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Abstract

A major question for the application of computer models is Does the computer

model adequately represent reality? Viewing the computer models as a potentially bi-

ased representation of reality, Bayarri et al. (2005b) develop the Simulator Assessment

and Validation Engine (SAVE) method as a general framework for answering this ques-

tion. In this paper, we apply the SAVE method to the challenge problem: a thermal

computer model designed for certain devices, and develop a statement of confidence

that the devices can be applied in intended situations.

Keywords: Bayesian analysis; Computer model validation; Gaussian stochastic pro-

cess; Thermal computer model.

1 Introduction

We view the most important question for the evaluation of a computer model to be

Does the computer model adequately represent reality?

Because a computer model can never be said to be a completely accurate representation of

the real process being modeled, we do not focus on answering the yes/no question “Is the

∗Duke University, Universita de Valencia, Duke University, ISEG-Technical University of Lisbon, National
Institute of Statistical Sciences
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model correct?”, although this question can be addressed within our framework. In the vast

majority of cases, the relevant question is, instead, “Does the model provide predictions that

are accurate enough for the intended use of the model?” While there are several concepts

within this question deserving careful definition, the central issue is simply that of assessing

the accuracy of model predictions. This will be done by presenting tolerance bounds, such

as 803 ± 76, for a model prediction 803, with the interpretation that there is a specified

chance (e.g., 80%) that the corresponding true process value would lie within the specified

range. Such tolerance bounds should be given whenever predictions are made, i.e., they

should routinely be included along with any predictions making use of the model.

This focus on giving tolerance bounds arises for three reasons:

1. Models rarely give highly accurate predictions over the entire range of inputs of possible

interest, and it is important to characterize regions of accuracy and inaccuracy.

2. The degree of accuracy needed can vary from one application of the computer model

to another.

3. Tolerance bounds incorporate model bias, the principal symptom of model inadequacy;

accuracy of the model cannot simply be represented by a variance or standard error.

These concerns are obviated by routinely presenting tolerance bounds along with model

predictions. Thus, at a different input value, the model prediction and tolerance bound might

be 650 ± 155, and it is immediately apparent that the model is considerably less accurate

at this input value. Either of the bounds, 76 or 155, might be acceptable or unacceptable

predictive accuracies, depending on the intended use of the model.

Bayesian analysis: Producing tolerance bounds is not easy. A list of hurdles includes

• Uncertainties in model inputs or parameters of different varieties: based on data, expert

opinion, or simply an “uncertainty range.”
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• Model runs are expensive and only limited model-run data may be available.

• Field data of the actual process being modeled may be limited and noisy.

• Data may be of a variety of types, including functional data.

• Model runs and field data may be at different input values.

• We may need to ‘tune’ and calibrate parameters and inputs of the computer model

based on field data, and at the same time (because of sparse data), apply the validation

methodology.

• The computer model is typically highly non-linear.

• Accounting for possible model bias is challenging.

• Validation should be viewed as an accumulation of evidence to support confidence in

the model outputs and their use, and the methodology needs to be able to update its

current conclusions as additional information arrives.

Overcoming these hurdles requires a powerful and flexible methodology; the only one we

know that can accommodate all of these different factors is a Bayesian approach, following

the work in Kennedy and O’Hagan (2001), to assessment and analysis of uncertainty, together

with its modern computational implementation via Markov Chain Monte Carlo analysis (see,

e.g., Robert and Casella (1999)).

When a bias in the model is detected, the methodology allows one to adjust the model

prediction by the estimated bias, creating a “reality prediction”, and provides tolerance

bounds for this prediction. In specific applications this can result in considerably more accu-

rate predictions than use of the model alone (or use of the field data alone) and, importantly,

responds to questions where prediction of reality is required.
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Strictly speaking, the presence of bias would call into question the suitability of the

model. However, the amount of bias may be small compared to the uncertainty in model

output generated by measurement error or uncertainty in inputs. In such instances it is

plausible that the model may retain substantial utility – tolerance bounds for model and

reality predictions provide such indications.

Prediction in specific application and assessment of the model respond to seemingly

different questions. But they are two manifestations of the same principle: predictions must

be accompanied by measures of accuracy, the tolerance bounds, which can then be used for

answers.

1.1 The thermal challenge problem

Dowding et al. (2006) proposes a 1-d thermal computer model as a challenge problem for

validation. This thermal computer model simulates transient heat conduction through a

slab. In this paper, we apply the Simulator Assessment and Validation Engine (SAVE) ap-

proach (Bayarri et al., 2005b) to the thermal challenge problem, produce predictions with

uncertainty estimates, and interpret the implications of the results.

The output of the thermal computer model is

yM(κ,ρ, T0, x, L, q; t)

= T0 +
qL

κ

[
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+

1
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π2n2
exp

(
−n2π2κt
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nπ
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)]
, (1)

where κ is the thermal conductivity of the device, ρ is the volumetric heat capacity, q is

applied heat flux, L = thickness, x = distance from the surface, T0 = initial temperature

and t is time. The inputs (κ, ρ) are physical properties varying from specimen to specimen;

they are unknown for a particular device. The input T0 is fixed at 25oC for all data and

analyses, and is therefore ignored. The controllable inputs (x, L, q) are assumed to be known
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exactly and their specification is called a configuration.

Let yR(κ, ρ, x, L, q; t) be the real temperature at time t for a specimen with properties

κ, ρ under the associated experimental configuration. The principal application is to predict

the (real) temperature at t = 1000 under the regulatory configuration (x = 0, L = 0.019, q =

3500), and determine whether

P{yR(κ, ρ, x = 0, L = 0.019, q = 3500; t = 1000) > 900} < .01, (2)

the stated regulatory requirement. Because κ, ρ are unknown, interpretation of this proba-

bility must be dealt with. In fact, the Bayesian analysis we use treats these unknowns as

random and their distribution is incorporated into the calculation of the probability.

There are three sets of field (experimental) data. The material characterization data

(MC) are used to provide prior distributions for the κ, ρ’s that are associated with each

specimen. The ensemble data (EN) are used to produce assessments of the bias as well as

tolerance bounds on model and reality predictions and are then further used to compare the

predictive distribution π
(
yR (κ, ρ, x = 0, L = .019, q = 3000, t) | EN

)
with the accreditation

configuration data (AC). The EN and AC data are then taken together and lead to a follow-

on analysis providing new assessments of bias and tolerance bounds for predictions. This

second analysis is used to predict temperature at the regulatory configuration.

Each of the EN and AC data has its own (unknown) κ, ρ and so there are as many

parameters κi, ρi as there are EN and AC measurements. These many unknowns are assumed

to have a common prior distribution.

The analyses are carried out for two situations: the so-termed medium-level data and

the high-level data; the medium-level data is a subset of the high-level data. There are

some limited data with x 6= 0 in the accreditation data set but we ignore them because only

surface temperature (x = 0) is involved in the intended application (regulatory condition)
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and little benefit is expected by including them.

1.2 The Simulator Assessment and Validation Engine (SAVE)

SAVE (Bayarri et al., 2005b) is a Bayesian-based analysis that combines computer simulation

results with output from field experiments to produce assessment of a simulator (computer

model). The method follows these six steps:

1. Specify the Input/Uncertainty (I/U) map, which consists of prior knowledge on uncer-

tainties or ranges of the computer model inputs and parameters. The I/U map for the

thermal challenge problem is in Table 1.

2. Set the evaluation criteria for intended applications.

3. Collect data – both field and computer runs;

4. Approximate, if necessary, computer model output;

5. Compare computer model output with field data using Bayesian statistical analysis;

6. Feed back the analysis to improve the current validation scheme and computer model,

and feed forward to future validation activities.

Input Impact Uncertainty Current status
κ 5 π(κ) unknown
ρ 5 π(ρ) unknown
q 5 None 1000, 2000, 3000
L 5 None 0.0127, 0.019, 0.0254
x 1 None 0
T0 1 None 25
t 5 None 0, 50, 100, . . ., 1000

Table 1: the Input/Uncertainty Map for thermal computer model. π(κ), π(ρ) are given in
section 2.
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The central technical issues for SAVE lie in implementing Steps (4) and (5). We bypass

(4) because the thermal computer model in Equation (1), is fast and can be evaluated as

many times as we wish. The statistical structure for implementing (5) is built as follows:

View the computer model yM(·) as a possibly biased representation of the underlying real

physical phenomenon yR(·) by defining a bias process, b, to satisfy yR(·) = yM(·)+b(·). Field

data yF (·) are realizations of the real process,

yF (·) = yM(·) + b(·) + e(·), (3)

where e(·) is (field) measurement error. Arguments (inputs) of yR(·), yM(·), b(·), e(·) will differ

in kind depending on the specific model. In many problems (including the thermal challenge

problem), the vector of inputs to the computer model z can be written as z = (u, v), where u

consists of unknown (tuning/calibration) parameters and v is a vector of controllable inputs.

When the model output is a function of time, as it is in the thermal problem, Bayarri et al.

(2005a) treat time, t, as a controllable input, here kept separate from v in the notation.

When there are replicate field data yF
i (·), we have corresponding ei(·) but no replicates in

yM(·), unless the replicates have variations in one or more inputs, e.g., different samples of

material being tested so material properties that are inputs to the computer model will vary.

These must be taken into account. In the thermal problem a replicate i has an associated

ui, and the statistical model in (3) becomes

yF
i (v, t) = yM(ui, v, t) + bi(v, t) + ei(t) . (4)

In Equation (4), we have a different bias function bi for each replication in the field. Also,

there is confounding between each bi and the corresponding ui, and, in general, no amount

of data can sort this out. Moreover, there is very little data to infer about all of these

different bias functions bi, so we make the simplifying assumption that the bias depends
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only on the controllable inputs. But we then add in a different “nugget” for each replication

to accommodate possible errors:

bui
(v, t) = b(v, t) + eb

i(t), (5)

and incorporate this nugget into ei(t). This leads to the model,

yF
i (v, t) = yM(ui, v, t) + b(v, t) + ei(t) . (6)

1.3 Technical challenges

Applying the SAVE methodology to the thermal challenge problem faces:

1: Many unknowns. The κ’s and ρ’s are unknown and vary from specimen to specimen

leading to a large number of unknown parameters. The temptation to merely use

estimates of κ and ρ based on the MC data ignores information inherent in the EN

and AC data about the individual specimen-specific values. This can have a non-trivial

effect on predictions and must be dealt with.

2: Sparse design. There are only four configurations in the ensemble experimental design

and a fifth from the accreditation data. This limits the number of parameters that can

be treated by SAVE, and requires using reasonable simplifying assumptions.

3: Multiple resolutions. In Bayarri et al. (2005a), all outputs (computer runs and field data)

are assumed to be on the same time grid, enabling computational efficiency by utilizing

a Kronecker product specification for the correlation matrices of the involved Gaussian

processes. In the thermal problem, the AC data are observed on a finer grid than the

EN data. Instead of investing in extra computational effort, we choose an innocuous

simplification by only using the AC data on the common, albeit coarser, time grid.
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1.4 Organization; Conclusions

The paper is organized as follows. In Section 2 we discuss the material characterization data

and use it to generate prior distributions for κ, ρ. In Section 3 we sketch the analysis and

the assumptions required; details are placed in the Appendix. In Section 4, we carry out the

analysis for the EN (medium- and high- level) data set, the EN + AC (medium- and high-

level) data set, and assess the regulatory probabilities under each level.

Our conclusions: In neither the medium-level nor high-level case is the regulatory require-

ment met by the appropriate (reality) predictor: the estimates of .02 and .04 (for medium-

and high-level respectively) in Section 4.3 do not meet the regulatory requirement of .01.

Though the histograms (Figure 9) of the predicted temperature at the regulatory configu-

ration are centered near 700 (well below the critical 900) there is high variability in the key

material characteristics κ, ρ.

2 Material Characterization

The MC data are used to obtain posterior distributions for κ and ρ that are then used as

priors in later analyses. Figure 1 shows the quantile-quantile plots of the normalized data

for all MC data. Though the plots suggest that κ and ρ might be assumed to be normally

distributed, κ ∼ N(µκ, σ
2
κ) and ρ ∼ N(µρ, σ

2
ρ), closer examination of the data for κ indicates

that the assumption of constancy is not tenable; κ is, more plausibly, a linear function of

temperature. But replacing the constant κ by a linear function in Equation (1) does not

conform to the physics. Therefore, we only use the data at temperatures 500oC or higher,

to estimate (µκ, σ
2
κ, µρ, σ

2
ρ), in the hope that doing so will make π(κ | MC) and π(ρ | MC)

close to the distributions under the higher temperatures of the regulatory condition. The

assumption that κ and ρ are independent is borne out by the data. The parameters of the

normal distribution of κ are estimated in the traditional way as κ̄MC,
∑

i(κ
MC
i −κ̄MC)2/(n−1)
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Figure 1: Left: qq-norm plot of κ; Right: qq-norm plot of ρ

and similarly for ρ. Table 2 gives the priors π(κ) and π(ρ) for medium and high level

experimental data.

Prior Medium High
π(κ) N(0.0671, 0.00702) N(0.0687, 0.00722)
π(ρ) N(405420, 384322) N(398220, 336902)

Table 2: Prior distributions for κ and ρ

A naive (and generally wrong) answer to the question “Does the device meet the reg-

ulatory requirement?” is to sample κ and ρ from these priors, plug them, along with the

regulatory configuration, into Equation (1), and count the proportion of times the regulatory

criterion is violated. In Figure 2, we show the histograms (for medium- and high-level data)

of the temperatures so obtained. The proportions above 900 are 0.08 and 0.06 for the two

levels respectively. An initial conclusion is that the device might not be safe for the intended

application. But we are not predicting the correct quantity: the correct quantity is reality

at the regulatory configuration and bias, if present, must be accounted for before making

conclusions.

3 Assumptions and Sketch of the Analysis

With x fixed at 0, the controllable inputs defining a configuration are v = (v1, v2) ≡ (L, q).

The field data are assumed to be without measurement error, but that is irrelevant for us
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Figure 2: Computer model predictions for surface temperature at the regulatory configura-
tion based on medium (left)- and high (right)- level MC data

since the e(·) term takes into account both that error, if present, and the nugget arising from

our assumption about b in Equation (5).

The unknowns in the structure of Equation (6) are (ui, b(·, ·), ε(·)). The Bayesian analysis

proceeds by placing prior distributions on the unknowns and then produces a posterior

distribution of the unknowns given the data. The posterior distribution provides all the

necessary information for prediction, tolerance bounds, etc.

3.1 Prior distributions

Prior for u: We use the priors given in Table 2.

Prior for b(v, t): We use a Gaussian process (GP) as the prior distribution for the bias

function b(v, t). The GP is characterized by its mean and covariance function. We take

the mean of the GP as an unknown value µb. The covariance function of the GP is from a

family whose parameters (such parameters of a prior distribution are called hyperparameters)

become part of the unknowns and are incorporated into the Bayesian analysis. Specifically,

b(·, ·) ∼ GP
(
µb, τ

2C ((·, ·), (·, ·))) ,
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where τ 2 is the variance of the GP, and the correlation function is assumed to be

C (b(v; t), b(v′; t′)) = cv (v, v′) ct (t, t′) , (7)

with cv (v, v′) = exp
(−∑2

1 βk|vk − v′k|αk
)

and ct (t, t′) = exp
(
−β(t)|t− t′|α(t)

)
.

Here α =
(
α1, α2, α

(t)
)

are roughness parameters associated with the smoothness of the

process realizations, and β =
(
β1, β2, β

(t)
)

are range parameters controlling the decay of the

spatial correlations.

These GP priors have been consistently effective for treating computer model output

since their introduction in Sacks et al. (1989) and Currin et al. (1991). The correlation

structure implies that close-by values of inputs lead to high correlations, i.e., close relation

of the outputs, while far apart inputs lead to near zero correlations or lack of relation between

the outputs. These are typical features of smooth functions, the kind expected to come from

computer models like Equation (1). The priors for the hyperparameters are in Appendix B.

Prior for εi(t): For the prior distribution of εi(·), we use GP (0, σ2ct(·, ·)) independent

of b(·, ·) and εj(·)(j 6= i). (Note that, following on Bayarri et al. (2005a), we impose the

simplifying assumption that the correlation structure in the time component is the same for

εi and for b(·).)

3.2 Posterior distribution

The likelihood function, when combined with the prior distribution of the unknowns, leads to

the posterior distribution, following Bayes Theorem. Let (t1, . . . , tn) be the time grid for the

observations, ui the calibration parameters for the ith specimen, and vi be the configuration

associated with this specimen. Note that ui is unique for each specimen while specimens in
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the same configuration may have the same v values. The likelihood is obtained from

yF | α, β, b, µb, τ
2, σ2 ∼ N

(
yM + µb1,

(
τ 2Σb + σ2I

)⊗Σt

)
(8)

where

yF =
(
yF

i (vi, tj), i ∈ {1, . . . , m}, j ∈ {1, . . . , n}
)t

yM =
(
yM(ui, vi, tj), i ∈ {1, . . . , m}, j ∈ {1, . . . , n}

)t
(9)

b = (b(vi, tj), i ∈ {1, . . . , m}, j ∈ {1, . . . , n})t (10)

(Σb)i,i′ = cv(vi, vi′)

(Σt)j,j′ = ct(tj, tj′)

The Kronecker product operation ⊗ is defined in Appendix A along with some of its

properties. These properties are crucial for easy evaluation of the likelihood in Equation (8).

To obtain the posterior distribution we use a modular MCMC approach in order to reduce

the confounding between b and {ui}. First, we fix the u’s at their prior means in Table

2, then run an MCMC for the other parameters (α, β, b, µb, τ
2, σ2), extract a sample from

(α, β) and, finally, run an MCMC on the other parameters, including u, with (α, β) fixed

at their posterior medians. The details are in Appendix C. This modular MCMC approach

results in a sequence of draws from the posterior distribution of all unknowns given the data.

Statistical inference is based on these posterior draws.

3.3 Inference

The MCMC produces a sequence of draws
({κh

i , ρ
h
i }, µh

b , τ
2h, σ2h

)
. The vector yMh is obtained

by plugging the draws
(
κh

i , ρ
h
i

)
into Equation (1) and evaluating, forming a vector as in (9).

Obtain a draw from the posterior distribution of of the vector (10), bh, by sampling from
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the multivariate normal distribution with mean vector

(yF − yM)− τ 2Σb

(
τ 2Σb + σ2I

)−1 ⊗ I(yF − yM − µb1) (11)

and covariance matrix
[
σ2(σ2I + τ 2Σb)

−1τ 2Σb

]⊗Σt , (12)

where all the parameters involved in the calculations of the formulae above are ({κh
i , ρ

h
i },

µh
b , τ 2h, σ2h) and α̂, β̂.

We obtain 10000 such draws. With these MCMC draws, we obtain the model prediction

(sometimes called pure-model prediction) by averaging yMh over h. Call the result ŷM .

Because the (κi, ρi)’s are different for each replicate, the predictions will differ from replicate

to replicate. Reality at a specimen in the experiment is the same as the field value, since

there is no measurement error. It follows that a 95% point-wise tolerance bound at time t

for the model prediction at such a specimen is a quantity δM(t) such that 95% of the yMh(t)

for this specimen satisfy |yMh(t)− ŷM(t)| < δM(t).

For predicting at a new configuration, vnew (and, therefore, a new specimen with pa-

rameters κnew, ρnew), we first generate bh(vnew) =
(
bh(vnew, tj), j = 1, . . . , n

)T
by drawing

from the multivariate normal generated by the GP assumption on b while conditioning

on the data and the draws on all parameters including bh. Then add εh to bh(vnew),

where εh ∼ N(µh
b1, σ2hΣ̂t). Then generate yMh(κh

new, ρh
new, vnew) by drawing κh

new, ρh
new

from their prior distributions and plugging them into Equation (1). Draws of reality,

yR = yM(κnew, ρnew, vnew) + b(vnew) + ε, can also be obtained. Letting yRh be the MCMC

draws of yR, we have reality prediction ŷR, as the average of the yRh and a 95% point-

wise tolerance bound can be obtained as the quantity δR(t) such that 95% of the h satisfy

|yRh(t)− ŷR(t)| < δR(t).
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4 Results

4.1 Ensemble Analysis

For the EN data, summaries of the posterior distributions of the parameters θ = (µb, α, β, τ 2, σ2)

based on the analysis sketched above and detailed in the Appendix are given in Table 3. We

fix (α1, α2) at 2 to reflect belief in the smoothness of the outputs as functions of L and q;

this also helps computationally by reducing the number of unknowns.

Parameter Medium Level High Level
β1 549.96 (47.67, 2314.27) 851.41 (227.30, 2660.50)
β2 1.80 (0.37, 6.21)× 10−7 3.25 (1.23, 8.91)× 10−7

α(t) 1.9987 (1.9969, 1.9995) 1.9989 (1.9980, 1.9994)

β(t) 1.33 (1.09, 1.63)× 10−3 1.02 (0.89, 1.15)× 10−3

µb −0.57 (−23.10, 23.38) −11.56 (−41.52, 18.15)
τ 2 269.72 (148.86, 512.02) 473.89 (251.25, 906.29)
σ2 22.59 (15.10, 35.53) 66.02 (50.97, 87.30)

Table 3: Posterior medians with 95% credible intervals for the indicated parameters given
EN data

In Figure 3, we see the scatter plots of the last 1000 {(κh
i , ρ

h
i )} draws given the EN high

level data. The four different colors correspond to the four replicates.

The pure-model prediction and the bias function for each of the replicates and each

configuration can be calculated as in Section 3.3. To illustrate, the upper left panel of

Figure 4 shows the bias prediction (solid black) with 95% uncertainty bounds for the first

replicate of the high level EN data at configuration L = 0.0127, q = 1000. The lower left

panel has the model prediction for the same setting with 95% tolerance bounds; the red

curve plots the experimental data. For the same configuration and a new specimen, with

parameters (κnew, ρnew) the upper right panel gives the results for the bias and the lower

right panel gives the reality prediction (not the model prediction) as the solid black line

with dashed lines as tolerance bounds; the red curves are the experimental data for the four

replicates.
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Figure 3: Scatter plots of (κi, ρi) given EN data (high level) with the configurations: L =
0.0127, q = 1000 (Upper-Left), L = 0.0127, q = 2000 (Upper-Right), L = 0.0254, q = 1000
(Lower-Left), L = 0.0254, q = 2000 (Lower-Right).

For predicting (extrapolating) at the AC configuration x = 0, L = 0.019, q = 3000, a

new pair (κnew, ρnew) is also involved. We can use the same θh’s found above but draw

κh, ρh from their prior distribution. In addition, we must draw εh from its distribution (see

Section 4.1) and draw from the distributions of b(0, 0.019, 3000) given the four values of bh

at the EN configuration. Everything else is done as above and produces the bias function

in Figure 5, the model prediction in the left panel of Figure 6, and reality prediction for the

AC configuration in the right panel.

4.2 Accreditation Analysis

With the addition of the accreditation data, a reprise of the analysis of Section 4.1 is sum-

marized as follows:

• The posterior distribution of unknown parameters is shown in Table 4.

• Scatter plots of the last 1000 {(κi, ρi)} draws for the two replicates (distinguished by
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Figure 4: Upper-left: bias function for first run in first ensemble configuration (L =
0.0127, q = 1000). Upper-right: bias function for a new specimen at this configuration.
Lower-left: model prediction for first run of this configuration. Lower-right: reality predic-
tion for a new specimen at this configuration. Observations are plotted in red, posterior
medians as solid black lines, and the 2.5% and 97.5% point-wise uncertainty bounds as
dashed black lines.

200 400 600 800 1000
−50

0

50

Time

Te
m

pe
ra

tu
re

Figure 5: Bias function at accreditation configuration (L = 0.019, q = 3000) given high-level
EN data.

color) in the AC configuration given high level EN + AC data are plotted in Figure 7.

• Figure 8, the counterpart to Figure 4, displays model prediction and bias prediction

for the first AC replicate as well as the reality prediction and bias prediction for a new

specimen with parameters κnew, ρnew.

17



200 400 600 800 1000
0

200

400

600

800

1000

Time

Te
m

pe
ra

tu
re

200 400 600 800 1000
0

200

400

600

800

1000

Time

Te
m

pe
ra

tu
re

Figure 6: Pure model prediction (left) and Reality prediction (right) at accreditation con-
figuration given EN data. Tolerance bounds are dashed lines, experimental data are in red
and the green line is the prediction by plugging the prior means of κ and ρ into Equation
(1).

Parameter Medium Level High Level
β1 11.93 (0.92, 45.52) 17.42 (4.22, 53.20)
β2 1.30 (0.62, 3.68)× 10−6 1.19 (0.59, 3.43)× 10−6

α(t) 1.9967 (1.9918, 1.9988) 1.9983 (1.9970, 1.9989)

β(t) 1.33(1.09, 1.71)× 10−3 1.05(0.94, 1.17)× 10−3

µb −62.92 (−140.65, 18.56) −95.25 (−245.31, 52.60)
τ 2 6500.37 (4121.96, 10786.89) 22423.07 (14239.77, 36243.67)
σ2 9.84 (6.50, 15.96) 43.97 (34.12, 57.82)

Table 4: Posterior medians with 95% credible intervals for the indicated parameters given
EN + AC data.

0 0.02 0.04 0.06 0.08 0.1
2.5

3

3.5

4

4.5

5
x 10

5

kappa

rh
o

Figure 7: Scatter plots of (κi, ρi) for the 2 AC replicates given EN + AC data (high level)

The parameter estimates in Table 3 and those in Table 4 differ considerably, except

for those associated with time, α(t) and β(t). In large part, this is due to the additional

design point of the accreditation configuration at some distance from the sparse design of

the EN data, producing substantially more variability. The higher variability in the high-
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Figure 8: bias function (upper-left) for the first run in the accreditation configuration (L =
0.019, q = 3000); bias function (upper-right) for a new run at this configuration; pure model
prediction (lower-left) for the first run in this configuration; and reality prediction (lower-
right) for a new run at this configuration. Red lines are the experimental data.

level data compared to the medium-level data is reflected in the differing parameter values

corresponding to the two levels.

Bias appears negligible in the EN analysis but emerges as a non-trivial matter in the

EN+AC analysis, an indication that the model may be less accurate at higher temperatures,

which is a fact of considerable relevance for predicting at the regulatory condition. Moreover,

the presence of bias in the EN+AC analysis has a strong effect on κ, ρ, and this is reflected

in the considerable difference between the pure model predictions of Figure 6 and Figure 8.

4.3 The regulatory assessment

Let yM
R , bR, yR

R be the model prediction, bias function and reality prediction, respectively,

under the regulatory configuration xR = 0, LR = 0.019, qR = 3500 at time tR = 1000. We

get posterior draws for yM
R , bR, yR

R following the prescription in Section 3.3.

Figure 9 gives the posterior histograms of the reality prediction of the device surface
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temperature under the regulatory configuration at time 1000 given the EN+AC data at

both medium and high levels. The distributions are summarized in Table 5.
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Figure 9: Histograms of the device surface temperature under regulatory configuration with
medium (left)- and high (right)- level AC + EN data.

Value Medium Level High Level
Mean 697.13 719.20

Median 695.93 717.90
Standard deviation 91.52 105.32

Table 5: Summary of the device surface temperature under regulatory configuration

The proportion of values that exceed 900 is the estimate of the probability that the

regulatory requirement is unmet. For the medium level this number is 0.02; for high-level

data the number is 0.04. Compared with the pure model predictions discussed in Section 2,

the chance of failure is decreased but the requirement of 0.01 is still not met.

5 Discussion

The formulation of the problem and the process described above provides an answer to the

question of how to assess a computer model. In particular, for the thermal problem it is

clear from Figure 8 that bias is present so that the model is not fully reliable. By producing

“legitimate” estimates of reality (the reality predictions described above) the ability to use

the model is enhanced. In the case at hand, there may be too much variability in the material
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characterizations to overcome and assure the necessary certainty for regulatory compliance.

The assumption of constancy for the material properties is, likely, the key flaw.
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A Kronecker product

The Kronecker product of two matrices A = (aij)i,j and B = (bij)i,j is defined as,

A⊗B =




a11B · · · a1nB

...
. . .

...

am1B · · · amnB




.

It has the following properties.

1. (A⊗B)−1 = A−1 ⊗B−1 if A and B are both invertible.

2. |A⊗B| = |A|d2|B|d1 , where d1 and d2 are the dimensions of A, B.

3. (A⊗B)(C ⊗D) = (AC)⊗ (BD) if the dimensions are matched.

If we assume A = U1U
T
1 , B = U2U

T
2 , then (A⊗B) = (U1 ⊗ U2)(U1 ⊗ U2)

′.

B Prior distributions for the hyper-parameters

Data limitations and the belief that the responses are smooth functions of input lead us to

fix the αi’s at 2 (but not α(t)). We specify prior distributions for the other parameters as:

π(σ2) ∝ 1/σ2, π(τ 2) ∝ exp(−1000/τ 2),

π(β1) ∝ exp(−0.001β2), π(β2) ∝ exp(−105β3),

π(α(t)) ∝ I(1,2)(α
(t)), π(β(t)) ∝ exp(−100β(t))I[10−4,∞)(β

(t)).

Above, IA(x), which equals one if x ∈ A and zero otherwise, is the indicator function of

the set A. The prior on β(t) is truncated to guarantee the non-singularity of Σt and avoid

numerical issues.
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C Modular MCMC approach

We first build a global Gibbs sampler with fixed α̂, β̂ (We will describe how to fix α, β

in Appendix C.1). The full conditional distributions are π(b, {ui}, µb | τ 2, σ2, α̂, β̂, yF ) and

π(σ2, τ 2 | b, {ui}, α̂, β̂, yF ).

The conditional distribution π(b, {ui}, µb | τ 2, σ2, α̂, β̂, yF ) can be factored as,

π(b, {ui}, µb | τ 2, σ2, α̂, β̂, yF ) = π(b | {ui}, µb, τ
2, σ2, α̂, β̂, yF )

× π(µb, {ui} | τ 2, σ2, α̂, β̂, yF ). (13)

The first factor in Equation (13) is a multivariate normal distribution with mean vector as

in (11) and covariance matrix as in (12) but with the parameters α and β involved in the

calculations of these formulae being fixed at α̂ and β̂.

We can draw samples from the second factor in Equation (13) by making use of another

Gibbs sampler. The corresponding full conditional distribution for µb is Gaussian with mean

1T (yF − yM)/1T [(τ 2Σb + σ2I)−1 ⊗Σt)
−1]1 (14)

and precision

1T [(τ 2Σb + σ2I)−1 ⊗ (Σt)
−1]1 . (15)

The full conditional distribution for {ui}, does not have closed form. We use the Metropolis-

Hastings algorithm to draw samples from this distribution. The algorithm is detailed later.

Finally, conditional on (b, {ui}, µb, α̂, β̂), the posteriors distributions of τ 2 and σ2 are
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independent with

τ 2 ∼ IG(n rank(Σb)/2− 1, (b− µb1)T (Σb ⊗Σt)
−1(b− µb1)/2 + 1000), (16)

σ2 ∼ IG(mn/2, (yF − yM − b)T (I⊗Σt)
−1(yF − yM − b)/2) . (17)

With the conditional distribution defined above, we have the modular MCMC approach

(with fixed α̂, β̂) as follows.

Step 0: Run the estimation algorithm in Section C.1 to obtain estimate for α̂ and β̂. And

we fix these parameters at the estimates for the rest of the analysis.

Step 1: At iteration h,

1.1: Given µ
(h−1)
b , τ 2(h−1), σ2(h−1), make draws for {uh

i }. This is somewhat compli-

cated, and we will explain in details later.

1.2: Given {uh
i }, τ 2(h−1), σ2(h−1), make a draw for µh

b from a Gaussian with mean and

variance given by (14) and (15), respectively.

1.3: Given {uh
i }, µh

b , σ2(h−1), τ 2(h−1), Data, ŷM , make draws of {bh} according to

Equations (12) and (11).

1.4: Given µh
b , {uh

i } and {bh}, make a draw of τ 2h according to Equation (16), and

make a draw of σ2h according to Equation (17).

In Step 1.1, we use the Metropolis-Hastings algorithm to draw samples for {ui}. Specif-

ically, we propose new values by κi = κ
(h−1)
i + N(0, 1

20
σ2

κ), ρi = ρ
(h−1)
i + N(0, 1

20
σ2

ρ), and

calculate the acceptance ratio as,

ρ = min


 L

(
yM(ui), µ

(h−1)
b , τ 2(h−1), σ2(h−1); yF

) ∏
i π(ui)

L
(
yM(u

(h−1)
i ), µ

(h−1)
b , τ 2(h−1), σ2(h−1); yF

) ∏
i π(u

(h−1)
i )

, 1


 .
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We set {uh
i } = {ui} with probability ρ, and {u(h−1)

i } otherwise. Again, we cycle through

200 times and save the last draws of the parameters.

We summarize the MCMC draws from the Modular MCMC algorithm, together with the

draws for α, β in Section C.1 in Table 3 for the EN data and in Table 4 for the AC data.

C.1 Estimation

We now describe how to estimate α and β. Approximating the computer model output

yM(ui, v, t) by ŷM = yM(û, v, t), we can approximate the SAVE formula in Equation (6) as,

yF
i (v, t) ≈ ŷM(û, v, t) + b(v, t) + ei(t), (18)

where û is the vector of the prior means (nominal values) for u. We use the following MCMC

algorithm to draw from π(α, β, µb, σ
2, τ 2 | yF , ŷM). At iteration h, (h = 1, . . . , 10000),

Step 1: Make draws of αh, βh conditional on µ
(h−1)
b , σ2(h−1), τ 2(h−1), yF , ŷM . There are

no closed forms for such distributions; we use the Metropolis-Hastings algorithm later

detailed.

Step 2: Given αh, βh, σ2(h−1), τ 2(h−1), yF , ŷM , make a draw of µh
b by sampling from a

Gaussian with mean and variance given by (14) and (15), respectively.

Step 3: Given αh, βh, µh
b , σ2(h−1), τ 2(h−1), yF , ŷM , make draws of {bh} by sampling from a

multivariate normal with mean vector given by Equation (12) and covariance matrix

given by Equation (11).

Step 4: Given αh, βh, µh
b , and {bh}, make a draw of τ 2h according to Equation (16), and

make a draw of σ2h according to Equation (17).
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In Step 1, we propose a new value of α(t) by α(t) = α(t)h + N(0, 0.012), and then we

calculate the acceptance ratio

ρ = min


 L

(
ŷM , µ

(h−1)
b , τ 2(h−1), σ2(h−1), α(t), β(h−1); yF

)

L
(
ŷM , µ

(h−1)
b , τ 2(h−1), σ2(h−1), α(t)(h−1), β(h−1); yF

) I(1,2)(α
(t)), 1


 ,

where L is the likelihood function, defined through Equation (8). Set α(t)h = α(t) with

probability ρ, and α(t)(h) = α(t)(h−1) with probability (1 − ρ). (Recall that αi, i = 1, 2, are

fixed throughout at 2.)

New values of β = (β1, β2, β
(t)) are proposed by βi ∼ N(β

(h−1)
i , s2

i ), i = 1, 2, and β(t) =

β(t)(h−1) + N
(
0, 1

16
(β(t)(h−1) − 10−4)2

)
, where s1 = 500 and s2 = 10−7. The acceptance ratio

is,

ρ = min


 L

(
ŷM , µ

(h−1)
b , τ 2(h−1), σ2(h−1), α(t)h, β; yF

)
π(β)

L
(
ŷM , µ

(h−1)
b , τ 2(h−1), σ2(h−1), α(t)h, β(h−1); yF

)
π(β(h−1))

, 1


 .

We set β(h) = β with probability ρ, and β(h) = β(h−1) with probability 1− ρ.

The Metropolis-Hastings algorithm usually generates highly autocorrelated samples. There-

fore, we cycle through this step for 200 times and keep the last value of the chain.

At the end of the MCMC, {αh, βh, h = 1, . . . , 10000} are produced. We take the posterior

medians of the MCMC draws as our estimates α̂, β̂.

D Extrapolation of the bias

We can extrapolate the bias to a new configuration vnew. Let us denote the bias at new

configuration by b(vnew) = (b(vnew, tj), j ∈ (1, . . . , n))T , and the biases for all the field data

configurations by b = {bi}. The posterior distribution for b(v) is,

π(b(v) | Data) =

∫
π(b(v) | b, θ)π(b, θ | Data)dbdθ.
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We can make draws from this distribution as follows. At iteration h, in the MCMC de-

scribed in Appendix C, we have draws from b, θ | Data. It then suffices to draw bh(v) from

π
(
b(v) | bh, θ(h)

)
, which is a normal distribution with mean and covariance given by,

E(b(v)) = µb1 + ct (Σb ⊗Σt)
− (b− µb1), Cov (b(v)) = τ 2

(
1− ctΣ−1

b c
)
Σt,

where c = (cv(v1, v), . . . , cv(vm, v))T is the correlation vector between the new configuration

and the experimented configurations.
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