NISS

Model Selection in
Environmental Statistics

Richard L. Smith

Technical Report Number 32
June, 1995

National Institute of Statistical Sciences
19 T. W. Alexander Drive
PO Box 14006
Research Triangle Park, NC 27709-4006
WWW.Niss.org



MODEL SELECTION IN
ENVIRONMENTAL STATISTICS

RICHARD L. SMITH :
June 19 1995

Paper presented at the International Workshop on Model Uncertainty and
Model Robustness, Bath (England), June 30 - July 2, 1995.

Abstract

Environmental problems have become a major focus for modern applied statistics,
and there are a number of reasons why model selection issues tend to be of particular
importance in analysing environmental data. One reason is that there are often vast
amounts of data to be analysed, but it may well be that only a small part of the data are
relevant to the questions being asked, which often have to do with issues such as long-
term trends or extreme values. Thus, the results obtained may well depend critically on
the model selected. A second reason for thinking critically about model selection issues
in environmental data is the desire to obtain results that are at least compatible with
physical models, such as those constructed by atmospheric scientists. These general issues
are illustrated by two areas of research from the environmental statistics group at the
(U.S.) National Institute of Statistical Sciences, one concerned with trends in tropospheric
ozone, the other with the health effects of atmospheric particles.

1. Introduction

This paper has two objectives. The first is to give some general discussion on the
role of model selection in environmental statistics. My comments here will be neither
very detailed nor very profound, but I hope they will serve as something of a stimulus
to discussion. The second objective is to present two examples that I have worked on
recently myself, both of which required some ingenuity in identifying the right model. The
first of these concerns modelling high-level exceedances of ground-level ozone, a topic of
considerable importance in the USA in the light of measures currently being enforced to
reduce ozone levels. The models fitted in this case were suggested by extreme value theory,
but the verification of those models was based on an adaptation of work on predictive
model diagnostics by Dawid and Seillier-Moiseiwitsch. My second example is concerned
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with the influence of small particles in the atmosphere (so-called pm10) on human health
and mortality. A series of papers in the epidemiological literature has claimed a very strong
relationship between pm10 and mortality among the elderly population, and this has led
to considerable public discussion in both the USA and the UK. However, the statistical
basis of this claim is by no means clear-cut, and hinges quite a bit on what model is chosen
to fit to the data. It therefore seems a good example to introduce to a conference on model
selection. Both examples were developed at the (US) National Institute of Statistical
Sciences and I would like to acknowledge the contributions of others who worked on the
problems: Peter Bloomfield, Li-Shan Huang and Francoise Seillier-Moiseiwitsch (ozone);
Jerry Sacks, Trish Styer, Nancy McMillan, Feng Gao and Jerry Davis (pm10).

2. General Remarks

Typical problems in environmental statistics involve the interpretation of data on
environmental variables, such as meteorological data, air and water pollution monitors,
river flows and sea levels, etc., and their “consequences” as measured by human mortality
and health statistics, animal and fish population sizes, etc. Of course, not all of these
elements will be present in any particular application. One characteristic of environmental
problems is that, particularly on the “environmental variables” side of the problem, vast
amounts of data are typically available. Thus there is considerable scope for comparing
different models. However, in many cases the questions being asked are ones that depend
critically on the model chosen. Examples include trends in climatological or environmental
pollution data, extreme values, low-dose extrapolation of toxicological effects, etc. These
are all quantities that cannot be measured in any direct way and so require the identification
of a suitable model.

A particular issue in many environmental applications is the interplay between sta-
tistical and physical modelling techniques. In the context of climate change, for example,
most of the quoted predictions on the consequences of an enhanced greenhouse effect are
based on general circulation models or GCMs, which are large-scale physical models of
the earth’s atmosphere. Little of the evidence for global warming comes directly from
statistical analysis, though there is evidence in the climate record of a gradual but steady
rise in global temperatures over the last 150 years. Thus one challenge in this area is to
see to what extent the available data support or contradict the predictions of GCMs. The
relevance of this to a discussion of model selection is that the GCM — or whatever other
physical model is appropriate to a particular application — may help to define the model
to be studied. An example of this is Bloomfield’s (1992) study of the “climate sensitivity”
parameter (a measure of the rate of change of temperature with respect to atmospheric
carbon dioxide) in which a family of GCM outputs, parametrised by climate sensitivity,
was fitted to the observed climate record. On the other hand, even in this example, the
GCM did not dictate the whole of the model; for instance, it tells us nothing about the
kinds of time series correlations that are appropriate. Bloomfield and Nychka (1992) and
Smith (1993) had further discussions of that aspect. In the context of ground-level ozone,
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much work has been done on regional oxidant models (ROMs) which monitor the trans-
portation and chemistry of ozone and its precursors over a time scale of anything between
a few hours and about 14 days. Expertise gained from these models has been an enormous
help in identifying relevant meteorological variables and the general form of the statistical
model to be fitted (Bloomfield et al., 1993) but this is still only one part of the overall
problem; ROMs are unable to model long-term trends (over a period of several years) so in
this context some statistical modelling is essential. The moral of the story is that, where
physical models are available, they can and should be used to provide valuable guidance
to the choice of a statistical model; but it is rare for the physical model to dictate the sta-
tistical model, and there is still plenty of scope for the use of more conventional statistical
model selection and model verification techniques.

Other examples of the need for an interrelation between physical and statistical models
include the “downscaling” (also called “disaggregation”) problem in climatology, which
arise from the inability of GCMs to give reliable predictions over small areas of the earth’s
surface. Typically, the GCMs provide predictions averaged over grid cells whose sides
are in the range of 3°-5° latitude and longitude. This is of little use in predicting, say,
the pattern of rainfall over a radius of 50 miles, so one needs statistical techniques to
relate the short-range spatial behaviour of rainfall to long-term characteristics as might
be measured by temperature, rainfall or air circulation indices compiled at the level of a
GCM grid cell. One can interpret the paper of Handcock and Wallis (1994), who developed
spatial-temporal models for temperature, from this point of view: for example, their model
allows predictions of the trend at individual locations, with an associated assessment of the
quality of prediction. On the rainfall side, models such as those of Rodriguez-Iturbe et al.
(1987a, 1987b) and Cox and Isham (1988) are relevant to this kind of question. Smith and
Robinson (1995) have made a preliminary attempt to reinterpret the latter theme from
the point of view of Bayesian model fitting using MCMC methods.

Aside from all this discussion is the possibility that information derived from physical
models might be used directly to motivate the formulation of a statistical model. I mention
this only tangentially here because it will not be developed in the ensuing discussion, but it
is a major theme in some areas of environmental research, see e.g. Young and Lees (1993).

3. High-threshold Exceedances of Ground-level Ozone

Ozone is produced at ground level as a result of chemical processes involving nitrous
oxides and hydrocarbons, which are emitted by vehicles or in industrial processes. How-
ever, the complex nature of the chemical reactions involved means that there is no easily
identifiable cause-effect relationship; there is a particular tendency for high ozone concen-
trations to arise on hot, still days and so any attempt to monitor trends in ozone must
take account of the weather. As far as the effects are concerned, high ozone levels are
known to be particularly harmful to people with asthma or other respiratory conditions,
and until recently (see section 4) ozone was widely regarded as the leading human health
hazard arising from atmospheric pollution. In the USA, an ozone standard, based on a
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maximum daily level of 120 ppb, has existed since 1979; the standard permits this level to
be exceeded only three times in any three-year period at any single monitoring station. In
practice some large cities exceed the standard many times per year, and the 1991 Clean
Air Act Amendment of the US Congress set tough timetables for these exceedances to
be reduced. In the UK, concern about ozone has never reached the same level as in the
USA, partly because with our colder climate, ozone levels are not nearly so high. Fowler et
al. (1993) recommended that there should be a UK ozone standard, something which the
British government has yet to act upon, but widespread public concern about air pollution
levels during a recent (May 1995) hot spell in Britain, associated with calls for lowered
speed limits and other measures to reduce air pollution, suggests that such a standard may
well be considered in the future. The study reported here (Smith and Huang 1994, Smith,
Huang and Seillier-Moiseiwitsch 1995) was motivated by efforts to measure ozone trends
in the USA, where the responsible agency is the Environmental Protection Agency (EPA).
Previous or parallel studies utilising an extreme values approach to high ozone exceedances
are contained in papers of Smith (1989), Shively (1991) and Smith and Shively (1995).

Table 1: Measured meteorological variables

Variable Meaning

OPCOV Opaque cloud cover (%)

PR Barometric pressure (mb.)

T Temperature (°F)

TD Dewpoint Temperature (°F)
RH Relative humidity (%)

Q Specific humidity (g./kg.)

VIS Visibility (km.)

WSPD Wind speed (m./sec.)

WDIR Wind direction (° from North)

The raw data consisted of hourly ozone readings for 1981-1991 at a network of 45
monitoring stations around the city of Chicago. Exceedances of the 120 ppb threshold
varied greatly between monitoring stations, but the worst station had 41 exceedances
within the 11-year period, indicating a definite lack of compliance with the standard,
though not nearly as bad as that in some southern cities such as Los Angeles and Houston.
For most of our study, we considered “network maxima” formed by maximising the daily
values over a subset of stations in the network, making suitable allowances for missing
data. Bloomfield et al. (1993) described the method precisely. We also considered a
suite of meteorological variables, which are listed in Table 1. To these were added some
constructed variables, listed in Table 2. In addition to the meteorological covariates, YEAR
was used as a covariate (=1 for 1981, through to 11 for 1991), and two variables CDAY
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and SDAY, defined by
CDAY = cos(2 x m x DAY/365.25), SDAY =sin(2 x 7 x DAY/365.25),

were included in the analyses. Here DAY represents the day within the year (=1 for
January 1, etc.). The inclusion of CDAY and SDAY is intended to reflect the fact that there
remains a residual seasonal effect even when the direct influence of season on meteorology
has been taken into account, while the coefficient of YEAR in the final model will be
interpreted as a residual trend when all seasonal and meteorological effects have been
taken into account. For some analysis we also used a variable YEAR2, defined to be the
square of YEAR, so allowing for the possibility of a quadratic trend. Further discussion
of the choice of covariates is given by Bloomfield et al. (1993) and was, as discussed in

Section 2, influenced to no small extent by the expertise of physical modellers within the
EPA.

Table 2: Additional variables created from the data

WIND.U —~WSPDx sin(2 x 7 x WDIR/360)
WIND.V —WSPDx cos(2 x 7 x WDIR/360)
T2 (T-60)2/10

T3 (T-60)%/1000

T.WSPD WSPD x (T-60)

3.1 Exceedances of a single threshold

The natural starting point is to consider exceedances of just a single threshold, i.e.
the ozone standard of 120ppb, and the initial analysis was performed on the assumption
that different days are independent. This assumption was thought justifiable in our initial
analysis because of the belief (reinforced by the physical modellers) that the main cause
of correlation in the data is the persistence of meteorology, so that once we adjust for
meteorology the residuals should be independent. However, as we shall see, matters are
not in fact quite so simple as that, and one simple say to include dependence in the model
1s to introduce a variable PDAY (=1 if the previous day was an exceedance, 0 otherwise)
as an additional covariate.

Once these assumptions are made, the natural approach is to fit the logistic model for
binary data,
Di
log <——1 : > = ziiB;, (1)
—Di F

where p; denotes the probability that the threshold is exceeded on day 1, z;; is the value
of the j’th covariate on day ¢ and j; is the corresponding coefficient. We always assume
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zi1 = 1, 1.e. there is always a constant term in the model, but the other covariates are
selected from those described above.

One additional point to note is that all the ozone values are recorded to the nearest
ppb, and a level of exactly 120 is counted as an exceedance.

With the model and covariates set out as described, standard variable selection tech-
niques were used to identify a specific model for the network maxima, with results shown in
Table 3. It should be noted that some variables were included in pairs, specifically CDAY
and SDAY were included together, as also were WIND.U and WIND.V, which explains

why some of the variables are retained in the model even though their ¢ ratio was less than
2.

Table 3: Network maxima, threshold 120

Variable Estimate Stand. error t Ratio
CONST —-22.9 2.357 -9.72
YEAR 3416 1632 2.09
YEAR2 —.04268 .01395 -3.06
CDAY —.8855 .7036 -1.26
SDAY .5628 2911 1.93
PDAY .6829 .2736 2.50
T .2928 .02747 10.66
RH —.01799 .01058 -1.70
WIND.U —.03688 .04011 —.92
WIND.V —.1887 .0449 —4.20
VIS —.06959 .02065 -3.37
T.WSPD —.01945 .002992 —6.50

It will be noted that the trend variables YEAR and YEAR2, as well as the dependence
variable PDAY, are all significant in this model, and this is reinforced by Table 4, in

which NLLH (negative log likelihood) values are given for various combinations of these
parameters.

Table 4: Comparison of models using NLLH

Trend/PDAY No Yes

None 319.299 313.211
YEAR only 309.023 305.025
YEAR4YEAR2 302.984 299.934

Table 4 reinforces the conclusion that YEAR, YEAR2 and PDAY are all significant.

Adding additional variables to account for lags of greater than one day did not improve

the fit.



The coefficients of YEAR and YEAR?2, interpreted as a quadratic trend throughout
the 11-year period of the study, lead to the conclusion that, after taking meteorology into
account, there was a slight increase in ozone up to around 1984, but thereafter a steady
decrease. However, this conclusion is based only upon searching within rather a narrow
class of models, and leaves open the question of whether the chosen model actually fits the
data. We turn to this question next.

3.2 Predictive assessment of model fit

For normal linear models, there is an extensive literature on residuals and diagnostics,
well covered by all the standard textbooks. For binary data, one approach to model
verification is simply to try to adapt the techniques for linear models, and this approach
is taken for example, by Collett (1991). However, there is a much older literature on
the assessment of forecasting schemes for binary data, which originates in the context of
weather forecasting. This approach provided the background for Phil Dawid’s theory of
“prequential analysis”; see Dawid (1982, 1984) for expositions of this theory and Dawid
(1986) for a review of the background on probability forecasting. Recent works by Seillier-
Moiseiwitsch and Dawid (1993) and Seillier-Moiseiwitsch (1995) have focussed attention
on goodness of fit criteria, which we develop here.

The usual paradigm is forecasting rainfall. Each day, a forecaster quotes the percent-
age probability of rainfall, in practice expressed to the nearest 10%. After many days, we
are able to compare the sequence of forecasts with the sequence of binary variables rep-
resenting the observation of whether or not it rained on each day. How should we assess
how well the forecaster is performing?

Most criteria are based on a combination of two different measures. On the one hand,
the forecaster should be well-calibrated. This means, for example, that if we grouped to-
gether all days on which the forecaster quoted a 40% probability of rain, then the observed
proportion of rain days within that grouping should be close to 40%. Clearly this is a
desirable attribute of a good forecaster, but it is not sufficient in itself. It is possible for
forecasts to be well calibrated but practically useless, e.g. if the forecaster always quotes
the same probability. A second quality called resolution or refinement is also needed. This
has to do with the extent to which the forecasts succeed in distinguishing between wet and
dry days.

There are various ways on constructing goodness of fit tests to measure calibration.
The main technical difficulty is the justification of an asymptotic x? distribution when
the forecasts are sequential and possibly dependent on past data. However, much is now
known about this problem, cf. Seillier-Moiseiwitsch & Dawid (1993). It is not so easy to
decide whether a forecaster has good refinement. Dawid (1982, 1986) suggested that a
suitable criterion for a forecaster to be well calibrated and to have good resolution should
be that his or her forecasts remain well-calibrated when restricted to any subsequence of
the data, subject to a selection rule that requires the decision whether or not to include a
particular day in the subsequence should depend only on the information available to the
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forecaster, which in most cases means the data available from previous days. In practice,
of course, one cannot consider all such subsequences simultaneously, but if one suspects
a forecaster to have poor resolution, one can try to construct subsequences on which the
calibration test might fail.

An older idea is that of scoring rules. A scoring rule is simply a measure or score
of how well a forecaster is performing. There are a number of such rules known, but
the best known are the Brier scoring rule Y (a; — p;)* and the logarithmic scoring rule
> {—ailogp; — (1 — a;)log(1 — p;)}. Here a; is the observed value (0 or 1) on day .
However, while scoring rules might serve to decide whether one forecaster is better than

another, they are not so easily turned into formal tests of whether to accept or reject a
certain model.

In the context of the present study, prediction of ozone exceedances is not one of
our primary aims. We are much more concerned with long-term issues such as whether
there is a trend in the data or whether a particular subset of the data represents unusual
conditions when judged against long-term climatology. Nevertheless, logistic models for
binary data are very much of a predictive nature, since they allow us to quote a “probability
of exceedance” based on current weather conditions and (if PDAY is included) past ozone
exceedances. Therefore, we can use ideas from the probability forecasting literature to
assess their goodness of fit. In the models with PDAY, this is a genuinely sequential
problem, so we do need the theory of sequential tests developed by Dawid (1984) and
Seillier-Moiseiwitsch & Dawid (1993).

There is, however, one further complication in applying these ideas here. The litera-
ture we have described is concerned with an “honest” forecasting procedure in which the
forecast for day 7 depends only on data observed preceding day 7. This is not the case if
we are considering a parametric model whose parameters have been estimated from the
whole data set. The issue is similar to the familiar one in goodness of fit testing, that
tests constructed on the assumption that the model is known are not valid without some
adjustment if the model depends on parameters which are estimated from the data.

One version of this problem has been considered by Seillier-Moiseiwitsch (1995) for
the case of a linear logistic model. She considers a procedure in which, before making a
forecast for day 7, the parameters of the model are re-estimated based on all the data up to
time : — 1. Under this set up, the asymptotic properties of the procedure are identical to
those of a sequential forecasting scheme as in Seillier-Moiseiwitsch & Dawid (1993). The
difference between the two papers is that the analysis of Seillier-Moiseiwitsch & Dawid
(1993) is based on the null hypothesis that the sequential forecasting scheme is indeed
the exact model that generated the data, whereas Seillier-Moiseiwitsch (1995) assumes
that the parametric model is correct and makes explicit allowance for the fact that the
parameters at each stage are estimated.

In the present context, it is not practicable to update the model after every observation
but we have employed a variant which seems to achieve the same effect: for each year, the
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model was refitted to the data omitting that year and then used to produce probability
forecasts for the year. All the resulting forecasts were then combined to assess how well
they performed on the observed data on threshold exceedances. Thus the analysis is honest
in the sense that no forecast probability of exceedance depends on the exceedance itself,
or on nearby correlated values. It can be shown that such a modification preserves the
asymptotic properties of the procedure (F. Seillier-Moiseiwitsch, personal communication).

As an example of these ideas, Table 5 is concerned with the calibration of probability
forecasts produced by the model of Table 3. This table is very similar to Table 1 of Seillier-
Moiseiwitsch & Dawid (1993). Each row of the data represents a specific interval of forecast
probabilities, denoted (pmin, Pmaz]|- The frequency n denotes the number of days for which
the forecast lay in that interval, and r is the observed number of exceedances based on
forecasts within the interval. The next value e is the expected number of exceedances
2 Pi I(pmin < Pi < Pmaz) and w is its variance Y. p;(1 — p;) I(pmin < Pi < DPmaz), under
the assumption that the p; do indeed represent true forecast probabilities. The final column
gives the test statistic 2 = (r —e)/\/w. In large samples, these will have approximately
standard normal distributions, independent for non-overlapping probability intervals. The
main difference from Seillier-Moiseiwitsch & Dawid (1993) is that we have used unequal
probability intervals to reflect the fact that the forecast probabilities are heavily weighted
towards 0. Finally, the last row of Table 5 gives an overall assessment of calibration by
combining the intervals together.

Table 5: Calibration of probability forecasts

Pmin Pmaz n r € w z

0.000 0.025 1660 13 7.724 7.621 1.911
0.025 0.050 182 10 6.574 6.327 1.362
0.050 0.075 102 3 6.282 5.890 —-1.352
0.075 0.100 65 5) 5.640 5.147 —0.282
0.100 0.200 132 18 18.949 16.131 —-0.236
0.200 0.300 70 21 17.692 13.161 0.912
0.300 0.400 45 15 15.832 10.227 —0.260
0.400 0.500 28 11 12.629 6.913 —0.620
0.500 0.750 46 26 28.813 10.551 —0.866
0.750 1.000 24 21 20.889 2.614 0.069
0.000 1.000 2354 143 141.024 84.581 0.215

A second way of classifying the data is by year. Table 6 shows a table constructed
similarly to Table 5 but where the rows represent individual years of data. Recall that
each year’s entry is based on a model fit excluding that year’s data.

In Table 5, the » values are generally small, indicating a good fit, the only seemingly
significant value being in the first row, but the overall value of 3" 2% (9.51) is clearly
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not significant against its nominal x?, distribution. Table 6 is a little more disturbing
since the model has clearly overpredicted the exceedances for 1989 and underpredicted
for 1991, though for the most important years, 1983 and 1988, the agreement of observed
and predicted numbers of exceedances is remarkably good. The underprediction for 1991
should make us cautious about extrapolations based on the quadratic trend.

Table 6: Calibration of probability forecasts by year

Year n r e w z

1981 214 8 11.119 7.642 —1.128
1982 214 11 11.129 7.847 —0.046
1983 214 26 28.326 12.358 —0.662
1984 214 18 12.870 8.695 1.740
1985 214 13 8.398 6.597 1.792
1986 214 9 10.058 7.907 —-0.376
1987 214 18 19.274 10.312 —-0.397
1988 214 24 23.433 11.509 0.167
1989 214 3 11.909 7.750 —3.200
1990 214 3 2.207 2.026 0.557
1991 214 10 2.301 1.938 5.530

This analysis was repeated for all six models in Table 4, and in all six cases the
basic calibration table was similar to Table 5, with no significant discrepancies. For the
analysis by year, the model with no trend showed a distinct pattern of 2 values, with a
significant underprediction of exceedances in 1984 and 1985 and a significant overprediction
in 1989 and 1991. The model with linear trend showed a pattern of negative z values at
the beginning, then positive, and then negative again, with the most significant z values
being —2.823 (1981), 2.546 (1984), 2.886 (1985) and —3.192 (1989). This can be taken
as indicating that a quadratic trend really is needed. These results are all for models
including PDAY;; the results without PDAY showed identical patterns in each of the three
cases, but generally more extreme z values. Finally, the Brier scores and associated z
values (nominally standard normal test statistics) were:

Table 7: Brier scores and test statistics

No trend, no PDAY 94.82 (0.52)
No trend, include PDAY 92.54 (0.52)
Linear trend, no Pday 93.28 (0.40)
Linear trend, include PDAY 91.63 (0.40)
Quadratic trend, no PDAY 90.81 (0.75)
Quadratic trend, include PDAY 89.67 (0.86)
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These results confirm the pattern that the model improves with increasing order of
trend, and is better including PDAY than omitting it.

In Figure 1, we show the observed numbers of exceedances together with the expected
exceedances under each of the models with no trend, linear trend and quadratic trend. It
can be seen that the model with no trend systematically underpredicts in the first part of
the data, and overpredicts in the second — a sure sign that a trend is present — while the
predictions for quadratic trend form the closest overall fit to the data.

Fig. 1: Exceedances and projections, network maxima
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3.3 Extrapolation to higher thresholds

There are a number of reasons why one might want to extend this analysis to thresholds
above 120 ppb. One argument is that, although the threshold is set for regulatory purposes
at 120, it is generally acknowledged that it is only at rather higher levels — perhaps 160
or 180 - that real measurable health effects are seen. Therefore, to draw meaningful
conclusions about human health effects, it might be necessary to look at a higher threshold
than 120. Another reason for looking at different thresholds is that sometimes one draws
different conclusions (regarding the existence of a trend, for example) at different threshold
levels — Smith (1989) provided an early example of that, using data from Houston in an
earlier time period. The third reason in trying different thresholds is the general interest
in building and testing models for extreme values, in a situation where there is enough
data around to test the validity of the resulting extrapolations.

A natural approach to the extrapolation problem is to divide the modelling exercise
into two components: first, fit a model to the distribution of exceedances over a fixed
threshold, which we will again take to be the standard 120, and then fit a model to the
excesses over that threshold, i.e. the conditional distribution of the amount by which
the threshold is exceeded, given that it is exceeded. One distribution which has become
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widely used in this context is the generalized Pareto distribution (henceforth GPD) whose
distribution function is given by

1/€

G(y;0,£)=1—(1+€g) , Y>>0, (2)

+
where 0 > 0, { is any real number, and z, = max(z,0). Thus the range of y is 0 < y < oo
for{ >0and 0 <y < —o /€ if € < 0. The exponential distribution, 1 —e~¥/, appears as a
limiting case when ¢ — 0. This distribution was originally motivated by the limit theorems
of extreme value theory, and has been found to be a good fit in very many situations of

fitting data over high thresholds, e.g. Smith (1989), Davison and Smith (1990). See also
Smith and Shively (1995), for a parallel analysis of current data from Houston.

In the context of trying to fit meteorological covariates, it is logical to extend the model
to one in which the excess (if there is one) on day ¢ is representated by the G(-; 0, ¢;) with
o; and ¢; depending on covariates. In practice it is usually adequate (and a lot simpler) to
assume ¢ constant, while the interpretation of o; as a scale parameter suggests naturally
that a logarithmic link function would be appropriate. Thus we are lead to consider models
of the form

logoi =Y ijv;, &=¢ (3)

J

in terms of new coefficients {y;, j = 1,2,...}. There is no reason why the significant
covariates should be the same as in the binary analysis of section 3.1, so in general we
would expect to repeat the variable-selection procedure based on the excesses over the
threshold. For the time being, we assume the daily values are independent.

Once these models have been fitted, it is natural to define a “residual” Y;/5; with
respect to tyhe 1’th excess Y; and the associated estimated scale parameter 7;. The resid-
uals are arranged in order and plotted against expected order statistics. If the model fits
the data, then the residuals should be tightly clustered around a straight line of unit slope
through the origin.

Table 8 shows the results of this analysis for the network maxima. In this case a
model selection carried out for a number of individual stations showed that the covariates
T, WSPD and T.WSPD were significant for a range of data sets; in the present analysis it
looks as though the last two variables could be dropped but they were kept in the analysis
for comparison with individual stations. Also note that ¢ is significantly different from
0 and negative, a result which indicates an upper tail which is shorter than exponential.
Finally, the coefficient for YEAR, though not statistically significant, is negative, indicating
that the downward trend observed for threshold 120 remains at higher thresholds.
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Table 8: GPD fitted to excesses

Variable Estimate Stand. error t ratio

CONST -.8527 1.685 -.51
YEAR -.04 .03098 -1.29
T 05795 .02026 2.86
WSPD -.1005 1307 =77
T.WSPD -.004424 .005415 -.82
3 -.2333 .08884 -2.63

Fig. 2(a) shows a probability plot of residuals from the model of Table 8, which
appears very close to the theoretical straight line of unit slope through the origin. In
contrast, the same model with { = 0 (the exponential model) shows a definite deviation
in the upper tail (Fig. 2(b)). This is of some importance because earlier ozone studies
(including Smith (1989)) have suggested that the exponential distribution fits high levels
of ozone data very well; the present study would seem to indicate that this may not be the
case if due account is taken of meteorological covariates.

Fig. 2: Network maxima excesses
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Now let us consider predictive diagnostics for these models. If we combine the models
used earlier for exceedance probabilities of 120 with the GPD model for excesses fitted
here, and then compute predictive diagnostics for each of the levels 120, 140, 160 and 180
(generalising the calculation of Fig. 1), we obtain the plots of Fig. 3. We can see from
the plots that at the higher threshold levels, the models noticably fail to predict the high
levels observed in 1988.
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It is possible to construct x? tests from these plots in the same way as was done
earlier for the exceedances of level 120. We conpute a table similar to Table 6, including
the z values in the last column, and form }_ 2% as an approximate x?2 statistic. However,
for this purpose it is desirable that the e values in the fourth column be large enough
for the validity of a x® approximation (analogous to the e > 5 criterion often adopted
for the standard Pearson x? test) and for this purpose it is desirable to group years with
low exceedances together. Thus we formed six groups based on the years 1981-2, 1983,
1984-6, 1987, 1988 and 1989-91, from which we calculate 3" 2% = 13.36, significant at the
level p = 0.038 against the nominal x3 distribution. Combined with the visual impression
gained from Fig. 3, this suggests that the model is not an adequate fit. Variants on

the model, e.g. using different combinations of the trend parameters and meteorological
covariates, failed to resolve this difficulty.

Fig. 3: Exceedances over several levels
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A detailed description of the manner in which this lack of fit was resolved would take
us too far from our main theme in this paper, but the essence of it was to model the
process as a first-order Markov chain, using bivariate extreme value distributions to model
the joint dependence. Models of this nature have been developed by Smith, Tawn and
Coles (1993) and by Ledford and Tawn (1994), and are reviewed by Smith (1994). The
trend for exceedances over 120 was taken to be quadratic in this case. Recomputing the
plots of Fig. 3 for this model led to the plots of Fig. 4, and while they still underpredict
the observed numbers of exceedances for 1988, the overall it is much better — x? statistics
computed for both of the levels 140 and 160 produced insignificant results.

Fig. 4: Exceedances over several levels, dependent model
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To summarise: the predictive model diagnostics proved to be a sensitive test of whether
the extreme value model fitted the data. The original model, based on independent ex-
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ceedances conditioned on the meteorological variables, did not provide an adequate fit.
However, when an alternative model incorporating serial dependence in the extreme val-
ues was tried, the resulting model seemed to fit the data much better.

4. Atmospheric particles and human mortality

My second example is much less clear-cut than the first; indeed it is extremely confus-
ing. However it does address an issue of considerable public interest at the present time: the
notion that there is a direct relationship, far stronger than had previously been supposed,
between human mortality and the presence in the atmosphere of small particles. Most of
the studies have concentrated on pm10, which is defined by the EPA to be “particulate
matter with an aerodynamic diameter less than or equal to a nominal 10 micrometers”.
The studies have led to claims that as many as 60,000 deaths per year in the US, and
10,000 deaths per year in the UK, may be due to particulates in the atmosphere (sources:
The New York Times, July 19 1993; The New Scientist, March 12 1994). The background
to such claims lies in a series of epidemiological studies relating deaths from nonaccidental
causes in the elderly population to pm10 counts, taking into account additional relevant
meteorological covariates. The paper by Schwartz (1993) is representative of the kinds of
statistical analyses used, and Schwartz (1994) has given a parallel analysis using hospital
admissions as the dependent variable. More recent studies (e.g. Seaton et al. 1995, Pope
et al. 1995) seem to have left little doubt that there is an association of some sort, but
there remains much controversy over whether an observed association can be interpreted
as a causal relationship, and especially over the magnitude of the effect as reflected in the
numbers just quoted. The following discussion, based on the paper by Styer et al. (1995)
and some follow-up work of my own, is intended to show just how much the conclusions
depend on seemingly arbitrary decisions related to model selection.

For this study, data were collected from Cook County, Illinois (the county which
includes the city of Chicago). Mortality data consist of daily deaths of residents of the
county, for the period January 1985 to December 1990. Deaths of individuals under 65
years of age, or from accidental causes, or those which took place outside Cook County, are
excluded. There remain an average of about 80 deaths per day. Air pollution data consist
of daily average pm10 readings of about twelve monitoring stations. Most of the stations
record only every six days, but for each day in the study, averages across all available
stations were taken. Preliminary analysis (Styer et al. 1995) had shown that three-day
averages are the best predictor of deaths, i.e. for each day we take the average of that
day, the previous day and the previous day but one. There are still a substantial number
of missing days, particularly in the early part of the period of observation, but data are
available for 1,963 of the 2,191 days of the sampling period.

Units of measurement for pm10 are micrograms per cubic metre — in this data set a
typical daily value is about 40, while the current EPA standard is 150.
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Meteorological data were based on the same sources as used for the ozone study,
but different variables, including some lagged variables. Altogether twelve meteorological
variables were considered, as follows:

Table 9: Meteorological variables for pm10 study

Variable Meaning

press Daily mean pressure in millibars
plagl Pressure lagged by one day
plag2 Pressure lagged by two days
tmean Daily mean temperature in °C
tlagl Temperature lagged by one day
tlag2 Temperature lagged by two days
gmean Daily mean specific humidity
qlagl Humidity lagged by one day
glag2 Humidity lagged by two days
wchill Windchill factor

disind Discomfort index (an indicator of hot and humid conditions)
gsum Total solar radiation

Similar data were also available for Salt Lake County (Utah). In this case the period
covered is from June 1, 1985, to December 31, 1990 (2,040 days), of which pm10 readings
are available for all but 12 days. The average number of deaths per day here is 6.7,
reflecting the much lower population. The meteorological variables are the same as for
Cook County with the exception of the windchill and solar radiation variables.

The main method is based on normal regression, using log deaths as the dependent
variable. Most of the studies by Schwartz and his co-authors have been based on a form
of Poisson regression: for the data reported here, this was actually an inferior fit to the
lognormal regression, though this conclusion may be specific to the Cook County data.
The initial model fits are based on an assumption uncorrelated errors from one day to the
next, though as with the ozone study, this is the subject of some discussion later on.

A scatterplot of log deaths against lagged and unlagged temperatures is shown in Fig.
5, together with a smooth curve through the data points (computed using the lowess
command in Splus). This shows a changepoint at around 22°C, in all three curves, and
suggests the addition of a variable which we call t22, defined by

t22 = (tmean — 22),,

with corresponding lagged values t22lagl and t22lag2. Similar scatterplots were drawn
against the other meteorological variables but did not yield any conclusions of particular
interest.
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Further preliminary analysis indicated a definite variability from year to year and so
suggested adding five indicator variables to the data, e.g. the variable I(year=86) takes on
the value 1 if the year is 1986, 0 otherwise. Study of squared and cross-product terms led
to the addition of four variables formed in this way. When all these variables were taken

into account (but not, at this stage, pm10) the model listed in Table 10 was fitted to the
data.

Fig. 5: Deaths vs. unlagged and lagged temperatures
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If now the variable pm10 is added to the model in Table 10, we are led to a coefficient
of .00080, with a standard error of .00021 — consistent with several results by Schwartz
and co-workers, who have typically claimed a coefficient (in these units) of about .001.

However, there are a number of reasons why the simple model just described does not
lead to an adequate fit to the data. Here are some of the main points which have arisen
in further analysis of these data:

1. There is a strong seasonal effect over and above anything that can be explained by
meteorology. Particularly striking is a tendency for the residuals from the above model to
rise around Christmas, with smaller but still significant variations the rest of the year.

2. It also appears that there is a significant season x year interaction, i.e. the seasonal
effect varies from year to year.

3. Styer et al. (1995) found a significant season x pm10 interaction. Specifically, they
found that if the pm10 coefficient was estimated separately for each of the four seasons
of the year, that it was strongest in the autumn, with a weaker but still significant effect
in the spring, and no effect at all in the winter and summer (in fact their coefficient for
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“summer pm10” was negative, though not statistically significant). However, there is no
known explanation for such seasonal variation.

Table 10: Parameter estimation for lognormal model

Parameter Coefficient S.E. t Ratio
constant 4.47373 .01365 327.71000
press—1000 -.00127 .00071 -1.79757
tmean -.00104 .00078 -1.32730
tlagl -.00088 .00102 -.86631
tlag2 -.00289 .00092 -3.13354
glag2 -.01005 .00340 -2.95841
gsum ' -.00577 .00175 -3.29315
£22 02711 .00653 4.15318
t22lagl -.01011 .00695 -1.45451
I(year=86) .03047 .00887 3.43323
I(year=387) .01990 .00890 2.23609
I[(year=88) .02680 .00908 2.95329
I(year=89) 01651  .00885  1.86515
I(year=90) .01596 .00889 1.79461
222 -.00260 .00095 -2.73869
t22lagl? .00304 .00095 3.18820
(press—1000)2 .00008 .00004 2.02903
tlag2xqlag? .00024 .00011 2.12990

4. Styer et al. also found significant variability among different groups of the popu-
lation, with males being more strongly affected than females, though with no significant
difference between whites and blacks. They also performed a more detailed breakdown by
“cause of death”, finding that (as expected) deaths from respiratory causes were associ-
ated with the largest coefficient, but also finding a significant effect on deaths from cancer,
which is harder to explain.

5. There is also a strong day of week effect (Fig. 6) — it appears that deaths are
highest on a Monday and lowest on Sunday (one can speculate on a number of quite
different reasons for this). The explanation for a weekday effect on pml0 is easier to
explain, because the effect is consistent with traffic patterns (remember that our pm10
variable is based on three-day running averages so we would expect the highest levels to
be on Wednesday, Thursday and Friday). However, when weekday is added as a variable
to the model, the estimated pm10 coefficient does not change much.

6. Another difficulty is the presence of significant serial correlations in all simple
models. There is no logical reason for this, but we are not talking about an infectious
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disease, and the most obvious explanation for a spurious correlation — that of lagged
effects — has already been taken into account in the specification of the model.

Fig. 6: Weekday effects and 95% confidence intervals
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After all these considerations have been taken into account, the best model that I have
been able to find uses a separate 12-knot spline to model the seasonal effect in each year.
This model takes care of the season x year interaction and is the only model to remove
all traces of serial correlation. Fig. 7 shows the estimated seasonal effects.

However, with this model the estimated pm10 coefficient is only .00036, less than
half the value originally estimated and well below the effect claimed by Schwartz and his
co-workers, and the standard error of this is .00021, raising the question of whether it is
significant at all. Studies of similar models using the Salt Lake County data (where the

total population base is much smaller) failed to show a significant effect in any version of
the model.

To summarise, although this analysis does not disprove the existence of a pm10 effect,
it does show that the questions surrounding it are very complicated. There does not appear
to be any clear-cut choice of the best model, yet the model selection has a crucial effect
on the results obtained.
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Fig. 7: Seasonal trends within each year
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