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1 Introduction

In order to determine if airborne particulates contribute to excess mortality, researchers have adopted
multiple regression techniques to measure the effects of particulates on daily death counts (1,2).
Other factors, such as extreme temperatures, can affect mortality, and the regression techniques
are used in an effort to adjust for these other known influences.* The regression coefficient
corresponding to a measure of particulate level is then interpreted as the effect of particulate
pollution on mortality, accounting for stress from the other influences. If this coefficient is a
statistically significant positive number, the conclusion is that mortality increases with increasing
levels of particulates. This association is then elevated to a causal interpretation: particulates cause
death, and researchers estimate that soot at levels well below the maximum set by federal law “kills
up to 60,000 in U.S. each year” (3,4), and similar calculations “put the annual toll in England and
Wales at 10,000.” (5)

Studies vary on the particulate measures that are used and on locations analyzed. In the analyses
presented here, we use PMo, which specifies “particulate matter with an aerodynamic diameter less
than or equal to a nominal 10 micrometers” (6). . The current U.S. EPA standard is based on this
measure. The locations we analyze, Cook County, Illinois and Salt Lake County, Utah, both have
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relatively long records of PMj( monitoring. The monitoring data is discussed in more detail in the
Data section below.

The data used in the analyses (meteorological conditions, particulate levels, death counts)
are observational — that is, data that are measured and recorded without control or intervention
by researchers. Deducing causal relationships from observational data is perilous. A practical
approach described by Mosteller and Tukey (7) involves considerations beyond regression analysis.
In particular, consideration should be given to whether the association between particulate levels
and mortality is consistent across “settings”, whether there are plausible commoﬁ causes for
elevated particulate levels and mortality, and whether the derived models reflect reasonable physical
relationships.

There is a high degree of association of PM;o with meteorology, and a high degree of association
of mortality with weather. For example, in the summer in Cook County the correlation coefficient
between the daily average of PM;o and daily mean temperature is 0.52 and the correlation between
daily elderly (age 65 or greater) mortality and mean temperature is 0.25. The confounding effects
of ‘'weather as a partial cause of both particulate levels and mortality may not be controllable by
standard regression methods; the appearance of an effect for particulates, i.e., a positive coefficient
for the PMq term, may, as a result, be spurious’(see Appendix B).

The results for Cook County and Salt Lake County (Sections 4 and 5 below) show that the
appearance and size of a PMj effect is quite sensitive to model speciﬁcatioh. In particular, there
is a pronounced seasonal effect. In Cook County, PM;q only appears as a factor in the spring and
the fall, but not the winter nor the spring. A detailed semi-parametric analysis indicates that only
the months of May and September exhibit a particulate effect. The models used are discussed in
Section 3. An alternative analysis, using generalized additive models, supports these results (8).
In Salt Lake County there is a similarly isolated effect of particulates limited to the month of June
and no evidence of a PM; effect in any season. Consistency of association of particulates with
mortality is not found here. i

Several studies carried on at various locations in the United States have reported small yearly
increases in mortality resulting from increases in particulates. In our Cook County analyses the
effect of PMj in the spring and fall (or in May and September) induces a similar positive yearly
increase in mortality from increases in paniéulates, but the increase is from 1/2 to 1/3 the size
usually reported in other studies depending on the analyses performed; a similar fac'tor is reported
in (8). In Salt Lake Coﬁnty the size of the yearly effect is far smaller and statistically insignificant.

>We have not addressed errors-in-variables issues which can also be a cause for spurious relationships. The errors-in-
variables concern arises from the differences between measured PMjo and the actual PMiq exposure experienced by the
population; there are similar concerns for the meteorological variables.



What remains unexplained is why, in Cook County, effects should appear in the spring but not in
the summer, the fall but not the winter. Neither is it clear why the effect of particulates on mortality
should not appear in any season in Salt Lake County.

The appearance of a PM effect in May and September in Cook County led to the speculation
that pollen may be implicated, but no such evidence was found using pollen data monitored in the
city of Chicago, the major population component of Cook County. Other analyses carried out for
the fall season in Cook County on different subgroups of the population produced no definitive
differences among subgroups (see Table 7 below).

The inconsistency of the regression analyses, the unresolved status of plausible common
causes of particulate levels and mortality, the confounding effects of weather, and the unavailability
of plausible biophysical mechanisms to explain the empirical analyses prevent concluding that there
is an effect between “today’s” mortality and “yesterday’s” particulates. The question appears to us

to be unresolved.

2 Data

The data used for the statistical studies have three main components: mortality counts, particulate
levels, and meteorology. The sources of the data are described in this section along with some
summary statistics.
Mortality Data

Daily death counts for the period 1985 through 1990 come from death certificate records for
Cook and Salt Lake County residents, collected by the National Center for Health Statistics, and
made available to us by John Creason, EPA. While mortality data are available for longer periods,
PM,, data are unavailable before 1985. Each death record contains a cause of death code and
some basic demographic information. In compiling daily death counts, we excluded all deaths from
accidental causes, as well as deaths of county residents occurring in other locations. We refer to the
remaining number of deaths as total deaths. The main analyses were performed with total deaths
among the population aged 65 or greater (elderly deaths). We carried out additional analyses for
total deaths, unrestricted by age, for deaths classified by specific causes, and for selected population
subgroups such as elderly Blacks and elderly males. We classified the disease-specific causes
of death by the International Classification of Diseases (ICD) codes that appear on the mortality
records. We adopted the classification scheme detailed in Fairley (1990) (9), extracting cancer
deaths (ICD categories 140-209), circulatory deaths (ICD categories 390-459), and respiratory
deaths (ICD categories 11, 35, 472-519,710.0, 710.2,710.4).

In Cook County, there was an average of 117 nonaccidental deaths per day for all ages. Among



Table 1: Mean Daily Mortality for Nonaccidental Causes of Death. Total mortality indicates the
mean number of daily deaths of county residents of all ages, excluding accidental deaths, homicides,
and suicides. Elderly mortality indicates the subset of these deaths among county residents aged 65
and older. Circulatory, cancer, and respiratory deaths are classified by the primary cause of death

code listed on residents’ death certificates.

. Cook County Salt Lake County

Elderly Total Circulatory Cancer Respiratory | Elderly  Total
Winter 904 126.7 62 29 12 74 10.2
Spring 823 116.7 56 28 10 6.8 9.2
Summer 77.0 110.6 53 28 9 6.3 8.5
Fall 815 1156 55 29 10 6.6 8.9

residents aged 65 and over, there was an average of 83 deaths per day. Death counts vary by time of
year, with higher numbers in winter and fewer deaths in summer. In Salt Lake County, there was an
average of 9 nonaccidental deaths for all ages and 7 nonaccidental deaths for residents 65 and over.
As in Cook County, there are slightly more deaths in the winter. Table 1 displays some summary
statistics for both Cook County and Salt Lake County mortality.

Particulate Data ) '

In current monitoring efforts, particulates are measured throughout the United States. There
are both 24-hour aﬁd annual ambient air quality standards for particulate matter (6). In the first
case, the standard is attained when the “expected number of days per calendar year with a 24-
hour average concentration above 150 pgm ™3 is equal to or less than one.” In the second case,
the standard is attained when the “expected annual arithmetic mean concentration is less than or
equal to 50 ugm™3.” To comply with these standards, it is sufficient to collect samples from each
monitoring site only once every six days, though there are a few locations with monitors that operate
on a daily basis. For Cook County, the particulate data comes from a network of PM;o monitors
reported in the EPA Aerometric Information Retrieval System (AIRS) for the period 1985 through
1990. During this time, there were 20 separate monitors in operation, though several monitors were
operated for only a brief period of time. The Cook County network includes one daily station where
PM;( samples are collected on a daily basis. The remaining stations collected samples every sixth
day. The daily station observations are frequently missing, with 69 percent of the values recorded
once the monitoring station began operation in April 1985. To fill in some of the missing values, we
used the daily means of all available monitoring data as the basis for constructing our measures of
PM;o. With all available data, there are observations for 75 percent of the days after April 1, 1985.



Table 2: Summary of PM;o Values. Statistics listing the minimum, 25, median, 75®*, and
maximum PM;q values for daily stations in Cook and Salt Lake Counties, and the corresponding
network averages for all available monitoring data. The number of days with observations over 150

pgm=3 is listed in the final column.

Min 25%"P Median 75%*P Max # over 150
(a) Cook County
Daily Station 3 28 38 51 365
Network Mean 4 27 37 50 365
(b) Salt Lake County

Daily Station No. 12 9 © 33 48 67 194 13
Daily Station No. 1001 4 18 26 38 487 10
Network Mean 6 24 35 50 320 14

Since many of the 20 monitorin‘g stations were in operation for a short period, there is a maximum
of 12 observations on any single day. Furthermore, the six-day monitoring stations tend to operate
on the same schedule, so many of the days have only the single daily monitor contributing to the
daily mean.

In Cook County, PMj levels are generally highest in the summer. Figure 1 (top) shows the
distribution of daily PMjq values by month. It is also clear from this picture that mean levels are
generally well below the EPA standard of 150 ugm™3. In Table 2(a), the daily means from all
available stations are compared with the values from the single daily monitoring station. These
show close agreement, with three observations over the EPA standard for the daily station and two
observations over 150 for the daily means.

In Salt Lake County, there were six PM 1o monitors operating between June 1985 and December
1990. The monitoring network includes two daily stations. Figure 1 (bottom) shows the distribution
of of the network means of daily PM;o values by month. The distribution of PMjo in Salt Lake
County differs slightly from the distribution in Cook County. The overall levels are similar, though
there are more days in Salt Lake County with PMq levels over 150 ugm 3. Unlike Cook County,
there is an increase in overall levels in winter (December through February), though isolated
occurrences of high particulate levels occur throughout the spring and summer. In Table 2(b), we
present some summary statistics from the two daily stations and the daily means compiled from
all available data from the six station network. Particulate levels at daily station number 12 are
generally higher than at daily station number 1001, with the exception of the maximum value which

is due to just one large observation. We performed additional analyses using data from station
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Figure 1: Daily PM;o by month for Cook County (top) and Salt Lake County (bottom). Box plots

by month showing the distribution of the daily network averages of PM;g observations.



number 12 and station number 1001 individually to confirm that averaging these stations to creaté
our PMq covariate was not masking an effect.
Meteorological Data

The meteorological data used in this study are based on hourly surface observations taken
at O’Hare International Airport (Cook County) and Salt Lake City International Airport (Salt
Lake County). We extracted the data from the National Climatic Data Center’s National Solar
and Meteorological Surface Observation Network (1961-1990) data base, which contains hourly
surface observations in addition to solar radiation data. Our primary analyses concentrated on three
meteorological variables: temperature, specific humidity, and barometric pressure. We excluded
other variables such as solar radiation, cloud cover, wind speed and wind direction. Cloud cover
and wind variables were omitted to make our primary analyses more directly comparable with
other research and because factors like wind may have more direct connection with PM;o than
those included. For each variable we did include, we calculated the daily mean, based on hourly
values. And, because weather may have a lagged effect on mortality, we also included the values of
temperature, humidity and pressure from the two previous days. In other analyses, we considered
the effect of wind chill in the winter and solar radiation and a heat index in the summer. These
variables did not improve the prediction of mortality; the analyses are not included. The inclusion
of wind speed and lagged wind speed in Cook County did not change the results from any of the
models fit without wind.

Table 3 presents a summary of the meteorological data considered in various analyses. The data
set containing the original hourly observations for these variables had only a few scattered missing
values. We filled in the missing hourly observations by assigning the value from the previous hour,
and then computed the daily mean values based on twenty-four observations.

Pollen Data

Pollen data was obtained from the pulmonary unit at Grant Hospital, Chicago, Illinois, courtesy
of Judith Young. During the study period, pollen counts were recorded on a daily basis, except
for weekends and holidays when cumulative samples were taken. To fill in daily pollen values

from the cumulative values, we employed a model to predict daily pollen from local meteorological
conditions and then distributed the total pollen amounts to the individual days based on this model.

We considered pollen from trees, mold spores, and ragweed.

3 Model Formulation

Our primary analyses model daily death counts as a Poisson process. For most analyses, we split

the data by three-month seasons and fit separate models within each season. Winter is taken as



Table 3: Description of Meteorological Variables.

Variable | Description

tmean average daily temperature(C') from hourly observations

tlagl average temperature from 1 day before

tlag2 average temperature from 2 days before

qmean | average daily specific humidity(gkg~!) from hourly observations
qlagl average specific humidity from 1 day before

qlag2 average specific humidity from 2 days before

pr average daily station pressure (mb)from hourly observations

prlagl average station pressure from 1 day before

prlag2 average station pressure from 2 days before

the the three months December, January, February; spring as March through May, et cetera. All
season-by-season models include a yearly factor and a within-season trend (day) component. The
specification of the trend component differs by season. For each season, we considered either a
polynomial or a piecewise linear trend éomponent and selected the shape that fit the data best.
Although the covariates differ for different analyses, the basic model assumes that the daily death

counts (Y) are Poisson-distributed with
log(EY) = X8,

where X contains terms corresponding to a yearly factor, a within-seasonal trend component,
relevant meteorological covariates, and a measure of particulates. The parameters of the model
were fit by the iterative reweighted least squares algorithm in the statistical software package Splus
(see, for example (10)). v

To account for a possible lagged effect of PM o, we focus primarily on pmmean3, the average
of the current day’s PM together with the values for the two preceding days. Missing values were
ignored, so the mean values were based on any available observations. We compare the results
from these models with models that incorporated each of the three single day values. We also did
analyses using only the current day, pmmeanZ (today and yesterday), and pmmean5. In essence, the
results using pmmean3 are consistent with these other choices of PM;¢ measures, we only report a
typical result from Cook County using pmmean5 in the fall.

Auxiliary to the Poisson regression models used is a semi-parametric model which, through
its nonparametric character, avoids the necessity of specification of special forms while allowing a

reasonably accurate selection of important covariates. The details of the model as it was used are



Table 4: Candidate Covariates for Poisson Regression Analyses Based on Results from Semi-
parametric Modeling on Elderly Mortality. Active variables appearing in the month-by-month
analyses using the semi-parametric model described in Appendix A. The variable day is the day
of month (1-31), pmmean3 is the simple average of the observed network daily means for the

concurrent day and two previous days. The meteorological variables are described in Table 3.

Month Cook County Salt Lake County
Jan day pr.tmean,day

Feb gmean,qlagl,pr,prlag2 day,prlagl,prlag2

Mar day, [pmmean3]

Apr

May tmean,qlag?2, [pmmean3]

Jun pr day, [pmmean3]

Jul tmean qlagl,prlag?, [pmmean3]

Aug tlagl,pr,qlagl
Sep qlag2,pr,prlag2, [pmmean3] | day,tmean

Oct pr
Nov | qlag2 '
Dec day,qlagl,prlagl day,tlagl

given in Appendix A. This model is used in several ways. Primarily, it was used to select relevant
meteorological covariates and to focus on potentially important interactions as well as nonlinear
functional forms for some of the covariates. Models selected in this fashion tend to be more
parsimonious than models selected with standard stepwise procedures, with no loss of explanatory
power. In addition, a month-by-month analysis using the semi-parametric model revealed that PM 1o
was usually an inactive factor. R

By focusing on the months where PMj does appear active, a possible connection with pollen
was suggested. Accordingly we obtained pollen data from the City of Chicago and introduced
it in the analyses of May and September as well as in additional analyses covering August 15 to
September 15, the ragweed season. In no case did any pollen variables appear. The observed PM1g
effect in May and September is not explained by the presence of pollen particles.

With the focus on pmmean3, the meteorological covariates that were considered at the first
stage include the current day’s values as well as the preceding 2 days’ values. The particular
covariates included for a season’s analysis incorporated those found in the monthly analyses by

the semi-parametric model. Table 4 shows the set of active factors for each month in both Cook
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Figure 2: Some of the estimated effects for Cook County from the semi-parametric model.
Predictions of elderly mortality holding all other variables constant at their median levels. The
top two plots show the day-of-month effect for December and January, highlighting the peak in
the number of deaths around January 1; the middle plots show the relationship between PM;o and
mortality; the bottom plots show the potentially nonlinear dependence of mortality on meteorology.
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.and Salt Lake County in the semi-parametric model. We considered each of these covariates as
the candidate variables for inclusion in the Poisson regression models, along with the functional
forms and interactions suggested by the fitted response surfaces from the semi-parametric model.
To illustrate this use of the semi-parametric model, we include some plots of estimated effects® of
pmmean3, temperature, pressure, and day-of-year for some selected months (Figure 2). These plots
show the so-called Christmas effect on mortality, with a spike in the number of deaths around the
beginning of Januray, the linear effect of PM;g in May and September, and the nonlinear effects of
temperature and pressure. Using the combined list of covariates from the months comprising each
season, we used a stepwise variable selection technique to obtain a model without any measure
of PM;o. Typically, this led to two or three meteorological covariates selected for each season to
predict daily mortality. As a final step, we include the measure of PM;o and examine the direction
and size of the corresponding coefficient.

To illustrate the importance of considering a season-by-season analysis, we also present results
from an analysis combining the full year of observations for both Cook County and Salt Lake
County. In this analysis, we fit a yearly factor, a cubic time trend for each season, the meteorological
covariates that were significant predictors of mortality in the season-by-season models, and seasonal
interaction terms for selected meteorological covariates. We then compare the estimation of the

PM, effect from the models with and without PM;o-by-season interaction terms.

4 Empirical Evaluation in Cook County, IL

There are several sets of results for Cook County. We first present full year and season-by-season
analyses using the Poisson regression model estimating daily death counts for individuals 65 and
older (elderly mortality).” The linear predictors are detailed in Tables 5(a) and 6(a). As discussed in
the previous section, the covariates other than the yearly factor and the PM,( variable were chosen
using stepwise selection techniques based on the list of candidate covariates in Table 4. Other
models and results for Cook County are summariéed in Table 7.

In our full year analysis of Cook County, we conclude that it is necessary to estimate a separate
PM,, effect for each season. Since the effect of meteorology differs by season, for example,
increasing temperature acts as a stress factor in summer but decreasing temperature creates stress
in winter, we began by considering models for the full year which permitted separate estimates
of the effect of weather within each season. Our final full year model to predict elderly mortality

from meteorology includes separate seasonal terms for the yearly factors, the day-of-year effect,

SThese effects are computed by conditioning the remaining variables on their median values.

"Because daily death counts are high here, an ordinary (normal) regression model will give the same results.
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Table 5: Full Year Poisson Regression Models — Elderly Mortality. The left-hand side shows
the models fit to predict daily mortality, using shorthand notation where an asterisk (*) indicates
the interaction terms are included and poly(variable, n) indicates a polynomial term for the given
variable of order n. Specification of an interaction implies inclusion of all lower order terms. The
right-hand side shows the estimated effects of the PMjq variable, along with estimated standard

errors in parenthesis.

(a) Cook County
Linear Predictor log(EY) PM;o Coeff
season*(year+poly(day,3)+poly(tlagl,2))+
g+qlag2+pr+poly(prlagl,2)+pmmean3 0.00054(0.00020)

season*(year+poly(day,3)+poly(tlagl,2)+pmmean3)+ | Winter ~ -0.00001(0.00047)

q+qlag2+pr+poly(prlagl,2) Spring -~ 0.00083(0.00034)
Summer -0.00028(0.00036)
Fall 0.00195(0.00047)
(b) Salt Lake County
Linear Predictor log(EY) PM;j Coeff
season*(year+poly(day,3)+pr+tlagl)+pmmean3 0.00014(0.00046)
season*(year+poly(day,3)+pr+tlagl +pmmean3) Winter 0.00006(0.00067)

Spring  -0.00159(0.00125)
Summer 0.00112(0.00092)
Fall 0.00043(0.00126)
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Table 6: Seasonal Poisson Regression Models — Elderly Mortality. Models for mortality estimated
separately within each season are listed on the left-hand side. Estimated coefficients and standard

errors are shown on the right.

(a) Cook County

Linear Predictor log(EY) PM;g Coeff
Winter  year+day+Jan+Feb+pr+poly(prlagl,2)+pmmean3 0.00024(0.00046)
Spring  year+qlag2+pmmean3 0.00088(0.00030)
Summer year+poly(day,2)+poly(tlagl,2)+pr+prlag+pmmean3 | -0.00024(0.00035)
Fall year+qlag2+pmmean3 0.00138(0.00040)

(b) Salt Lake County

Linear Predictor log(EY) PM;( Coeff
Winter  year+day+Jan+Feb+tlagl+pr+pmmean3 0.00007(0.00069)
Spring  year+pmmean3 -0.00096(0.00116)
Summer year+poly(day,2)+pmmean3 0.00082(0.00091)
Fall year+pr+pmmean3 -0.00006(0.00123)

and temperature lagged one day. This permits the estimation of separate coefficients within each
season for these terms. Other covariates whose effect do not vary significantly by season for Cook
County include specific humidity for the concurrent day, 2-day lagged specific humidity, and station
pressure for the concurrent day and previous day. We added the three-day mean PM variable, and
compared the results from fitting a single estimate for the entire year with fitting separate estimates
by season. The estimate for the single PM;q effect is 0.00054 with a standard error of 0.00020.
Hence, an increase of 10 ugm ™3 of PMg corresponds to approximately .54 percent more deaths,
given constant levels of all other covariates. When the season-by-PMjg interaction term is added,
the PM; effect remains significant only in the spring and fall (Table 5(a)). The estimated effects
for the winter and summer are essentially zero.? To compare the overall effect of PM;g from this
model, we calculated the predicted increase in the number of deaths in each season if PM;o were
increased by 10 units. Wé then took the overall effect of PM; to be the average of seasonal effects
weighted by the length of season. The overall predicted increase in mortality is .63 percent. A
nonparametric analysis in (8) produces similar results. A similar calculation, based on independent
analyses of each month using the semi-parametric model, produces a .41 percent increase.

A finer tuned season-by-season analysis is obtained by fitting a separate model for each season.

8The chi-square test for the difference in deviance caused by inclusion of separate seasonal estimates for PMio supports
this inclusion with a p-value of approximately 0.001.
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Table 7: Summary of Regression Models, Cook County, Fall Season. The population subgroups
for each analysis are listed in the left-hand column. The final models are indicated in the middle
column, and the corresponding coefficients and standard errors for the PM;q variable are listed in

the right-hand column.

~ Population Linear Predictor log(EY) PM;¢ Coefficient
Total Mortality year-l-imean+q1ag2+poly(prlag2,3)+pmmean3 0.00080(0.00040)

Males 65+ year+poly(qlag2,2)+tmean+pmmean3 0.00159(0.00069)
Females 65+ year+qlag2+pmmean3 0.00087(0.00054)
Blacks 65+ | year+poly(qlag2,3)+pmmean3 0.00166(0.00089)
Whites, Others 65+ | year+qlag2+pmmean3 0.00134(0.00045)

Circulatory Deaths | year+poly(qlag2,2)+poly(prlag2,3)+pmmean3 | 0.00064(0.00052)

Respiratory Deaths | year*tlag2+poly(qmean,2)+pmmean3 0.00220(0.00125)
Cancer Deaths year+poly(qmean,3)+poly(tlag2,2)+pmmean3 | 0.00162(0.00071)
Elderly Mortality year+poly(qlag2,3)+pmmean5 | 0.00158(0.00047)
Wed., Thurs., Fri. | year+qlag2+pmmean3 0.00075(0.00061)
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Here, we used the variables suggested by the semi-parametric models for the corresponding months
to choose a parsimonious model predicting mortality from meteorology. The results for the separate
seasonal analyses are presented in Table 6(a). The covariates included in the seasonal models
vary significantly between seasons, suggesting that a separate model for each season may be more
realistic than one full year model. The PM;¢ coefficients and standard errors, however, are similar
to the full year analysis with the season-by-PM;j interaction terms. There is a significant effect in
spring and fall, and no significant effect in the winter and summer.

Thé reported standard errors are calculated assuming independent observations. To check this
assumption, we examined the autocorrelation structure of the standardized residuals for the full year
analysis. We computed the first seven lagged autocorrelations and found no correlations greater
than 0.03°. We conclude that there is no evidence of significant serial correlation. Other diagnostic
plots of the residuals confirm that the modeling assumptions are reasonable.

To investigate the consistency of the PM;g effect for different populations, we modeled daily
death counts from several subgroups within Cook County and for different measures of PM, like a
5-day mean (pmmean5) instead of a 3-day mean. Since the largest estimated PM g effect for elderly
mortality is in the fall, we restricted attention to this season. These analyses include total mortality
(nonaccidental deaths, all ages), elderly males and females, elderly Blacks and non-Blacks, and
total mortality classified by disease categories, including circulatory disease, respiratory disease,
and cancer. For each group, we refit the semi-parametric model by month to obtain the list of
candidate covariates for the Poisson regression analysis. Table 7 shows the results from the final
models selected.

To address concern over potential weekday, weekend effects in both PMjo and mortality,
we also investigated the effect of fitting the fall, elderly mortality model, detailed in Table 6(a),
to subsets of the data determined by day of week. We first subsetted to weekdays Wednesday,
Thursday, and Friday since for these days the pmmean3 covariate is unaffected by the decline in
PM over the weekend. The resulting pmmean3 coefficient is given in Table 7; It is approximately
half of the coefficient when all the data is used. We also analyzed each day of the week individually.
‘Although all the pmmean3 coefficients were positive, only the coefficient based on the Sunday
data was significant. The average of the seven daily coefficients was 0.00135, comparable to the
coefficient from our original fall, elderly mortality analysis. Similar effects were observed in the
spring. We interpret these results as inconclusive, neither supporting nor denying a weekday effect.

While there appear to be inconsistencies in Table 7 for example, a significant effect of PMyg

on males but not on females, the difference of the two effects may be insignificant. Similarly, for

9These values are all less than the approximate critical value of 2/v/N = 0.045.
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circulatory and cancer deaths. The greater effect for cancer deaths than for circulatory deaths is
in contrast to the opposite numbers reported in (1) for Philadelphia. The lack of significance for
Blacks is due to the greater standard error resulting from the smaller size of the black population in
Cook County. The distinction between using pmmean5 rather than pmmean3 is to reduce the size
of the effect somewhat (from .00195 to .00158) but it remains significant.

5 Empirical Evaluation in Salt Lake County, UT

The analyses for Salt Lake County were carried out in similar fashion to those carried out in Cook
County. The semi-parametric model was used on transformed (square-root of) mortality in order to
ameliorate the effect of non-normality and non-constant variances in the presence of small counts.
The analyses proceeded as before from the variables in Table 4 to the models found in Table 6(b).

The semi-parametric model identified PM;q as active in June and July. An estimated effect
plot for July indicated that the effect of PM;g in July was oscillatory (as in March in Cook County)
rather than monotone as in June (or as in May and September in Cook County). See Figure 3. The
Poisson regression analysis, however, did not find a PM;q effect in the summer. In fact, for the
full-year and seasonal models, PM;o was never a significant predictor of elderly mortality in Salt
Lake County.

For the full-year analysis, the single estimate of the PM;o effect is 0.00014 with a standard
error of 0.00046 (Table 5(b)). The full-year model including the season-by-PM interaction term
fails to indicate a significant PM effect in any single season. Additional analyses using pmmean3
calculated using only the data from station number 12 and station number 1001 individually yielded
similar results. Furthermore, unlike Cook County, the chi-square test for the difference in residual
deviance does not support the inclusion of a season-by-PMg interaction term. Even after fine-tuning
the analysis by fitting a separate meteorological model for each season, PMo does not emerge as a
significant predictor of mortality (Table 6(b)).

6 Summary

We analyzed data from Cook County, Illinois and Salt Lake County, Utah in order to assess the
connections among mortality, particulates (PM;o) and weather. We found that season plays a strong
role. We found inconsistent results: no effect of PM;o was found in Salt Lake County in any season;
no effect was found in Cook County in winter and summer; small, positive PM;q effects were
found in Cook County in the spring and fall, and perhaps more specifically, in the months of May
and September. Reported effects of particulates on mortality are not confirmed by these analyses;
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Figure 3: Estimated oscillatory effects from the semi-parametric model. In some months, PMjq

appears as an active factor in the semi-parametric model, but the effect appears to be spurious.
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whether increases in PMjq cause increases in mortality remains unresolved.
Appendix A. Semi-parametric Model

On day 1, in year j, with meteorological condition met and PM;o value pm, where met is a
9-dimensional vector of the meteorological variables listed in Table 3 and pm could be any of
the PM;o measures used in the analyses, let z = (pm,met,1,7). The vector z = ((j,...,(12)
is 12-dimensional. The response y(x) (mortality) is assumed to be a realization of a stochastic
process, Y (z):

Y(z) =B+ Z(x) + €5

where (3; are constants, j = 1,2,...,6, Z(x) is a zero mean Gaussian process with covariance
function Cov(Z(z), Z(z')) = 0% R(z, ') to be specified later, and &;; ~ N(0,2I). For more
discussion on the use of this technique for modeling response surfaces, see (11), and the references
cited there.

Assume, as in (11), that the covariance between Z(z) and Z(z') is

12
o3 R(z,z') = agexp(= D OklCk — GiP*)

k=1
where £ = (C1,...,C12), ' = (¢],---,C1a)- 0 2 0k =1,...,11,0;2 =0and 1 < pr < 2;
k =1,...,12. 615 corresponds to the year variable. This class of stationary processes provides us

with a wide range of functions.

Given the data (:):l,yl), (z2,42)y- -, (Tn,yn) for ¢ consecutive years starting from year 1
(1985) with n; data points in year j and n; + - - + ng = n and, provided 0z, oc and R(:,) are

known, the best linear unbiased predictor (BLUP) §j(z) at a new point x in year j can be written as
§(@) = pj + Z(x) = B; +r'(2)C™'(y - FP)

where y = (y1,%2,.-+,¥n), C = Cort(y) = (6%4/0*)R + (0%/0?)I, where 0% = 0% + 02, and
R = {R(z;,z;),1 <1 < n;1 < j < n}, then x n matrix of correlations among Z’s at the data
points, 7(z) = (0% /0%)[R(z1,%),. .., R(zn, z)]’,

i"n.1>(1 6 6
oo 0 Inz.xl 0 |
55 o T

nXq
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and 8 = (B1,...,B,) = (F'C-'F)~'F'C~y, which is the usual generalized least-squares
estimate of 3 = (61,..., ;)"

The parameters oz, 0., 0’s and p’s are fit by maximum likelihood. Cross validation is used
to assess variability of estimates. Values of p indicate smoothness of the response surface as a
function of the corresponding variables. Larger values of 6 usually indicate greater importance of
the corresponding variables if the variables are on normalized scales. During the covariate selection

procedure, those coefficients (§’s) which are zero are the factors not included; the others are selected.
Appendix B. The Problem of Confounding

To examine the confounding relationship between PM ¢ and the meteorological variables, a forward-
selection ordinary least squares regression analysis was performed with log PM;o (the natural
logarithm of today’s PMjq) serving as the response variable and the meteorological variables
serving as the covariates. The meteorological variables in the PMjo analysis were those included
in the mortality analysis. The same seasonal structure was maintained for the PMjo analysis as for
the mortality analyses. |

Cook Co. As mentioned earlier, PMjg levels were highest in the spring and summer while fall
and winter levels were depressed. R? values from the final models based on the forward-selection
ordinary least squares regression analyses ranged from a low of 20 percent in the winter to a high
of 50 percent in the summer. Thus the relétionship was strongest during the season with the highest
PMj levels. With the exception of the 2-day lag temperature term (tlag2) in the fall, the regression
coefficients for the various temperature terms were positive. Today’s temperature (tmean) showed
up in all seasons with the exception of summer, while the square of today’s temperature (tmean)
showed up in all seasons. All seasons except winter exhibited a strong rise in PM;o with increasing
temperature. The coefficients on the specific humidity terms were negative. Yesterday’s specific
humidity (qlagl) was important in all seasons, while today’s specific humidity (Qmean) showed up
in spring and fall. A quadratic term (qlag2?) showed up in the summer. These main effect results
are consistent in the sense that warmer drier conditions contribute to increased levels of particulate
matter. Interaction plots generally indicated that at low temperatures PM;o levels increased with
increasing specific humidity while the reverse was true at higher temperatures. Station pressure
(2-day lagged variable, prlag2) showed up only in the fall and then with a positive sign.

Salt Lake Co. The amount of variation in PM;q explained by the meteorological covariates
ranged from 29 percent in summer (a time of low PMj levels) to a high of 58 percent in the winter
(a time of high PMj levels). In contrast to Cook Co., station pressure was a significant variable in

all seasons in addition to temperature and specific humidity variables. Station pressure lagged one
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day (prlagl) was the first variable to enter the forward selection process in fall and winter where it
added 19 and 42 percent to the R? value, respectively. The sign of the regression coefficients on the
pressure terms were positive except during the summer. In spring and summer, temperature terms
were the first to enter the forward selection process. The signs on the temperature terms varied with
the season and within the season for different terms. Specific humidity terms entered for all season
in a negative manner except for winter. It is unlikely that there was a direct relationship between
pressure and PMjq levels; rather, station pressure appears to have served as a surrogate for those
meteorological conditions which have a direct physical/chemical relationship with PM;o. Typically,
in winter high pressure is accompanied by colder, dryer conditions. In spring and summer PMjg
levels generally increase as temperature increases; in winter PMjg levels decrease as temperatures
rise. In fall an initial decrease in PM; levels as temperatures rise turns to an increase in PMyg
levels as temperatures move above 7C. In winter, summer and fall PM levels initially increase
with rising humidity levels and then begin to drop as humidity continues to rise. In spring PMjg
levels decrease as humidity increases. '

Results on fitting mortality to weather variables alone, without PM;, indicated that tempera-
ture, humidity and pressure are all implicated (Tables 5 and 6); this was confirmed also by Smith’s
analyses (8).
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