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Abstract

This paper develops methodology for regression analysis of ordinal response data subject to interval
censoring. This work is motivated by the need to analyze data from multiple studies in toxicological
risk assessment. Responses are scored on an ordinal severity scale, but not all responses can be
scored completely. For instance, in a mortality study, information on nonfatal but adverse outcomes
may be missing. In order to address possible within—study correlations we develop a generalized
estimating approach to the problem, with appropriate adjustments to uncertainty statements. We
develop expressions relating parameters of the implied marginal model to the parameters of a
conditional model with random effects, and, in a special case, we note an interesting equivalence
between conditional and marginal modeling of ordinal responses. We illustrate the methodology in
an analysis of of a toxicological database. *
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1 Introduction

This paper is concerned with the analysis of ordinal categorical response data subject to interval
censoring. Our work was motivated by the toxicological risk assessment of a widely used chemical
solvent, perchloroethylene (PERC).

The Clean Air Act Amendments of 1990 require the Environmental Protection Agency to de-
velop emission standards for 189 pollutants and to set standards for other substances “to provide
an ample margin of safety to protect public health.” Available data come from all relevant stud-
ies in the literature. Different studies may include different toxicological endpoints, and multiple
endpoints appear within a given study. Moreover, the database for each chemical includes multiple
species, and there is tremendous variation in experimental protocol from one study to the next.
The heterogeneity of the available data poses a serious challenge to the risk assessor.

Interval censored categorical response data are an important part of the analysis of acute inhala-
tionvexposure to PERC. A major cornerstone of the approach to analyzing PERC is the reduction
of diverse endpoints to a common ordinal scale of severity categories; see section 6 for more details.
Use of ordinal severity scores in this context has been suggested by Hertzberg and Miller (1985),
Dourson, Hertzburg, Hartung and Blackburn (1985), Hertzberg (1989), and Guth, Jarabek, Wymer
and Hertzberg (1991), who used ordinal logistic regression across studies, in some cases adjusting
for species differences via an empirically derived “human equivalent concentration.” A distinct
advantage of adverse outcome modeling is that it provides a way to put very different quantitative
measurements on a common scale.

The outline of this paper is as follows. In section 2, we describe a general model for an interval
censored categorical response, deriving the likelihood function for it. Specific models discussed
include the proportional odds model and a conditional model based on continuation ratios. Of
special interest in the context of PERC is estimation of the dose at a given duration which leads
to a fixed probability of response, the so-called “effective dose” (ED).

An interesting facet of the applications that motivated this investigation is that the data con-
sist of a number of observations within each of a number of independent studies. This structure
induces correlations in the observations, and it forces us-to adjust the usual information-based stan-
dard errors. Section 3 describes how to make the adjustment, using the technology of generalized

estimating equations.



Simulation studies presented in section 5 compare interval censored estimation and estimation
using only the complete data. The simulations also contrast the reported inferences for naive
likelihood and generalized estimating equation methods when correlations are present in the data.

In section 6, we describe the PERC data set in some detail and apply the methods developed
in earlier sections. A striking conclusion of this analysis is that humans appear to be an order of
magnitude more sensitive to PERC than do mice or rats.

Final remarks are given in section 7.

2 Models for Censored Outcome Data

The purpose of this section is to propose a general model for censored categorical outcomes, along
with estimation of the effective dose which, at a given duration, leads to any any given probability
of response. We will then examine some specific models in detail. )
The response Y is categorical taking on the values s = 0,1,...,5 > 1. We let X be the covariate
of primary interest, in our example concentration (dose), and let Z be all the other covariates, e.g.,

duration of exposure, species, gender, etc. Denote by © all the unknown parameters, and write the

model in general form:

pr(Y > s8|X,Z) = H(s,X,Z,0)ifs=1,...,S; (1)
= 1ifs=0;

= 0ifs>S.

The response is censored into the interval [s,s 4+ m] if the only thing known about it is that it
falls into this interval (and no smaller interval). The probability that an observation falls into the
interval [s, s + m] is simply H(s, X, Z,0) - H(s +m+1,X,Z,0).

We assume that the censoring mechanism is deﬁnéd intrinsically and is hence ignorable in the
usual sense (Little & Rubin, 1987). In effect, each response Y follows a conditional multinomial
distribution, but the multinomial cells may differ for different observations. Related estimation
problems for partially classified multinomial observations have been studied by various authors,
including Hartley (1958), Koch, Imrey and Reinfurt (1972), and Chen and Feinberg (1976). The
work most closely related to ours is Shipp, Howe, Watson and Hogg (1991), which briefly discussed
ordinal regression in which some of the data are classified only according to whether or not Y is in

the highest severity category.



In the present framework, all that is observable about Y; is that it lies in one of the intervals
[0,ci1), [ci1,ci2), -+ [cik;» 00), Where the constants 0 < ¢;1 < -+ < ci, form an ordered subset of
{1,2,...,5}. Let 6(Y|s,t) =1if Y lies in the interval [s,t], and let it equal zero otherwise. The
likelihood function based on a sample of size n is then

n ki
¢©) = [ II {H(cit, Xi, Zi, ©) — H(cijr1, Xs, Zi ) ileiwcinr) (2)
i=1t=0
where we set cip = 0 and c; x,+1 = co. For given Z, the effective dose, ED190,(s, Z), for category

s=1,...,S is that value of = for which the probability is p that ¥ > s, i.e,
pP= H{S,EDloop(S,Z),Z, @)} (3)

For any given set (s,p,©, Z), one finds the ED1gop(s, Z) by solving (3).
The general formulation in (1) encompasses a variety of strategies for modeling ordinal response

data. We present several examples.
2.1 Proportional Odds Models

The proportional odds model, described by McCullagh (1980), is for polytomous logistic regression
assuming parallel effects for different severity levels. To capture the distinction between a primary

scalar variable X and a vector of covariates Z we formulate the model as
pr(Y > s|X,Z) = H(as + fTAX + T2), s=1,..,8, 4)

where A is a design vector accommodating stratification of the X effect, scale conversions and so
on, and H(v) = {1+ exp(—v)} is the logistic distribution function. One could, of course, replace
the logistic distribution by other distributions such as the standard normal employed in probit
regression. In the general framework of (1), © = (ay, ..., as, 3,7).

Define the logit function, logit(p) = H™!(p) = ‘log {p/(1 — p)}. The assumption that neither 3

nor v depends on the category s means that the logits,

pr(Y > s|X,Z)
pr(Y < s|X,2)

logit {pr(Y > s|X, 2)} = log{ } =a,+ fTAX ++72Z,

are parallel to one another as functions of X and Z. For this model equation (3) has the explicit

solution

logit(p) — as — v Z

ED1o0p(s,2) = A

(5)



2.2 Conditional Probability Models

Direct extension of the proportional odds model is problematic. The model in (4) implies that if we
were to perform logistic regression with “success” being ¥ > 1 or logistic regression with “success”
being Y > 2, then the two regression lines would be parallel. The assumption of parallelism may
be untenable in some applications. If we were to address this problem by letting 8 in (4) depend
on s, then it would be possible to get contradictions such as pr(Y > 1|X,Z) < pr(Y > 2|X,2)
for some (X, Z). Moreover, enforcing monotohicity of probabilities for all (X, Z) leads to a set of
constraints on the model which can cause difficulties in computation and in inferences.

An alternative to the propbrtional odds model, which provides a cleaner treatment of nonpar-

allelism, is the conditional model given by
pr(Y =s|Y < 5,X,Z) = H(as + 3 AX +7, Z). (6)

Feinberg (1980) and Agresti (1984) provided some details for cross—classified data, referring to the

conditional probabilities as “continuation ratios.” For our purposes it is easy to reconstruct the

marginal probabilities by recursion, and we find that

s
pr(Y <s|X,2) = [ {1-H(ew+8TAX ++72)}; (7
t=s+1 '
pr(Y =s|X,Z) = pr(Y =s|Y <s,X,Z)pr(Y <s|X,2)
S
= H(oo+pTAX+972) [[ {1-H(a+ffAX++72)}. ()
t=s+1

It follows that if a response Y is censored into [s, s + m], then its contribution to the likelihood is

the multiplicative factor

pr(s <Y <s+mlX, 2)

S s+m
=| II {1-H(a+a4x ++72)} [1 -1 {1 - H(a+ 87 AX +72’Z)}} (9)
t=s+m-+1 t=s
The effective dose, ED1qgp (s, Z), is obtained by solving
s
1-p=1-pr(Y <s-1X,2) = [][1-H{o+ (BT A)EDiop(s,2) +7Z}]. (10)
t=s

2.3 Adjacent Category Odds Models

Another possibility is to model the adjacent category odds in the log-linear model

pr(Y = s|X, Z)
log {pr(Y =s-1|X,2)

} =a,+BTAX ++72, s=1,..,5; (11)
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see, for example, Clogg and Shihadeh (1994). As in the conditional model of section 2.2, the severity
regressions in (11) may be modeled without constraints on the parameters. Using (11) and the fact
that the category probabilities sum to one, we obtain the marginal category probabilities

exp {z;zl(a, +6T4-X +172)}
14+ Y5 exp {Zu_ (o +BTA- X +41 Z)}

where the sum in the numerator vanishes if s = 0. Substituting (12) into (2) and (3) yields the

pr(Y =s|X,Z) =

s=0,...,5, (12)

likelihood and the defining equation for the effective dose. In particular, the effective dose solves
55, exp Sl {ox + BTA - EDuooy (s, 2) + 11 2}
1+ 8 exp [Dhei{ow + 8L 4 EDiooy(s, 2) + 752}

(13)

3 Marginal Analysis

The structure of the data in the applications that motivated this research is such that there are
a number of groups within each study, see Table 5. This clearly has the potential to introduce
correlations among the responses within a study; and hence to bias estimated standard errors.

If one thinks of the studies as clusters, one sees that we are in the typical framework of what is
now called generalized estimating equations. That is, we have specified a marginal model (1) for the
responses given the observed covariates, but responses within a cluster are correlated. The resulting
parameter estimates are consistent and asymptotically normally distributed. We first describe how
to adjust the usual formulas for standard errors and large sample confidence intervals, and then we

contrast marginal and conditional modeling for a correlated proportional odds model.
3.1 Statistical Uncertainty Estimates

In the absence of a model for the correlation structure, the standard device is to compute standard
errors using the sandwich formula. To so this, we proceed as follows. Let (Y;;, Xij, Z;;) refer to the
jth observation within the ith study (cluster), where : = 1,...,n and j = 1, ...,n;. Referring to (2),
if we compute the logarithm of the likelihood and differentiate with respect to ©, we see that our

estimate solves

0 = Y w(8), (14)

=1
where
n; kij
$i(©) Z Z 6( Y1.7|C¢Jt7 ch,t+1)a@10g {H(Czjb Xz]’ Zz]a 0) - H(Cij,t+1, Xij, Zij, @)} . (15)
7j=1t=0



The sandwich estimator of the covariance matrix of © is cov(©) = A;!B,A;T, where 4, =

1 52—7:% (@) and B, = Y 1o % (@) vF (@) In computing standard errors and confidence
intervals we suggest two further adjustments to reflect the extra variability due to estimating p
parameters: (1) inflate the estimate of the covariance matrix by the multiplier c(n,p) := n/(n —
'p); and (2) replace the standard normal quantile in the confidence interval by the corresponding
quantile of the Student’s t distribution with n — p degrees of freedom. These adjustments produce
confidence intervals analogous to the t-type intervals commonly used linear regression analysis. The
simulations presented in section 5 contrast the the sandwich type intervals with the naive delta

method, which ignores the effects of within group correlations.
3.2 Marginal versus Conditional Parameters

As in any problem with correlations induced by clustering, an alternative to the sandwich estimator
is to model the correlation structure directly, e.g., by a random effects analysis. We describe some
relationships between the two approaches, focusing on a conditional proportional odds model with

random intercepts, specifically,
pr(Yi; > s|Us,Vi;) = H(as+oU; + nTV}j), s=0,1,...,S (16)

forj=1,...,n;,i=1,...,N, 0 >0, and U; has a distribution G with mean equal to zero. The
random variables U; are independent but unobservable, and the responses Y;; are conditionally
independent given U;. The latent variables U; induce correlations between groups of responses.
Binary models (S = 1) of this form have been considered by various authors including Anderson
and Aitkin (1985), Stiratelli, Laird and Ware (1984), and Preisler (1989).

It is important to realize that the parameters of the marginal model implied by (14) are distinct
from the parameters of the conditional model (16). This can be seen as follows. First, define the

smoothed link function,
(o]
H,(t) = / H(t + ou)dG(u), (17)
—00
and, letting 6 = (a”,nT)T, the interval probabilities
ﬂ'ijt(O', 0) = Ho(acm + ’f]TVij) - Ha'(acij’t_‘_l + 17TV}_.,'), t=1,..., k. (18)

Next, let § = (&T,7T)T be the vector of marginal model parameters. Then g solves the theoretical



estimating equation
ki;

n n; a . _ _ .
0= Z Z Z Tije(0, e)glog {H(acijt + nTWJ’) - H(acij,t+1 + WTWJ')} . (19)
1=135=1t=0

If it were to happen that m;js(c,0) = 745(0,6), then we would get 6 = 6, because (19) reduces to
the theoretical estimating equation of the unconditional proportional odds model. Except for the
trivial case ¢ = 0, however, we cannot expect this equivalence to hold in general.

A more enlightening simplification occurs if H, is a scale transformation of H, that is, for some
constant 7 we have H,(x) = H(rz) for all z. For example, if H = G = @, where ® is the standard
normal distribution function, then the scale relationship holds with 7 = (1 + ¢2)~1/2. The scale
relationship implies that m;;:(0,8) = mj4(0,760) for each combination of 4, j and ¢. Consequently,
equation (19) coincides with the théoretical estimating equation of the unconditional proportional

odds model (d = 0), but with 0 replaced by 76. We therefore have
=0 (20)

The multiplier 7 is the attenuation effect in going from a model for the conditional distribution of
Y given U to a model for the marginal distribution of Y integrated over U. The effect is similar to
the attenuation that occurs in measurement error problems, as described by Carroll, Ruppert and
Stefanski (1995).

For related discussion of marginal versus conditional modeling in the context of longitudinal
data see Zeger, Liang and Albert (1988), who used the evocative terms “population-averaged” and

“subject—specific.”
3.3 Mafginal Effective Dose

Assume now that 7TV = fTAX + yTZ, where X is the “dose” and Z is the vector of covariates.
‘Under the conditional model (16), the effective dose giving a marginal probability of p for a response

severity s or higher is given by
p=pr(Y > s|X = ED1oop(5, Z), Z) = Ho(as + BT A - ED1oop(5, Z) + 77 Z). (21)
If H,(-) = H(r-), then (20) and (21) imply that

p=H(ras +18TA- ED1gop(s, Z) + T Z) = H(Gs + fTA - ED1oop(s, Z) + 77 2). (22)



Hence, we have established an interesting equivalence between marginal modeling and conditional

modeling, which is summarized in the following result.

Theorem: Assume that conditional model (16) holds. If the convolution of H and G is a
scale transform of H, then the marginal effective dose for the conditional model is the same as the

effective dose of the marginal model obtained by the method of generalized estimating equations.

An example in which this equivalence holds is probit ;egressioil with a Gaussian prior on the
intercept. More generally we expect that the marginal effective dose is less sensitive to the random
effect than the regression parameters are. For instance, if G is Gaussian and H is logistic, then
H may be closely approximated by the N(0,1.72) distribution, and the convolution of the two
Gaussian distributions is a scale transformed Gaussian, which is approximately a scale transform
of the logistic link function. We would therefore expect the conditional and marginal models to

lead to similar values for the marginal effective dose.

4 Computational Method

For the proportional odds model, it is possible to use standard software to obtain starting val-
ues for the parameters, using what we call “pseudo-strata”. We illustrate the idea for the case
that the response takes on the three values s = 0,1,2 = S. The possible responses then are
0,1,2,{0,1},{1,2}. The pseudo-strata correspond to the outcomes s > 1 and s > 2, which we will
call stratum 1 and stratum 2, respectively. We first create two data sets. For stratum j = 1,2,
the information available for a logistic regression has a “success” defined as Y > j. The data set
for stratum 1 thus consists of all data except those for which the assignment to a “success” is
ambiguous, i.e., those for which it is only known that ¥ =0, 1. Similarly, the data set for stratum
2 consists of all data except those for which the assignment to a “success” is ambiguous, i.e., those
for which it is only known that ¥ = 1,2. One then pools the two data sets, and runs a logistic
regression with stratum-specific intercepts oy and a;. Note that many observations appear twice in
the newly constructed data base. This data reuse does not affect the consistency of the parameter
estimates, and hence they serve as legitimate and easily computed starting values; data reuse does
mean that the standard errors computed from logistic regression software are typically incorrect.
The pseudo-strata method is easily extended to general problems.

Given pseudo-values, we then iterate to convergence using Newton-Raphson. In the propor-

tional odds model we did not explicitly enforce the constraint that the o parameters remain ordered,



but in all cases the estimates were properly ordered. Violations of the ordering constraint could
possibly occur if the model fit were very poor.

We have implemented the censored proportional odds computations in S-Plus (Statistical Sci-
ences, Inc.), including sandwich type variance estimates. In the absence of censoring the SAS (SAS
Institute, Inc.) procedure “Logistic” will fit the proportional odds model. Additional programming

will be required for the sandwich estimates of variance.

5 Simulations

We ran two small simulation studies to illustrate the impact of censoring and correlation in the
data, using the conditional proportional odds model (16) with H = logistic and G = normal,
i.e., a conditional logistic model with Gaussian random effects. As shown in section 3, because
the logistic distribution function can be approximated by a normal distribution function with
standard deviation 1.7, the marginal regression parameters are approzimately attenuated by the
factor 7 = (1+02/1.72)~Y/2 a 2 relative to the conditional model parameters, but the effective dose
from the marginal model is the same as the marginal effective dose from the conditional model.
We report results for regression parameters as well as effective doses.

We set S = 2, and the conditional model parameters were set as follows: a; =5, a3 =0, 8=4
and v = 2. We simulated under both the independent response model with ¢ = 0 and the random
intercept model with ¢ = 3.

In all cases, there were n = 90 observations, in 18 groups of size 5, so that N =18 and n; =5
for i = 1,...,N. Each experiment was repeated 500 times. In Tables 1 and 2, we constructed the
censored data as follows. Four groups of five observations were selected at random so that only
whether Y <lorY =2 was observed, while another four groups of five observations were selected
at random so that only whether Y =0 or Y > 1 was observed; thus a total of 40 observations were
subject to censoring. A complete data analysis is one in which only the fifty observations which
are not subject to censoring are retained.

Marginal parameter estimates were obtained by computing maximum likelihood estimates as
if the data were indebendent, both for the reduced set of complete data, and for the full data
including censored obsérvations. Variances and confidence intervals were computed using bbth
the naive Fisher information and the sandwich method. The sandwich intervals incorporated the

empirical adjustments described in section 3.

v
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Table 1 focuses on estimation of the model parameters, as well as estimating their standard
errors and constructing confidence intervals. Table 2 considers estimation and inference for the
ED10 for any effect, defined by (5) with p = .10 and s = 1, computed for three values of z;
we are thus estimating EDpy=19(s = 1,z). The overall conclusions formed from these tables are
as follows. Generally, the interval censored estimates and the complete data estimates show no
serious differences in their means, but the former is more efficient in that it is less variable. When
o2 = 0, there are no group random effects, so that all observations are independent and both the
Fisher information and sandwich methods yield asymptotically correct inferences. In this case,
both the Fisher information and sandwich standard errors yield coverage probabilities at or near
the nominal level, although the sandwich estimator tends to have coverages closer fo the nominal;
this is probably an outgrowth of our empirical adjustments.

When there are group random effects (o2 = 9), the attenuations in the parameter estimates are
nearly whaf one expects from our approximate analysis, in the sense that the simulation means for
0% = 9 are approximate 50% of the simulated means when o = 0. The EDyg estimates tends to
be more extreme here than is expected from our approxima,tions. Because the approximations are
just that, a.pproximations, for this model we took as the “true” parameters the simulated mean
of the estimates. This is equivalent to the standard marginal analysis convention of performing
inference about the value to which the estimates converge, rather than some theoretical parameter
to which the estimate converge only approximately. Here the naive Fisher information standard
errors are asymptotically incorrect because of the correlations within the groups; we use the term
“naive” here to mean that the group correlations were ignored. In the simulations, the naive Fisher
information standard deviations are much too small. This is reflected in coverage probabilities,
where the sandwich intervals have nearly nominal coverage, while the naive Fisher information
intervals have decreased coverages.

We repeated this simulation, but with a different pattern of censbring, namely that 40 obser-
vations were censored so that only whether Y <1orY = 2 was observed. Table 3 presents the
results for the parameters estimates, while Table 4 presents results for estimation of effective dose.
The results are much in line with those of Tables 1 and 2. The major difference is that the interval
censored ED;g estimates are not much less variable than the complete data estimates. Presum-
ably, this is because of the fact that for this pattern of censoring, the censored data provide little

infom}a.tion about the intercept o for an adverse effect, but this intercept is crucial in the ED1g

11



definition.

It is important for the reader to appreciate what we mean by a “complete” data analysis. As we
have envisioned it, interval censoring is an inﬁegral part of the study, e.g., some studies are ’designed
to report only an adverse effect (Y > 1) on many study participants, with finer gradations among
adverse effects occurring only on a randomly selected subset. We have defined as a “complete data
analysis” one which eliminates those observations which could have been censored. In the lexicon
of Little & Rubin (1987), a complete data analysis is a missing data analysis in which missingness
occurs at random and is ignorable.

Another possible definition of complete data analysis is one which retains all uncensored obser-
vations. Thus, in the second simulation, we might have retained any observation for which ¥ = 2,
but eliminated those for which it is only known that ¥ < 1. A complete data analysis done in this
was is also a missing data analysis, but now the missing data are not missing at random, they are
not ignorable, and the resulting parameter estimates are inconsistent. Thus, we have chosen not to

report results from this type of analysis.

6 Analysis of Perchloroethylene Data

Perchloroethylene (PERC) is a widely used solvent, and its effects have been investigated in a
number of small studies. Information collected from these studies was assembled into a data base;
the details of the data-base construction will be described in a separate report. In broad outline,
initially a literature search was done to find all available data from published sources, proceedings
and technical reports. The initial set was screened to remove poorly documénted studies. Since
PERC is widely used, there exist human studies at low levels of exposure. Test species were mice,
rats, rabbits, dogs and humans. The rabbit and d(;g groups were omitted from the analysis due to
their scarcity in the data base.

A profile of these studies is given in Tables 5-6. In the first table, we distinguish betvx;een a
severity study, which is clearly aimed at risk assessment for acute exposures, and a mortality study,
" which is aimed at fatal exposures and which has outcomes reported merely as survival or death.
There were no pure mortality studies in the PERC data base, but a number of studies included
lethal levels of exposure. In one of these studies a portion of the animal responses were reported
simply as lethal or nonlethal, with no information on nonlethal adverse outcomes. In this case the

nonlethal outcomes were censored, see Table 6
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Each study consisted of a number of groups of test subjects, with concentration and duration
of exposure reported. The number of test subjects in each group varied, and we have reported the

average number in each species-sex combination.
6.1 Ordinal Response Scoring

The response variable in the analysis is a severity score with 0 = “No adverse effect,” 1 = “Mod-
erately adverse effect,” and 2 = “Severe or lethal effect.” The severity scoring was performed by
a toxicologist based on biological considerations. Substantial censoring occurs because, in addition
to the mortality censoring mentioned above, there is often insufficient information to determine the
biological significance of a particular response. This type of ordinal severity scoring allows us to
treat different endpoints on a common scale.

The severity judgements were based on biological rather than statistical considerations because
the use of statistical tests of significance at this stage would bias the subsequent ordinal regression
analysis.

Some data were reported at the group level only. Thus, for example, a study might report the
results on a group of six rats, and as our response we used a summary severity category for the Whole
group. Simpson, Carroll and Xie (1994) described latent variable models for group responses. In a
preliminary binary analysis of the PERC data, they found a group response score had essentially
the same information as a single individual response due to the high imputed correlation between
individuals in a group. In the present analysis we analyze group response data only, treating them
as equivalent to single individuals. | Further work is underway on combining group and individual

incidence data, and the analysis presented here is somewhat preliminary.
6.2 Log Concentration and Control Data

We‘ use log concentration and log duration of exposure as the primary independent regression
variables, and determine effective log—concentration as a functiog of dﬁration. This is based on
several considerations. First, the concentrations and durations vary over orders of magnitude, so
an analysis based on the raw scale would allow certain observations to be extremely influential
on the results. Second, attempts to fit the model with either the duration or the concentration
(or both) on the original scale lead to poorer model fit as measured by comparing likelihoods.
Third, the log transform is range preserving in the sense that effective doses are computed to be

nonnegative.
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With the dose and duration variables entering the model on the logarithmic scale, the proper
treatment of control data requires some care. The log—dose model implies that controls have
response probabilities equal to zero. Thus, control responses are uninformative under this model
(provided they are all zero). The proper likelihood analysis deletes the null control responses from
the analysis. In the PERC studies all controls had null responses.

Any nonnull responses among the controls would invalidate the log-dose model. Several ap-
proaches have been proposed in the literature to deal with nonzero control probabilities for binary
response data when the dose effect is expressed on the logarithmic scale. A relatively clean anal-
ysis is to replace the dose response P(d), where d is “dose,” by the modified response function
po + (1 — pg)P*(d), where pg is the spontaneous response probability, and P*(0) = 0. Further
details and references may be found in Morgan (1992, Chapter 3).

6.3 Stratified Analysis

If we pool all the data across species and gender, we fit the model (4). However, this model can
be extended to allow for stratum-specific effects. For example, if we have strata j = 1,...,J, then

a model with stratum-specific intercepts is
Pr(Y > s | X, Z, stratum = j) = H(as + f1z1 + f2z2 + 70,5), (23)

where it is understood that 79 = 0, a convention necessary to make the model statistically
identifiable.
The model (23) can be further expanded, for example to allow different strata to have different

log-concentration parameters. One such model is
Pr(Y > s | X, Z, stratum = j) = H(as + foj X + B2 + ;). (24)

In our first analysis, we pooled all the data and fit the model (4). Figure 1 contains two important
features; (a) a plot indicating the severity category, concentration and duration for each group in
the PERC data base; and (b) the estimated EDjq and its associated 95% confidence band when
pooling all the data. The “censored” category in (a) always refers to interval censoring obtained by
pooling the nonadverse and adverse categories. Part (b) shows the negative slope that one would
expect; as duration increases, the estimated ED;y should decrease. The parameter estimates using
interval censored and comblete data analyses, along with their estimated standard errors, are given

in Tables 7-8.
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We next performed a stratified analysis, stratified on the basis of species. We fit in turn
models (23) and (24). The former model allows for stratum effects but assumes that the effects
of concentration and duration do not depend on the strata. The latter model allows for stratum-
specific concentration effects. Model (23) provided a statistically significant improvement over
model (4) (p < 0.001), while model (24) provided a statistically significant improvement over
model (23) (p < 0.04). There was little evidence of an important stratum-specific duration effect.
The parameter estimates for the model (23) are given in Tables 9-10.

The addition of stratification variables in the model was statistically significant, and the effects
appear to be practically significant as well. Figure 2 shows the EDjq lines for the different species
based upon the model (24), which has stratum-specific concentration effects. In contrast to Figure
1, Figure 2 shows the species associated with each point. It is apparent that in the PERC data
base the humans had much lower exposure levels than mice and especially rats. The EDq’s are
typically an order of magnitude smaller for humans than they are for rats, and similarly for mice at
low durations of exposure. Note also that the rat and human lines are very nearly parallel on the
log-log scale, with the mice line being only somewhat nonparallel. The line for mice is estimated
with much less precision than the human and rat lines, and the observed nonparallelism must not be
overinterpreted. Because the duration parameter is shared by all species, this parallelism among the
species is a reflection of the similarity of the concentration slope parameters across species. Thus,
the major differences between rats and humans especially, and to a less extent the mice, appear
to be explained by differences in uptake rather than differences in mechanism. In particular, the
differences might be addressed by scaling up the concentrations, because the scale is reflected in
the intercept rather than the slope if concentrations enter the model logarithmically. For mice,
there may be a difference in mechanism, but the lack of precision in the line for mice makes such
a conclusion tenuous at best.

In Figure 3, we combined the results of the pooled and stratified analyses. The vertical lines
represent the pooled EDyg and its 95% confidence interval and the median duration of exposure
observed in the PERC data base. The horizontal lines are the stratum—specific ED1¢’s. There are
major differences here. For example, the estimated ED;g for rats falls outside the pooled confidence
interval. Note the previously mentioned fact that the ED;g for mice is poorly estimated relative to
that for humans and rats.

We have run further analyses on these data, by allowing for species/gender stratum effects.
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While we observed some statistically significant effects in such analyses, in general the practical
effects were not striking. To illustrate this, consider Figure 4, which is the analogue to Figure 3
when gender and species are used to form strata. One observes in Figure 4 some small gender

effects, but these do not appear to be of major consequence.

7 Discussion

We have considered the analysis of ordinal categorical response data subject to interval censoring.
We have described general models for interval censored responses, and their associated likelihood
functions. Specific models discussed included the proportional odds model and a conditional model
based on continuation ratios.

The problem arises as an important part of the analysis of acute inhalation exposure to PERC.
Of special interest in the context of PERC is estimation of the dose at a given duration which leads
to a fixed probability of response, the so-called “effective dose” (ED).

An interesting facet of the applications that motivated this investigation is that the data consist
of a number of observations within each of a number of independent studies. This structure induces
correlations in the observations, and it forces us to adjust the usual information-based standard
errors. We have described in section 3 how to make the adjustrﬁent, using the technology of
generalized estimating equatioris.

For estimating the effective doses, we showed that in some important special cases that there is
an equivalence between conditional and marginal modeling of ordinal responses, even though the
methods estimate different model parameters.

In section 6, we described the PERC data set in some detail. A striking conclusion of this

analysis is that humans appear to be an order of miagnitude more sensitive to PERC than are rats.
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Mean
=0 0?=9
ay Qs Bz B ay Qs Bz Bz
Complete | 6.090 0.001 4.884 2.469 2976 0.012 2.378 1.173
1.C. 5.717 0.007 4.572 2.302 2.796 0.007 2.235 1.108
Standard Deviation
o%=0 o%=9
a1 a52 ,B:z: /Bz al a2 ,Bz ﬁz
Complete | 2.192 0.663 1.708 0.989 1.142 0.723 0.723 0.511
1.C. 1.573 0.502 1.232 0.727 0.810 0.553 0.550 0.392
Mean Estimated Standard Deviation, Naive
0%=0 0%=9
ax ) Bz B- ay Qs Bz B
Complete | 1.679 0.581 1.352 0.803 0.706 0.429 0.591 0.431
I.C. 1.269 0.461 1.018 0.611 0.547 0.343 0.456 0.336
Mean Estimated Standard Deviation, Sandwich
02=0 o%=9
ax %) Bz B ay Qs Bz B:
Complete | 1.957 0.703 1.571 0.934 1.045 0.765 0.757 0.535
1.C. 1.339 0.503 1.081 0.648 0.746 0.548 0.534 0.378
Coverage of Nominal 95% Interval, Naive
o%=0 o%=9
ax Qs Bz B ax Qs Bz B
Complete | 0.978 0.958 0.982 0.982 0.814 0.792 0.904 0.928
1.C. 0.970 0.970 0.972 0.972 0.846 0.808 0.900 0.928
Coverage of Nominal 95% Interval, Sandwich
o%=0 o%=9
a1 a2 ,Ba: ﬂz al a2 ﬁa: ,Bz
Complete | 0.980 0.984 0.982 0.978 0.936 0.972 0.960 0.97
1.C. 0.976 0.970 0.976 0.964 0.938 0.960 0.944 0.96

Table 1: Monte-Carlo study of the proportional odds model. Both log(concentration) and
log(duration) are generated as standard normal random variables. Here (a1, 02, Bz, 8z) = (5,0,4,2).
The model has a random intercept effect with mean zero and variance 0. “Complete” stands for
using the complete data only, while “I.C.” stands for the interval-censored mle. The sample size is
n = 90, with 20 observations censored to either Y <1 or Y = 2, and 20 observations censored to
Y =0 or Y > 1. Marginal parameter estimates were obtained by computing mazimum likelihood
estimates as if the data were independent. Variances and confidence intervals were computed using
both the naive Fisher information and the sandwich method.



ED10 for 62 =0 ED10 for > =9

Duration 25th 50th 75th 25th 50th 75th
Mean

Complete -1.404 -1.748 -2.091 -1.954 -2.293 -2.632

1.C. -1.426 -1.767 -2.109 -1.982 -2.320 -2.659

Standard Deviation
Complete 0.239 0.249 0.283 0.576 0.596 0.640
I1.C. 0.198 0.206 0.232 0.469 0.484 0.517

Mean Estimated Standard Deviation, Naive
Complete 0.267 0.280 0.314 0.448 0.477 0.534
1.C. 0.196 0.207 0.235 0.369 0.392 0.438

Mean Estimated Standard Deviation, Sandwich
Complete  0.277 ~ 0.292  0.330 0.605 0.63 0.686
I.C. 0.214 0.226 0.255 0.460 0.48 0.523

Coverage of Nominal 95% Interval, Naive
Complete 0.892 0.902 0.904 0.864 0.864 0.890
1.C. 0.916 0.912 0.918 0.876 0.874 0.892

Coverage of Nominal 95% Interval, Sandwich
Complete 0.952 0.934 0.944 0952 0.964 0.970
I.C. 0.942 0.936 0.938 0.936 0.930 0.948

Table 2: Monte-Carlo study of the proportional odds model. ~Both log(concentration) and
log(duration) are generated as standard normal random variables. Here (ay, a9, Bz, Bz) = (5,0,4,2).

The model has a random intercept effect with mean zero and variance o2. Displayed are results for
estimating the ED10. “Complete” stands for using the complete data only, while “I.C.” stands for
the interval-censored mle. The sample size is n = 90, with 20 observations censored to either Y <1
or Y = 2, and 20 observations censored to either Y =0 or Y > 1. Durations are chosen at the
25th, 50th and 75th percentiles of the standard normal distribution. The true ED10 for an adverse
effect (Y > 1) for these durations with 0% = 0 are are —1.462, —1.799 and —2.136, respectwely
Via simulations, the true ED10 for an adverse effect (Y > 1) for these durations with o2 = 9 are
are set to their mean estimated values. Marginal parameter estimates were obtained by computing
mazimum likelihood estimates as if the data were independent. Variances and confidence intervals
were computed using both the naive Fisher information and the sandwich method.
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Complete
I.C.

Complete
I.C.

Complete
1.C.

Complete
I.C.

Complete
1.C.

Complete
I.C.

ay
6.090
5.647

2.192
1.447

a1
1.679

Mean
o2=0 o%=9
a2 6:: ,Bz al a2 :Bw
0.001 4.884 2.469 2976 0.012 2.378
0.007 4.519 2.259 2.823 0.008 2.221

Standard Deviation
=0 o?=9
a2 ,Bm ;Bz al a2 ,Bz
0.663 1.708 0.989 1.142 0.723 0.723
0.424 1.089 0.694 0.925 0.494 0.544

Mean Estimated Standard Deviation, Naive

o?=0
Qs Bz B
0.581 1.352 0.803

o2=9
a1 aa Bz
0.706 0.429 0.591

1.264 0.402 0.959 0.575 0.603 0.302 0.442

o1
1.957
1.325

0.978
0.968

o1
0.980
0.966

=0
a2 ,3:1: ,Bz
0.703 1.571 0.934

Mean Estimated Standard Deviation, Sandwich

a?=9
oy Qo Bz
1.045 0.765 0.757

0.443 1.015 0.610 0.791 0.497 0.527

Coverage of Nominal 95% Interval, Naive
o?=0 o?=9
a2 ,6:1: /Bz 621 6‘2 ﬁz
0.958 0.982 0.982 0.814 0.792 0.904
0.954 0.96 0.954 0.838 0.812 0.910

Coverage of Nominal 95% Interval, Sandwich
o2=0 ) o?=9
a2 ﬁa: ﬂz a1 a2 ,3:::

B.
1.173
1.098

B-
0.511

0.375

B-
0.431

0.324

8.
0.535
0.368

B-
0.928

0.934

B

0.984 0.982 0.978 0.936 0.972 0.960 0.970
0.978 0.972 0.968 0.94 0.964 0.950 0.966

Table 3: Monte-Carlo study of the proportional odds model. Both log(concentration) and
log(duration) are generated as standard normal random variables. Here (o1, o2, Bz, B2) = (5,0,4,2).
The model has a random intercept effect with mean zero and variance o
using the complete data only, while “I.C.” stands for the interval-censored mle. The sample size
is n = 90, with 40 observations censored to either Y < 1 or Y = 2. Marginal parameter esti-
mates were obtained by computing mazimum likelihood estimates as if the data were independent.
Variances and confidence intervals were computed using both the naive Fisher information and the

sandwich method.
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ED10 for 62 =0 ED10 for 0 =9
Duration 25th 50th 75th 25th 50th 75th

Mean
Complete -1.422 -1.763 -2.104 -2.028 -2.368 -2.708
1.C. -1.46 -1.795 -2.130 . -2.002 -2.34 -2.678

Standard Deviation
Complete 0.227 0.240 0.275 0.518 0.534 0.569
I1.C. 0.202 0.204 0.212 0.489 0.500 0.530

Mean Estimated Standard Deviation, Naive
Complete 0.223 0.235 0.266 0.423 0.450 0.499
1.C. 0.192 0.196 0.208 0.389 0.411 0.452

Mean Estimated Standard Deviation, Sandwich
Complete 0.265 0.279 0.314 0.565 0.587 0.637
I.C. 0.185 0.190 0.202 0.478 0.497 0.536

Coverage of Nominal 95% Interval, Naive
Complete 0920 0.923 0.923 0.873 0.887 0.880
I.C. 0.946 0.944 0.944 0.856 0.874 0.898

Coverage of Nominal 95% Interval, Sandwich
Complete 0.980 0.970  0.967 0.970 0.963 0.970
I.C. 0.928 0.924 0.924 0.928 0.934 0.940

Table 4: Monte-Carlo study of the proportional odds model. ~Both log(concentration) and
log(duration) are generated as standard normal random variables. Here (a1, 02, Bz, B2) = (5,0,4,2).
The model has a random intercept effect with mean zero and variance o>. Displayed are results for
estimating the ED10. “Complete” stands for using the complete data only, while “I.C.” stands for
the interval-censored mle. The sample size is n = 90, with 40 observations censored to either Y <1
or Y = 2. Durations are chosen at the 25th, 50th and 75th percentiles of the standard normal
distribution. The true ED10 for an adverse effect (Y > 1) for these durations with o2 = 0 are
are —1.462, —1.799 and —2.136, respectively. Via simulations, the true ED10 for an adverse effect
(Y > 1) for these durations with a® = 9 are is set to the mean estimated values. Marginal parameter
estimates were obtained by computing mazimum likelihood estimates as if the data were indepen-
dent. Variances and confidence intervals were computed using both the naive Fisher information
and the sandwich method.



“Severity Studies Mortality Studies |
# of Total # Average # # of Total # Average #
Studies of Groups per Group Studies of Groups Per Group

Mice - F 5 47 5.87 1 8 8
Mice - M 3 16 12.62 0 0 0
Mice - B 2 3 13.33 0 0 0
Rats - F 4 19 537 0 0 0
Rats - M 2 14 11.43 0 0 0
Rats - B 1 22 17.09 0 0 0
Human - M 3 5 5.60 0 ] 0 0
Human - B 2 6 5.33 0 0 0

Table 5: Information on Perchloroethylene (PERC) Here “~F” means females, “~M” means males
and “-B” indicates that gender was either unspecified or the group was mized.

Response Type
Species [0] [1] [2] [0,1] [1,2]
Mice 10 23 28 13 0 |
Rats 17 5 21 12 0

Human 6 5 0 0 0

Table 6: Censoring Information on Perchloroethylene (PERC)

23



Complete | Interval Censored

o1 -10.55 -11.90
(2.61) (2.11)

[4.65] C [4.38]

o2 -13.75 -14.29
(2.91) (2.29)

[5.10] [4.87]

Log duration (3;) 2.84 ' 3.05
(.66) (.51)

[1.14] [1.09]

Log concentration (8;) 1.26 1.58
(.41) (.35)

[.78] [.48]

Table 7: Regression coefficient estimates for PERC group response data, proportional odds model.
Values in parentheses are estimated standard errors using information and ignoring possible within
study correlations. Values in square brackets are estimated standard errors using the sandwich
formula as ezplained in the text. The model pooled all the data across gender and species.

Minimum (-1.699) | Median (0.062) | Maximum (1.146)

Complete, s =1 3.69 2.67 2.43
(0.32) (0.29) (0.34)

[0.60] [0.50] [0.51]

Interval Censored, s =1 4.06 2.87 2.58
(0.24) (0.20) (0.24)

[0.25] [0.37] [0.41]

Complete, s = 2 4.81 3.80 3.56
(0.33) (0.16) (0.20)

[0.42] [0.17] [0.20]

Interval Censored, s = 2 4.84 3.65 3.37
(0.23) (0.13) (0.16)

[0.17] [0.23] [0.27]

*

Table 8: ED10 estimate for PERC in the proportional odds model, for s = 1,2 and three values
of log-duration, namely the minimum, median and mazimum. Values in parentheses are estimated
standard errors, obtained using the sandiwch formula. Values in square brackets are estimated
standard errors using the sandwich formula as explained in the text. The model pooled all the data
across gender and species. ‘
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Complete | Interval Censored

o -26.51 -28.44
(7.59) (5.14)

[8.15] (3.41]

Qg -31.59 ‘ -31.85
(8.10) (5.40)

[9.13] [3.63]

Yhumans 3.29 575
(11.28) (7.82)

[4.89] [4.45]

Ymice 7.88 10.68
(7.65) (5.46)

8.67] [5.91]

By rats 6.18 6.64
(Concentration) (1.82) (1.17)
[1.99] [0.80]

B, mice 4.93 4.53
(Concentration) (1.21) (0.90)
[1.68] [1.04]

B, humans 7.74 7.31
(Concentration) (3.19) (2.23)
[2.36] [1.14]

3, 2.76 2.77
(Duration) (0.67) (0.47)
[0.81] [0.48]

Table 9: Regression coefficient estimates for PERC group response data, proportional odds model.
Values in parentheses are estimated standard errors using information and ignoring possible within
study correlations. Values in square brackets are estimated standard errors using the sandwich
formula as explained in the text. The model has different intercepts and concentration slopes for
the different species. .
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Minimum (-1.699)

Median (0.062)

Maximum (1.146)

Rats
Complete, s =1 4.695 3.665 3.422
(0.253) (0.161) (0.211)
[0.241] [0.168] [0.200]
Interval Censored, s =1 4.661 3.701 3.474
(0.127) (0.114) (0.139)
[0.212] [0.127] [0.133]
Complete, s = 2 5.518 4.489 4.245
(0.406) (0.164) (0.148)
[0.392] [0.239] [0.231]
Interval Censored, s = 2 5.130 4.170 3.943
(0.144) (0.068) (0.089)
[0.226] [0.123] [0.122]

Mice
Complete, s =1 4.284 2.994 2.689
(0.225) (0.241) (0.289)
[0.236] [0.422] [0.486]
Interval Censored, s =1 4.471 3.064 2.732
(0.188) (0.214) (0.268)
: [0.229] [0.334] [0.392]
Complete, s = 2 5.316 4.025 3.720
‘ (0.277) (0.128) (0.160)
[0.219] [0.225] [0.284]
Interval Censored, s = 2 5.158 3.752 3.419
(0.225) (0.112) (0.163)
[0.219] [0.191] [0.250]

Humans

Complete, s =1 3.324 2.502 2.307
(0.168) (0.292) (0.352)
[0.109] [0.159] [0.178]
Interval Censored, s =1 3.448 2.575 2.369
(0.133) (0.221) (0.271)
[0.105] [0.118] [0.131]
Complete, s = 2 3.981 3.159 2.965
(0.313) (0.155) (0.180)
[0.109] [0.111] [0.126]
Interval Censored, s = 2 3.874 3.002 2.796
(0.197) (0.132) (0.172)
[0.067] [0.071] [0.088]
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Table 10: ED10 estimate for PERC in the proportional odds model, for s = 1,2 and three values
of log-duration, namely the minimum, median and mazimum. Values in parentheses are estimated
standard errors obtained using information and ignoring possible within study correlations. Values
in square brackets are estimated standard errors using the sandwich formula as ezplained in the
text. The model has different intercepts and concentration slopes for the different species.
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Figure 1: PERC data, ED10 line (solid line) when pooling all studies, with associated 95% confi-

dence bands (dashed lines).
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Figure 2: PERC Data, ED10 lines when intercepts and slopes are stratified by species.
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Figure 3: PERC data ED10’s for different species combinations at the median duration of all
studies. The solid verticle line is the log (base 10) ED10 when all studies are pooled, while the
dashed vertical lines are the associated 95% confidence intervals.
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Figure 4: PERC data ED10’s for different sex and species combinations at the median duration of
all studies. The solid verticle line is the log (base 10) ED10 when all studies are pooled, while the
dashed vertical lines are the associated 95% confidence intervals.



