/Pacific Islander 1992 231(2.4) 288(5.5) 315(3.5)
1990 228(3.5) 279(4.8)! 311(5.2)
American Indian 1992 2093.2) 254(2.8) 281(9.0)
1990 208(3.9) 246(9.4) 288(10.2)!
Advantaged Urban 1992 237(2.1) 288(3.6) 316(2.6)
1990 2313.0) 280(3.2) 306(6.2)
Disadvantaged Urban 1992 193(2.8) 238(2.6)< 279(2.4)
1990 195(3.0) 249(3.8)! 276(6.0)
Extreme Rural 1992 216(3.6) 267(4.6) 293(1.9)
1990 214(4.9) 257(4.4) 293(3.3)
Other 1992 219(0.9)> 268(1.1)> 300(0.9)>
1990 : 213(1.1) 262(1.7) 295(1.3)
Northeast 1992 223(2.0)> 269(2.7) 302(1.5)
1990 215(2.9) 270(2.8) 300(2.3)
Southeast 1992 210(1.6)> 260(1.4) 291(1.4)>
1990 205(2.1) : 255(2.5) 284(2.2)
Central 1992 223(1.9)> 274(1.9)> 303(1.8)
1990 216(1.7) 266(2.3) 297Q2.6)
West 1992 218(1.5) 268(2.0)> 298(1.7)
1990 216(2.4) 261(2.6) 294(2.6)

>The value for 1992 was significantly higher than the value for 1990 at about the 95 percent
confidence level. < The value for 1992 was significantly lower than the value for 1990 at about the
95 percent confidence level. ! Interpret with caution — the nature of the sample does not allow
accurate determination of the variability of this estimated statistic. The standard errors of the
estimated proficiencies appear in parentheses. It can be said with 95 percent confidence for each
population of interest, the value for the whole population is within plus or minus two standard
errors of the estimate for the sample. In comparing two estimates, one must use the standard error
of the difference (see Appendix for details).
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Mullis et al. reported 21 to represent significant change at o = .05, without adjustment for
multiplicity.® To reduce the number of erroneous conclusions, as well as to control the
probability of such errors, a multiple comparison procedure should be employed. Defining the
family of comparisons conservatively as all tests in Table 8, m = 45. Using either the
Bonferroni adjustment or the Hochberg procedure with m = 45, we find 7 confident directions
of change; the FDR procedure yields 14 confident directions of change.

It might be argued that three separate families of comparisons are involved here, one
family for each grade level, each with m = 15. Based on that approach, the Bonferroni
adjustment and the Hochberg procedure both yield 10 confident directions; the FDR procedure
results in the same 14 confident directions as before.

As still another alternative, it might be decided that there are four families of
comparisons, one for each background variable presented in the table: Gender, Race/Ethnicity,
Type of Community, and Region. For Gender, there are m = 6 contrasts (for 1990 to 1992
change for Females and Males at each of three grade levels); for Race/Ethnicity, there are m =
15 tests (for change for each of five Race/Ethnicity groups — White, Black, Hispanic,
Asian/Pacific Islander, and American Indian — at each grade level); for Type of Community,
there are m = 12 tests (for four community types — Advantaged Urban, Disadvantaged Urban,
Extreme Rural, and Other — at each grade); and for Region, there are m = 12 tests (for four
Regions — Northeast, Southeast, Central, and West — at each grade level). Accumulating
results for each of these four families over all 45 comparisons (6+15+12+12), the Bonferroni
procedure results in the same 10 confident directions as above, the Hochberg procedure results
in 12 confident directions, and the FDR procedure results in 16 confident directions (14 as
before with 2 additional).

As anticipated, the FDR procedure was the most consistent multiplicity adjustment
across the four different definitions of family: With one large family of m = 45 or with three
families corresponding to student's grade level (m = 15), the same 14 confident directions
appeared using the FDR. When the 45 comparisons were divided into four families (m = 6,
15, 12, and 12), the FDR produced two additional confident directions. The Hochberg and
Bonferroni procedures were more conservative as well as less consistent. The Bonferroni
adjustment produced 7, 10, and 10 confident directions, and the Hochberg procedure produced
7, 10, and 12 confident directions for the three alternative family definitions. Of course, when
no adjustment is made there are no inconsistencies — whatever the family size — because p;
= .05 is applied throughout. ‘

Even with the largest family size, m = 45, the FDR procedure admitted more confident
directions than the number provided by the conventional Bonferroni applied to the smaller —
and more lenient — family definitions. This suggests, once again, an increase in statistical
power from the use of the FDR.

Applications to Simulated Data
When applying adjustment procedures to real data, we can count how many
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differences are discovered to have a confident direction, but we cannot know how many of
these are erroneous. We can, as we have done, compare the statistical power of various
procedures anecdotally in terms of their performance on observed differences (population
values plus specific random perturbations). But, to learn about erroneous discovery, in
particular about false discovery rates, we must turn to some form of simulation.

We have chosen, mainly for simplicity, to simulate two sets of analyses for 48 "states,"
where perturbed values from a simple configuration (variously scaled) of 48 population values
are either (a) compared to a fixed national value (m = 48 "uncorrelated differences") or (b)
compared among themselves as differences of all possible pairs (m = 1128 "pairwise
differences,” with about 4% of pairs of pairs correlated). The simple configuration used is that
of an idealized sample from a normal (Gaussian) distribution. We have assumed "large
samples," taking the degrees of freedom for s* as infinite.

The simulated data are structured to be similar to the data from the NAEP TSA. For
each of 48 states, mean "achievement levels," p,, are defined to be the approximate median
values of each of 48 ordered random observations from a normal (0,6,) distribution (for which
s* = .98). Five conditions of effect size are studied.” For the "perinull” condition of negligible
differences among the p,, the value of G, is set to 0.001; four non-null conditions are
considered, with 6, set to values of 0.3, 1.0, 3.0, and 5.0, respectively. In each case, for each
of 10,000 replicates, an observed mean for each state, X, is generated by adding a number
randomly selected from a normal (0,1) distribution to the corresponding .

In the first of two families studied, each X, is compared to a "national mean," treated
here as a known constant, M. This results in m = 48 uncorrelated comparisons about which
we wish to establish confidence about the sign of y;, — M. The second family is comprised of
all pairwise comparisons where each X, is compared with each )_(j, resulting in m = 1128
comparisons about which we wish to establish confidence about the sign of p; — p,.

The numbers of confident conclusions for the FDR technique and Hochberg's
adjustment technique are compared with those resulting from conventional Bonferroni-adjusted

p-values, in all cases with o = .05.

Familywise Error

Figure 6 presents plots of the familywise error against effect size for the FDR
technique, the Hochberg technique, and the Bonferroni technique. The upper plot is for the
family of 48 uncorrelated comparisons of state means with a constant national mean, M. The
lower plot is for the family of all m = 1128 pairwise comparisons. In both cases, error rates
are based on 10,000 replications.

In our perinull conditions for both uncorrelated-differences and pairwise-differences
families, the FDR, the Hochberg, and the Bonferroni techniques maintain the familywise error
rate at approximately o/2 or below, as expected. (With negligible differences among the X,
claims of confident direction occur about 1000t% of the time, and half of these claims are in
the incorrect direction.)
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Familywise error rates for the FDR, Hochberg, and Bonferroni techniques, 48 uncorrelated
differences (above) and 1128 pairwise differences among the 48 (below).
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For all three techniques, the familywise error rate is less than /2 in the small (G, =
0.3) and moderate (o, = 1.0) effect-size conditions for the uncorrelated-differences family, and
in the small (6, = 0.3) effect conditions for the pairwise-differences family. Only in the large
(0, = 3.0 and 6, = 5.0) effect-size conditions for the uncorrelated-differences family, and in
the moderate (G, = 1.0) and large (,, 2 3.0) effect conditions for the pairwise-differences
family, does the FDR technique fail to maintain the familywise error rate. The Hochberg and

Bonferroni techniques maintain this error rate at or below o/2 throughout.

False Discovery Rate ‘

Figure 7 presents plots of the false discovery rates against effect size for the FDR,
Hochberg, and Bonferroni adjustment techniques. Under all effect sizes, each adjustment
procedure maintains a false discovery rate at or below o/2, for both uncorrelated and pairwise
families. We confirm the finding of Benjamini, Hochberg, and Kling (1994), that the false
discovery rate is close to its maximum, /2, in the case of negligible differences among the p;
(6, = 0.001), where there are the fewest claims of confident direction, but proportionally more
(up to 50%) in the wrong direction.

Power

Figure 8 presents plots of the statistical power against effect size for each of the three
adjustment techniques. Power is defined as what Hochberg and Tamhane (1987) refer to as
all-pairs power, the probability of claiming confident direction for all true differences among
all pairs; it is calculated as the average proportion of confident directions claimed over the
10,000 replications.

Under all effect-size conditions, for both uncorrelated and pairwise families, the FDR
technique results in greater power than that for the Hochberg or Bonferroni procedures. The
relative advantage in power for the FDR technique is greatest for the large pairwise family and
for large effect sizes. (The increase in power of the Hochberg technique over the Bonferroni
becomes detectable only for large effect sizes, 6, = 3.0.) These results are consistent with the
findings of Benjamini and Hochberg (in press) and Benjamini, Hochberg, and Kling (1994).

Some Further Simulation Results

Two more sets of simulated data were studied to try to tease apart the effects on error
rates and statistical power of the partial dependence of pairwise comparisons, on the one hand,
and of family size, on the other. In one condition, each of 1128 values of X, is compared to a
fixed known constant, M, the "national mean," yielding a family of uncorrelated differences of
the same size as the family of pairwise differences that was studied and reported on above. In
a second condition, 10 state mean values are compared among themselves as differences of all
possible pairs (m = 10x9/2 = 45), with a family size similar to that for the 48 uncorrelated
differences above. The same five conditions of effect size are studied, 6, = 0.001, 0.3, 1.0,
3.0, and 5.0, and o = .05, also as before. Results are based on 10,000 replications.
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Figure 7.
False discovery rates for the FDR, Hochberg, and Bonferroni techniques, 48 uncorrelated
differences (above) and 1128 pairwise differences among the 48 (below).
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Figure 9 shows the familywise error for the FDR, the Hochberg, and the Bonferroni
techniques for the five effect sizes. The upper plot is for the family of 1128 uncorrelated
comparisons of state means with a constant national mean, and the lower plot is for the family
of all m = 45 pairwise comparisons. The FDR technique does not maintain the familywise
error rate at o in the large family of uncorrelated comparisons (upper plot); however, the FDR
appears to provide ample protection against familywise error in the smaller family of all
pairwise comparisons (lower plot). These results, compared with the familywise error rates
displayed in Figure 6, suggest that the large family size rather than the nonindependence is
driving the increased error rate.

The false discovery rates for each of the three adjustment techniques are shown in
| Figure 10. As in Figure 7, each adjustment maintains a false discovery rate at or below o/2,
for both the uncorrelated comparisons (upper plot) and the pairwise comparisons (lower plot)
under all effect sizes.

Figure 11 presents plots of statistical power against effect size for the FDR, Hochberg,
and Bonferroni adjustment techniques. The FDR technique results in greater power than the
Hochberg or Bonferroni procedures under all effect-size conditions, for both the 1128
uncorrelated comparisons (upper plot) and the pairwise comparisons among 10 (lower plot).
The relative advantage in power for the FDR technique is greatest for the large effect sizes.
Comparing the results in Figure 11 with those presented in Figure 8, it is clear that the FDR
advantage in power is associated with the large family size and is little affected by the
dependence or the independence of the contrasts tested. (After all, at this family size, only
about 8% of the pairs of paired comparisons are correlated.)

Conclusions

Results from the five analyses of the Election Example data and the seven analyses of
the NAEP TSA data are summarized in Tables 9 and 10. The recovery ratio — (#FDR-
confidences — #BON-confidences) / (#UNA-confidences — #BON-confidences) or how far the
FDR moves from the Bonferroni toward the unadjusted rate — is plotted against the ratio
(#BON-confidences+1)/m in Figure 12 for these examples. The figure shows a strong
increasing trend in the recovery ratio with increases in the proportion of Bonferroni
confidences; the gain in number of confident directions by the FDR procedure is greater when
there are more confident directions by the Bonferroni, generally when family size is very large.

As expected, the change from the Bonferroni adjustment to the Hochberg procedure in
total number of confident directions is small: 46 added to 1120. The effort involved is small,
but the fact that the Bonferroni also generates matching confidence intervals, which the
Hochberg procedure does not, is an important advantage of the Bonferroni technique.

The 493 confident directions added by the FDR technique to the 1166 from the
Hochberg procedure are much more numerous and hence more valuable. If we are to give up
the Bonferroni adjustment and dare not use an unadjusted approach, moving to the FDR
technique seems an attractive choice.®
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Figure 9.
Familywise error rates for the FDR, Hochberg, and Bonferroni techniques, 1128 uncorrelated
differences (above) and 45 pairwise differences among 10 (below).
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False discovery rates for the FDR, Hochberg, and Bonferroni techniques, 1128 uncorrelated
differences (above) and 45 pairwise differences among 10 (below).
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Average statistical power for the FDR, Hochberg, and Bonferroni techniques, 1128
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Recovery ratio:
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Table 9.
Summary of the Election and NAEP TSA Examples: Number of confident directions observed
and upper bounds (in italics) on the number expected by chance in the perinull situation.

Unadjusted” FDR? Hochberg Bonferroni m
Election Example
Election Year 4 015 4 0125 4 0. 025 4 0.025 6
Grouping 29 1.95 20 0.525 12 0.025 11 0.025 78
State(G) 21 097 20 0.525 17 0.025 16 0.025 39
State 391 18.52 369 9.250 238 0.025 232 0.025 741
Ex G 99 975 64 1.625 25 0.025 24 0.025 390
NAEP TSA Example
Region 5 015 5 0150 5 0.025 3 0.025 6
State(R) 100 3.20 96 2.425 74 0.025 71 0.025 128
State 432 14.02 418 10475 294 0.025 275 0.025 561
Y xR 0 040 0 0025 0 0.025 0 0.025 16
Change 15 0.85 11 0.300 4 0.025 4 0.025 34
Differential Change 4 085 0 0.025 0 0.025 0 0.025 34
All Pairwise 658 20.50 652 16.325 493  0.025 480 0.025 820
Total 1758 71.32 1659 41.775 1166 0.300 1120 0.300 2853
Fraction® 24.6 39.71 3886.7 37333

7 The italicized number is 0.025m.

b The italicized number incorporates the "+1" denominator modification discussed in Appendix A,
and equals 0.025 plus 1/40th of the number of assertions.

¢ Fraction = (Number obsezved) / (Upper bound for number expected by pure chance).

The FDR procedure demonstrates a large gain in power over the simple Bonferroni
adjustment. As indicated from the results shown both here and in Benjamini and
Hochberg's (in press) simulation studies, the power advantage of the FDR procedure
increases with the number of comparisons when the true differences remain about the same
size: The loss of power with increasing m for the FDR technique is slower than the
corresponding loss of power for the Hochberg and the Bonferroni adjustments. The
conservatism of the Bonferroni and Hochberg procedures is due to the small p, required
for strong protection against Type I error.

Because of the discontinuity in the number of erroneous detections at the exactly
null situation (when all differences are exactly zero), perinull situations with trivially small
differences have only half the error rate of the (unrealistic) null situation. Holding any
form of error rate to 1000.% in the unrealistic null situation requires holding the
corresponding error rate for the more realistic perinull situations to half of this ratio,
500%.
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Table 10.
Summary of Table 9, with a focus on m and on the recovery ratio, namely,

(#FDR-confidences — #BON-confidences) / (#UNA-confidences — #BON-confidences).

#UNA- #FDR- #BON Recovery
Family m confidences confidences confidences ratio *)
All Pairwise” 820 658 652 480 97% .59
State 741 391 369 232 86% 31
State” 561 432 418 275 91% .49
Ex G 390 99 64 24 53% .06
State(R)* 128 100 96 71 86% .56
Remaining 7% 213 78 60 38 55% 21
Total (2853)  (1758) (1659) (1120) (84%) (.40)

(*) = (#HBON-confidences+1)/m; in last line (Total #BON-confidences+7) / (Total m)

2 From NAEP TSA Example
b Totalled for Election Example (Election Year, Grouping, State(G)) and for NAEP TSA Example
(Year, Region, Change, Conditional Change)

Both the FDR and the Hochberg techniques are easily implemented. The sizable gain
in power with the FDR procedure makes it an approach worth considering whenever it is
acceptable to entertain the particular redefinition of o that the FDR procedure invokes: Where,
under the unrealistic null situation, o becomes the average ratio of the number of erroneous
declarations of confidence to the total number of declarations of confidence. Under the
perinull situation, it then is expected that no more than 500% of the total number of
declarations of confident direction will be erroneous, i.e., will occur when the population
comparisons would show a difference in the opposite direction.

Today, the choice among pure methods for practical work would seem to lie between
the FDR procedure on the one hand and either the Bonferroni or Hochberg procedure on the
other. Each of the three authors believes that the FDR procedure is the best choice.
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* An alternative approach *

Some may find moving "whole hog" to FDR confidence about direction a rather
drastic step. Since "not all confidences about direction were created equal!" we might prefer
to go ahead with two or more cut-offs instead of one. A simple choice would be:

« if a direction is Bonferroni-confident, report it using the word "clearly";

« if a direction is FDR-confident but not Bonferroni-confident, report it without

using any strengthening qualifier;

* otherwise, do not mention.

For the 78 differences between Groupings in the Election Example (see Figure 1 and Table 9),
we would report "clearly confident" differences between Groupings for those 11 comparisons
with the largest absolute values of ¢, we would claim 18 confident directions for those with
intermediate values of #, and we would say nothing about the 49 remaining differences.

Another way to look at our examples is to ask, "How trustworthy are the additional
confidences-in-direction statements discovered by the FDR?" After all, the Bonferroni-
confidence statements are mostly free of error, so perhaps the additional supplementary
confidences about directions are shot full of error!

To answer this question, we must first answer two other questions: (a) How many
more comparisons are we FDR-confident about than we are Bonferroni-confident about? and,
(b) What is the corresponding increase in erroneous statements (which ought to be at most the
increase for pure chance for the various perinull situations)? Table 11 contains the numbers
and the ratios. They indicate that when we look at only the FDR supplementary confidence
statements, perhaps no more than 1 in 10 to 15 is likely to be erroneous.

Table 11.
Increases (FDR vs Bonferroni) in confidences and potentially incorrect confidences, and ratios,

for examples.

Increase in Increase in potential

Family m confidences incorrect” Ratio
All Pairwise” 820 172 16.3 10.6
“State 741 137 9.2 14.9
State” 561 143 10.4 13.7
ExG 390 40 1.6 25.0
State(R)” 128 25 2.4 10.4
Remaining 7° 213 22 1.5 14.7
Total 2853 539 414 13.0

@ Upper bound for average actual number of erroneous confidences, leading to lower bound for Ratio.

b From NAEP TSA Example

¢ Totalled for Election Example (Election Year, Grouping, State(G)) and for NAEP TSA Example
(Year, Region, Change, Conditional Change)
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Notes
! A useful modification of the Bonferroni choice makes use of the (one-sided) o point
on the distribution of the Studentized range; this controls, at 0., the chance of making one or
more errors — if confidence intervals are stated for all simple comparisons or, a fortiori, if
confidence statements are only made about directions. This chance is slightly smaller than the
average number of errors, so that such a procedure need not control the average number to be
< a, but, if only directions are considered, is nearly sure to do so.
2 The published results were insufficiently precise, rounded to only one decimal. We
are grateful to Eugene G. Johnson for providing the more precise data, to two and three
decimals for means and standard errors, respectively, that are analyzed here.
3 128 = (Central: 8x7/2)+(NE: 8x7/2)+(SE: 9x8/2)+(West: 9x8/2).
4 If we were to be consistent about our emphasis on comparisons and directionality, we
would eschew the F-test and work with the (much more interpretable) Studentized range
instead.
5 For results in Tables 6 and 7, the number of students sampled within states is
generally close to 2000; however, because of the clustered nature of the sample design and the
use of plausible values in NAEP, the effective sample size per state is estimated to be about
30, so that the degrees of freedom for a pairwise mean comparison is about 60.
6 In our attempt to replicate the findings of Mullis, Dossey, Owen, and Phillips (1993),
we find only 20 confident directions, most likely because we used the (rounded) published
values for means and standard errors, rather than the more precise values used for computation
by the original investigators.
7 "Effect size" is approximately 1.02 times the standard deviation of population values.
8 The properties of the confidence interval from FDR deserve study. We will return to

them in another report.
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Appendix A
Null Behavior of Benjamini and Hochberg's FDR procedure

Any "false discovery rate" procedure must squirm a little at an exact null hypothesis,
where all discoveries are by definition false. In the Benjamini and Hochberg (in press)
formulation, this squirming is done by controlling the average, over realizations, of

# false discoveries / # discoveries (if there are any discoveries)
or
0 (if there are no discoveries),

and requiring that average to be less than the nominal o.

Another, often more palatable, squirm is to ask about the application of both the
Bonferroni and FDR adjustments to the same data set. Even if we take the more classical
view, and consider an exact null hypothesis against all possible alternatives ("= 0" vs "# 0"),
we easily find some illuminating results.

First, note that finding no FDR significances implies finding no Bonferroni
significances. At the exact null hypothesis, then, any realization with no errors by the FDR
procedure has no errors by the Bonferroni.

Second, in the case of independence, we can easily calculate the probabilities, P, of
exact outcomes, namely the probabilities (neglecting terms of higher order in o and terms
involving 1/m) of zero, one, or two errors of any kind (three or more errors are negligibly
likely):

* no error by either Bonferroni or FDR: P = [1-(a/m)]" = e™ = 1-a. ,

* exactly one Bonferroni error: P = m(o/m)[1-(o/m)]™ = ae™ = o,

If exactly two p, are less than 20/m, an event of null-hypothesis probability
[m(m—1)/2]Ro/m)*[1-o/m)]"? < 2m(m—1)(o/m)* < 20 ,

then there are at least two FDR events. Of these two "less-than-2a/m" situations, % have no

Bonferroni errors (because both p, > a/m), ¥2 have one Bonferroni error, and %4 have two

Bonferroni errors. Accordingly:

« exactly two FDR errors, both Bonferroni: P < o’/2

« exactly two FDR errors, one Bonferroni: P < o

« exactly two FDR errors, none Bonferroni: P < o2
(In fact, all the ">" differ from "=" by terms in o, &*/m, and higher.) For o = .05 = 5%, the
occurrence probabilities are approximately:

* no error: P =95%,

¢ one Bonferroni error (and no other FDR error): P = 5% ,

» two Bonferroni errors: P = (1/8)% ,

 one Bonferroni error (also FDR) and another FDR error: P = (1/4)% , and

» two FDR errors and no Bonferroni errors: P = (1/8)% .

The ratio of
P(exactly two FDR errors)/P(one Bonferroni error) < 20°/00 = 20
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shows that the increase in errors at the null hypothesis from using the FDR procedure is only a
small fraction of the errors already made using the Bonferroni (1/10 where o = 5%,
nondirectional; 1/20 where o. = 5%, directional). In other words, the required squirm is trivial
and not worth any serious concern at all.

The increase in frequency of error is negligible, but the raw ratio:

# of false assertions / # of assertions
is not well controlled; in fact, this ratio is arbitrarily close to 50% when the true differences
are close enough to zero — not only for the FDR, but for all procedures, including the very
conservative ones: Bonferroni, Hochberg's (1988), the Studentized range, or what have you.
This is true because the two signs, + and —, are nearly equally likely for any comparison
where the true difference is very small.

If we want to be precise, we need to make some kind of modification. Benjamini and
Hochberg (in press) showed that if two modifications were made, their method controls the
(modified) FDR. The two modifications are:

« average the ratios of false assertions to all assertions, one ratio for each realization,

» when no assertion is made — so that this ratio is 0/0 — assign zero.

Another modification which is simpler to describe to users is to add 1 to the
denominator of the raw ratio for each family, making it

false discovery proportion = # of false assertions / (# of assertions + # of families) .
We have marked this indicator by using "proportion" instead of "rate."

For R realizations, and with all the differences close to zero, the numerator will be,
nearly

R(0V2+20%/4+...) ,
while the denominator will be, nearly
R(o+1),
with ratio nearly
(a/2+0%2)/(0+1) = 0/2 .

If this modification works well enough, users can honestly be told that we are trying to
control the number of false assertions at no more than the number permitted by Bonferroni
plus one for every 2/o. assertions (every 40, if o = .05).

For those who find it necessary to work with "# 0" instead of with direction, the raw
ratio is close to 100% (instead of 50%) and clearly requires modification at least as seriously

as when directions are used.
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Appendix B
Structure of Heteroscedastic Analyses
of Simple, Trend-free, and Step-free Interaction

In the Election Example, consider the four observed values — ys,, Va6, Ya0» and yuy —
and the means across years, y = (¥5,+Y3s+VaotVss)/4 for (i) a specific State, (i) a Grouping
mean, (iii) a deviation of a State from its Grouping mean, (iv) an overall mean, or (v) the
deviation of a Grouping mean from the overall mean. We can take a first step toward
isolating and assessing some kind of interaction in several ways.

Simple interaction I. Most simply, we can form z; = y3—y, 2, = Y36=7, 23 = Y4~y and
Z4 = Yau—y, and work with these deviations. In such an analysis, we presumably have not done
anything to filter out trends. As a result, z, and z, are likely to be more variable than z, and z;
because they include larger contributions from trends. Moreover, if the trends do not follow
straight lines, either z;, and z, might be more variable than the other. Accordingly, it may be
desirable for our analysis to allow for such differences in variance. For the analysis of the
interaction as differences within Grouping for each Election Year (applied to deviations of
Election Year from overall), we have numbers for 39 States in 13 Groupings, and can estimate
a variance on 26 = 39-13 degrees of freedom and can work with the 78 = (13x12)/2 simple
comparisons between Groupings (within an Election Year). Doing this for each Election
provides 312 = 4X78 comparisons as before — the novelty being the appearance of different
variances in the denominators of the Student's t-values.

Simple interaction II. Going the other way, we have six kinds of Election comparisons
— 21 = Y3~V L = Yao~Ya2s L3 = Yaa—Vans Za = Yao~Vse T = Y~V a0d 26 = Y44—Y4 — €ach of
which can reasonably have its own variance. Each of these six has values for 39 States in 13
Groupings, so that again we can have separate estimates of variability on 26 = 39-13 degrees
of freedom. And we can use these estimates to evaluate 13 #-values for each of the six
Election comparisons, looking at:

Grouping mean minus grand mean (13 values)
against a background of:

State value minus Grouping mean (39 values, 26 df).
Again, we have 78 = 13x6 t-values, as we had before, the difference again being a diverse set
of variances, one for each of the six kinds of comparisons between Elections.

Trend-free interaction. Another approach is to remove a linear trend from ys,, Y36, Y40
and y,,, leaving as the four residuals

7 = By5=4Ys6~Ya+t2y4)/10 ,

2z, = (—4y3+7y36=2y40—Yas)/10 ,

Z3 = (=¥3~2Y36+7y40=4Y44)/10 , and

24 = (2y3—Y36—4Y40+3y4)/10
each of which will surely deserve separately estimated variances. We can treat z;, z,, z; and z,
just as we treated those above.

39



Step-free interaction. Alternatively, we might take away not a linear trend, but a step

difference between the two earlier Elections and the two later Elections working with

7 = Op—y3¢)/2 and -z, = (y3~Y3,)/2 , and

2, = (Vap=Yaa)/2 and —z, = (yu=Ys0)/2 -
Because the two degrees of freedom left after fitting both a mean and a step to each set of the
four values can be so simply described by simple comparisons, we get two values to carry on
instead of four, and two sets of 78 Grouping combarisons within Election comparison instead
of four. Again the separate estimates of variability, based on the State value (of an x;) minus
the Grouping value (based on the same x;), will have 26 degrees of freedom each.

Trend and Step. To go a little further with each of the last two analyses, we can
analyze what is taken out as well as what is left after taking out. For the trend elimination, we
can work with the estimate of slope

23 = (=3y5Y36+Yaot3Y4s)20
and in the step-free analysis we can work with the estimate of step

2y = (Va+YasYaoYaa)2
in each case finding a new estimate of variance, based on 26 degrees of freedom and looking
at 78 = (13x12)/2 differences of z; or z,.

Table B-1 displays summary results for the four adjustment techniques applied to the
heteroscedastic analyses of the E x G interaction effects. Of the 1014 total comparisons in six
different families, the unadjusted per comparison approach results in 381 confident directions
and the FDR technique results in 243 differences with confident direction. Applying strong
control of the familywise error rate, the Hochberg technique results in 73 confident directions
of which the Bonferroni adjustment results in the detection of 70 differences with confident

direction.

Table B-1.
Number of comparisons from the heteroscedastic analyses of E X G Interaction Effects (from

the Election Example) with confident direction.

m Unadjusted FDR Hochberg Bonferroni
Simple interaction I 312 140 101 31 30
Simple interaction II 78 29 19 7 7
Trend-free 312 112 73 12 11
Step-free 156 34 0 0 0
Trend 78 31 23 9 9
Step 78 35 27 14 13
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Appendix C
Comparison of Critical #-values

Some further insight into the performance of the three alternative adjustment
approaches can be obtained from a table of the critical values of ¢ (rather than the critical
values of p). Indeed, we can learn even more from the critical values of £ and the ratios

adjusted-z.,? / unadjusted-z_;?
which, because observed # is proportional to sample size, is an indication of the factor by
which sample size must be increased to compensate for a given standard of multiplicity
protection. Tables C-1 and C-2 show the numerical results for 2 of the 11 examples, Main
Effects for Election Year from the Election Example and All Pairwise Comparisons among
States from the NAEP TSA Example. (Recall that the FDR and Hochberg procedures work
sequentially from the least significant comparison, the largest i, to the most significant, i = 1,
as illustrated in Table C-1.) Also shown in the tables are the cutoff points for confident
direction for the FDR and Hochberg procedures.

Table C-1.
Ratios of adjusted-z.,2 to unadjusted-z,,2 for Main Effects for Election Year.

crit

i FDR-t,;? ratio Hochberg-t,2 ratio Bonferroni-,;>2 ratio

6 4.1132 1.000 4.1132 1.000 7.79511 1.895
5 4.4617 1.085 5.4712 1.330 7.79511 1.895
4 4.8968 1.191 6.3053 1.533 7.79511 1.895
3 5.4712 1.330 6.9140 1.681 7.79511 1.895
2 6.3053 1.533 7.3956 1.798 7.79511 1.895
1 7.7951 1.895 7.7951 1.895 7.79511 1.895
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Table C-2. _
Ratios of adjusted-t.;2 to unadjusted-z ;2 for All Pairwise Comparisons among States.

i FDR-t;? ratio Hochberg-t;2 ratio
820 3.8415 1.000 3.8415 1.000
819 3.8435 1.001 5.0239 1.308
657 42153 1.097 13.0402 3.395
656 42179 1.098 13.0516 3.398
655 4.2205 1.099 13.0629 3.401
654 42231 1.099 13.0741 3.403
509 4.6509 1.211 14.2477 3.709
508 4.6543 1.212 14.2537 3.711
507 4.6577 1.212 142597 3.712
506 4.6611 1.213 14.2657 3.714

2 14.7623 3.843 16.0698 4.183
1 16.0721 4.184 16.0721 4.184

Note: Bonferroni-t.,2 and the ratio of Bonferroni-¢.;? to unadjusted-z.;*> are constant

over i; both values are equal to those for FDR-# ;2 or Hochberg-f.;> at i = 1.

Summarized in Table C-3 for all examples, are the ratios of the adjusted to unadjusted
values of ¢_,2 for the smallest comparison confident in direction and the adjusted to unadjusted
values of #.,2 for the largest comparison not confident in direction. For both the FDR and the
Hochberg procedures, it can be seen that the discrepancy between the two ratios decreases with
larger family sizes. For the ratio of s for the smallest comparison with confident direction,
the values for Bonferroni-confidence range from 1.895 to 4.475 and tend to increase with
family size (when m = 1, the value of the ratio, adjusted-#.;? / unadjusted-z.,2, is 1.0); the
values for Hochberg-confidence have a similar range (1.335 to 4.249) and show a similar

dependence on family size. However, the values of the FDR ratios, ranging from 1.086 to
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2.633, show no substantial evidence of systematic change with changes in family size, if
anything, drifting weakly in the opposite direction.

Table C-3.
Ratios of adjusted to unadjusted values of 7,2 for SMALLEST COMPARISON CONFIDENT

IN DIRECTION (>) and LARGEST COMPARISON NOT CONFIDENT IN DIRECTION (<) for all

examples ordered by m.

Ratios for:
m Bonferroni® Hochberg” FDR?
> < > <
Main Effects for Election Year” 6 1.895 1.533 1.330 1.191 1.085
Main Effects for Region 6 1.913 1.335 1.000 1.086 1.000
Year X Region 16 2.174 — 2174 —— 2174
State-by-State Change 34 2.633 2.557 2.540 1.466 1.429
State vs Average Change 34 2.633 — 2.633 — 2633
States nested within Groupings 39 2.817 2.537 2.513 1.306 1.283
Main Effects for Grouping 78 3.430 3.332 3.322 1.672 1.647
States nested within Regions 128 3.233 2.783 2.774 1.109 1.105
Election Year x Grouping 390 4.100 4.063 4.062 1.857 1.849
States 561 4.087 3.649 3.647 1.112 1.111
States 741 4.475 4249 4.248 1.320 1.319
Pairwise Comparisons of States? 820 4.184 3.712 3711 1.099 1.098

@ Values apply for all i, and are for possible comparisons, not juét for those which occurred.
b When i = 1, ratios are the same as for Bonferroni; when i = m, ratios are 1.000.

¢ As shown in Table C-1.

4 As shown in Table C-2.
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