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Abstract: A major issue with the analysis of data on tropospheric ozone is to estab-
lish whether observed trends in the data are real, meaning that they could be attributed to
actual changes in the emissions of toxic gases into the atmosphere, or whether they are the
result of meteorological changes affecting the conditions under which ozone is generated.
One way of investigating this question is to construct a regression model in which the level
of ozone is represented as a function of both meteorological variables and time, in order to
determine the significance of the time component when the meteorological variables are
taken into account. However, the conventional methods of regression analysis do not
make any distinction between low and high levels of the series, whereas with ozone it is
largely the high levels that are of interest and concern. This paper proposes a method of
regression analysis that is based entirely on the exceedances over a high threshold, and
applies the method to data from the Houston area.
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1. Introduction

The problem considered in this paper is to construct a statistical model for the
exceedances of tropospheric ozone over a high threshold. According to the National
Ambient Air Quality Standard (INAAQS) for ozone established by the U.S. Environmental
Protection Agency, each monitoring station for ozone is assessed by the exceedances of
daily maximum ozone over a threshold level of 12 parts per hundred million (pphm). Each
monitoring station is supposed to have not more than three excesses in any three-year
period. Therefore, a natural starting point for the analysis of ozone data is to consider all
exceedances of this or some nearby threshold level. A major issue of current interest is to
analyze such series for trend, while taking into account the meteorological factors which
are known to influence the formation of ozone.

Shively (1991) presented one analysis of this nature, in which the point process
consisting of all the times at which the threshold is exceeded is modeled as a
nonhomogeneous Poisson process, with the parameters depending on both time and a
number of meteorological variables. By modeling the dependence on time as a function of
meteorology, he was able to separate out the two effects. This improved on earlier -
models for threshold exceedances, which did not take meteorology into account.

However, one disadvantage of Shively's analysis is that it uses the data only to the
extent of determining at what times the threshold was exceeded — a violation of 13 pphm
is treated in exactly the same way as one of 30 pphm. An analysis that took into account
the magnitudes of the exceedances should be of greater interest to regulatory and public
health agencies, and also of greater value in terms of drawing scientific inferences.

The principles behind an analysis of this sort were developed, in the context of
tropospheric ozone data, by Smith (1989). Smith's analysis took into account the actual
levels of exceedances as well as the times at which the exceedances occurred. However,
as presented in that paper, the method could only be used to detect and measure trends in

the data and not to take account of other factors such as meteorology.
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The purpose of the present paper is to combine these two methodologies. We are
able to extend the methodology of Smith (1989) to model the two-dimensional point
process of exceedance times and exceedance levels as a nonhomogeneous Poisson process
whose parameters depend on both time and meteorology. Then, using the models of
Shively (1991) as a starting point, we develop specific models for t.he meteorological -
influence on the ozone exceedances. In addition, we explicitly allow for the effects of
missing values in the estimated parameters of the model. Over the ten year period 1983-
1992 for which we have data, approximately 20% of the observations are missing due to
the monitoring equipment being out of service, so it is important to account for the effects
of missing data on the model. The results of our analysis' reinforce Shively's earlier
conclusions, which essentially showed that meteorology does have a major influence on

the assessment of a trend, and also suggest a number of approaches for more detailed

studies.

2. Modeling the Time and Size of the Exceedances

In this section we develop the two-dimensional nonhomogeneous Poisson process
used to the model the time and size of the exceedances of a specified threshold level.
Consider first the hypothetical case in which the series of daily ozone maxima form a
stationary time series, unaffected by either a time trend or by changes in meteorology.
(There is inevitably a seasonal trend, the ozone problem in most places being confined to
the summer months. However, in the analysis that follows we consider only the summer
data, so that the seasonal effect can be ignored.) By confining attention to exceedances of
a high threshold, we obtain a two-dimensional point process of exceedances, where the
two dimensions represent the times at which the exceedances occur, and their levels.
‘When both the threshold and the total time span of the observations are large, the point
process may be approximated by a two-dimensional Poisson process. This intuitive

picture is supported by a very large body of probabilistic theory about the limiting



properties of extremes in stationary stochastic process, as represented for example by the
monograph of Leadbetter, Lindgren and Rootzén (1983), and further reviewed by Smith
(1989).

The purpose of our model is to allow for the relationship between meteorological

conditions and the frequency and size of the exceedances. To develop our model, we

begin by letting

Pr{Y > y on day ¢} if day ¢ is not missing

= 2.
£O) { 0 if dayt is missing 1)

i.e. if day ¢ is not missing, 1-'¥,(y) is the probability distribution of ¥ on day #. Also, let

w,(y)=—§;—[‘r,<y)]

Suppose the process is observed over a time period (0,7*) and the peaks over the
threshold » are represented by {(7,Y,), 1 <i <N}. That is, the ith peak occurs at time 7,
and takes the value Y; > . The total number of peaks N is itself a random variable. Then
the approximate joiﬁt density of the data is
re
[ﬁ[ %}Kﬂ Y, (u))exp{— ! ‘i’,(u)dt}]. (2.2)
The term ¥, (u) is left in the denominator of the first term in square brackets and in
the second term in square brackets to facilitate the interpretation discussed below of each
of these terms.
An important point to make at this stage is that we are explicitly allowing for the
possibility of missing data on day 7. As we noted in the Introduction, over the ten year

period which we are analyzing, approximately 20% of the observations are missing.

Therefore, it is clearly important to account for the effects of missing data. If we assume



that the data are missing at random, then using the expression for ‘¥,(y) in (2.1) and the
density function in (2.2) properly accounts for the effects of missing values.

We now interpret each term in square brackets individually. Consider the product in
the first set of square brackets. The ith term in this product is the density function of y,
given y, 2 u, i.e. it is the density function of y, given that an exceedance of thé threshold
level u occurred. The second term in square brackets in (2.2) is the density function for a
nonhomogeneous Poisson process with frequency function ¥,(x). Thus, one can
interpret the first term as modeling the size of the exceedance on day ¢ given that an
exceedance occurred, while the second term models the times of the exceedances of thé
threshold level u.

The joint density function in (2.2) is an approximation to the actual density function
because we are modeling the times of the exceedances as a continuous time stochastic
process while the "true" model is a discrete time stochastic process (By definition there is
at most one exceedance per day because we are working with daily maxima). However,
we believe that the density in (2.2) is a reasonable approximation and this is supported
empirically by the results of the diagnostic tests discussed in Section 3.

We now consider the 7th term in the first set of square brackets y, (,)/ ¥, (v). For
notational purposes the subscript 7 is dropped for the remainder of this paragraph. If we
know the underlying distribution function ‘¥,()), then an expression for y,(y)/ ¥, ()
can be obtained directly. However, we can avoid making any explicit assumptions about
the parametric form of ¥,(y) by using a result due to Pickands (1975) and Davison and
Smith (1990). In our contgxt this results states that if ¥,(y) is in the domain attraction of
one of the extreme value distributions, then the limiting distribution of X=Y - u, given ¥ >

u, as u — o is the generalized Pareto distribution

G(x; 8(0), &) = 1-(1+ &)B(1)x) "

where x =y - u. The limiting density function for x is



“L":/;_((y;)2 = g(x; A1), &) = BE)(1+ EOAEx) V4 23)
t

Since the domain of attraction of the extreme value distributions contains all the
distributions that are likely to arise in practice, no assumptions are required regarding the
underlying parametric form of the distribution function ‘¥, (y).

To complete the specification of the model for the exceedances sizes we need to

specify a functional form for £(¢) and £(¢). We will assume

3
B(t) =By +Bis(t)+ D Bw, (1) (2.4)
j=2
where s(7) is the year in which observation 7 occurred and w(?), j =2, ..., p, is a vector of

P-1 meteorological variables for each time . We will assume that &(#) = & does not

depend on 7. Note that

lim g0x,A(0), &) = A exp (-} | 25)

so in this case 1/4(¢) can be interpreted to be the expected size of an exceedance, given
that an exceedance occurred, conditional on the meteorological variables on day ¢. The
empirical evidence discussed in Section 5 suggests that & ~ 0, and therefore that the
exponential distribution is the appropriate distribution for the exceedance sizes.

With regard to the second term in brackets in (2.2), we will assume

Y (u)=pr{Y 2uonday ¢} = exp{a(t)} | (2.6)
where
a(t) = a,+a;s(t) + ZP: aw (1) 2.7



with s(f) and w(?), j = 2, ..., p, defined as before. This assumption implies that the
functional form of the probability of an exceedance of the threshold level u is known. This
is a considerably weaker assumption than assuming that the entire distribution function
¥, (y) is known. The assumption in (2.6) implies knowledge only about the tail of the
distribution of ¥ (assuming u is sufficiently large) rather than about the entire distribution.

Analyses of ozone data have been done by Smith (1989) and Shively (1991). Smith
(1989) modeled the joint density of {(7,Y)), 1 <i < N} using a linear trend model for
a(t), so a(tj =q, +a,t, and assuming that B(¢) and £(f) were constants. However, his
model did not allow for meteorological variables. Shively (1991), in contrast, constructed
a model in which all the meteorological variables were taken into account, but the analysis
was based only on the exceedance times {7} and not the values {¥;}. The model in (2.2)
combines the best of the methodologies previously proposed by Smith (1989) and Shively
(1991).

3. Diagnostic Testing of the Model

This section outlines the diagnostic testing procedures we use to check that the
assumptions used to derive the model in (2.2) are satisfied. These assumptions are listed
below along with the methods we use to check that they are satisfied for our data.
(1) The exceedance tirhes T,i=1, .., n, are modeled by a nonhomogeneous Poisson
process with rate function given by (2.6) and (2.7).
(2) The density function

g0 A0) = lim YeEE = o) exp -ty
o (u)

is the appropriate model for the exceedance sizes X, = ¥, - u, given that ¥, > u. By

checking this assumption we are checking (i) the adequacy of the expression for £(¢) in

(2.4); (ii) whether # = 11.5 pphm is a sufficiently high threshold level so that the



exponential density function g(x;B(t)) provides a good approximation to the actual
density function for X; and (iii) whether (2.5) is the appropriate model for the exceedance
sizes or if the more general model in (2.3) should be used.

3) Excéedances that occur on days T, and T are independent, i.e. we need to check that
X, =Y, -u, given that ¥, > u, is independent of X, = ¥, - u, given that Y, > u, when i #j.

3.1 Assumptions for the nonhomogenous Poisson process

To check that the exceedance times 7, i = 1, .., n, are modeled by a
nonhomogeneous Poisson process we check that (i) the inter-event thne§ S,=T,- T, have
the distribution function implied by a nonhomogeneous Poisson proceés; and (ii) the inter-
event times are indepéndent.

A probability plot is used to check that the inter-event times S, have the distribution
function implied by a nonhomogeneous Poisson process. To construct a probability plot
the distribution function for the inter-event times, given the frequency function, is
required. To begin, we write the frequency function ¥,() in (2.6) as ¥(r). For the

frequency function ¥(r), and a given time ¢, the density function for the time to the next

event (from f) is given by

fi(s)="F(t+5)e™ (3.1)

t+s

where h(s) = I‘P(r)dr, and the distribution function is given by

F(s)= [ f,(u)au | (3.2)

Due to the fact that the exceedance times for the ozone data are integer-valued (i.e. the
first exceedance occurs on day #,, the second exceedance occurs on day #,, etc.), we only
need to compute F(s) for integer values of # and 5. Taking this efficiency into account, it

is relatively straightforward to show that the approximate distribution function is



Fi(s)= l—exp{—- ' ?'(k)}

where ¥ (k) = P(r+k).

To construct the probability plot, the inter-event time S, is transformed to

U = F;(i-l) (S)

where £(i-1) is the time of (i-1)st event. If the inter-event times are independent with
distribution function F(s), then this transformation should reduce the inter-event time S, to
a random variable with a uniform distribution on (0,1). Following Smith (1986), we order
the values U, and plot the ordered values against #/(n+1), i = 1, ..., n. If the inter-event
times have the density function given by (3.2), then this plot should be close to the straight
line that forms a 45 degree angle with the horizontal axis.

To check that the inter-event times are independent we check that adjacent inter-
event times are uncorrelated, i.e. that S;= T - T, is uncorrelated with S, =T, - T,,. Itis
important to note that if random variables are uncorrelated, this does not necessarily imply
that the variables are independent. However, from a practical point of view, if there is
bdependence between neighboring inter-event times, this will probably manifest itself with a
strong serial correlation.

Given the inter-event times s, i = 1, ..., n, the correlation between adjacent inter-

event times is computed using
re i [ 8, = Ey (S, ):": S —Eyy 0y (Siy )]
il Cuiep(S) Oi-2(Sia1)

where E,;_,(S;) is the expected time between the (i-1)th and ith events, and o, ,,(S;) is

the standard deviation of the distribution of the time between the (i-1)th and ith events.



A computationally efficient technique for computing E,;_,,(S;) and o, ,(S,) is
outlined below. For notational purposes, the i-1 and i subscripts are dropped. As before,
we write the intensity function ¥ (v) as ¥(r).

For the intensity function ¥(r), and a given time #, the density function for the time

to the next event f(s) is given by (3.1). Then the expected time to the next event is
E(S)=[of,()ds=[s¥(t+3) exp{ | ‘I’(r)dr}ds (3.6)
0 0 t

While the integral in (3.6) is staightforward conceptually, it is computationally infeasible to
integrate numerically using standard numerical integration techniques because of the
integral in the exponential function. To make the integration computationally feasible, we
divide the open interval (0,) into sections and show how to obtain an efficient technique
for integrating the function over the individual sections of the real line. As with the
- distribution function for the inter-event times, 7 will be an integer.

Note that

E(S)= [ 9ds=3 [f(s)ds 3.7

k=0 k-1

For notational purposes, let W(k) = W(#+k). If day # + k is not missing, then

j'sf,(s)ds = js‘I’(t +5)e ™ ds

= js?(k) exp{—[§¢u)+(s—(k—1))?(k)]}ds | (3.8)

k-1 j=1

because, for s € (k-1, k], ¥(t+s) = ¥ (k) and

t+s k-1

hs)= [¥(r)dr =2 F()+(s-(k=1)F(k) (3.9)



The expression for A(s) in (3.9) follows immediately from the fact that ¥(r) is a step

function. Integrating (3.8) by parts gives

1 AN
fsyﬁ(S)ds [(k 1)+.I,(k)]exr>{-2‘i’(1)} [ \I,(k)]em{—;‘l’u)} (3.10)

k-1

k
If day 7 + k is missing, then j.y,(s)ds =0

k-1

Combining (3.7) and (3.10) provides an expression for E,(S) that can be computed
efficiently. In practice, we must truncate the infinite summation in (3.7) after a sufficiently
large number of terms. We truncate the summation after 60 terms because the density
J:(5) is very small after 60 terms, i.e. the probability that the inter-event ﬁmes are greater
than or equal to 60 days is negligible.

To compute the o, (S), we use the expression

o3 (S) =Var,(S)=E,(S)-[E,(S)]

where

E,($Y)= J' S f,(s)ds = J'Z‘P(Hs)exp{'flp(r)dr}

E,(S?) can be computed using a technique similar to the one outlined above to compute
E(S).

The standard error of the correlation coefficient is approximately 1/2"2.

It is difficult to apply more sophisticated time series tests for the independence of
inter-event times than the one we have used here because of the complicated nature of our
model for exceedance times and inter-event times. The difficulties in applying the more

sophisticated techniques to test for independence arise because (i) the inter-event times are

not stationary; (ii) the inter-event times are not normally distributed; and (iii) we are using
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a continuous time stochastic process to approximate the discrete time process of
exceedance times. These problems combine to make it difficult to understand the
properties of the tests for independence previously proposed in the literature when used in
our problem. :

3.2 Assumptions regarding the distribution and independence of the exceedance sizes

To check that the exponential distribution is the appropriate distribution function for
the exceedance sizes, and that the correct expression for &) is given by (2.4), we construct
a probability plot. The technique for obtaining the probability plot is similar to the one
outlined in Section 3.1 where a probability plot was constructed for the inter-event times.

To determine that the exceedance sizes are independent, we check whether
exceedances that occur on consecutive days are related. This is accomplished by computing
the correlation between the exceedance sizes that occur on consecutive days. There are two
points to make with regard to this discussion. First, we compute the correlation only
between exceedances that occur on consecutive days. The reasoning is that if these
exceedances are unrelated, then exceedances more than one day apart will probably be
unrelated. Second, as was noted in Section 3.1, if random variables are uncorrelated this
does not necessarily imply independence. However, in practice if there is dependence
between exceedances occurring on consecutive days it will probably manifest itself in a
significant correlation coefficient.

Given the n,, pairs of adjacent exceedance sizes, {s,(¢-1), s(f)}, where s()
reperesents the ith exceedance that occurs on day ¢, the correlation between adjacent

exceedance sizes is

r=Z[s"(’)'E(S‘(’))][S‘" (t—l)—E(S..-,(r—l))]
o(5,(1) o(S.,(t=1)
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where the summation is over the n,, pairs of adjacent exceedances, and E(S(#) = 1/4()
and o(S(?)) = 1/X#). The standard error of the correlation coefficient is approximately
1/n2

i

4. The Data

The data we consider in this paper consist of ozone exceedances over 11.5 pphm at
the Clinton monitoring site in Houston, Texas during the months May-October over the
period 1983-1992, together with daily values of the meteorological variables given below.
The months May-October are considered the "high ozone" season aﬁd is the time of the
year when the majority of the high values of ozone occur.

The daily ozone value used in our analysis is the maximum of the 13 hourly ozone
readings taken each hour from 6am to 6pm. If 7 or more hourly observations are missing
during this 13 hour period on a given day, then the ozone reading for this day is
considered missing.

The meteorological variables used in the analysis are:

Maximum temperature (TMAX): Maximum of the hourly temperature readings for
the period 6am to 6pm. The expected effect of higher temperatures is to increase ozone
levels.

Temperature range (TRANGE): Difference between the minimum and maximum
hourly temperature readings for the period 6am to 6pm. TRANGE is considered to be a
proxy for the amount of sunlight occurring during the day. (A direct measure of sunlight
is not available at the Clinton monitoring site.) The expected effect of large temperature
swings is to increase ozone levels.

Average wind speed (WSAVG): Average of the hourly wind spéed readings fof the
period 6am to 6pm. The expected effect of increased wind speed is to reduce ozone levels

because higher wind speed tends to disperse pollutants present in the ambient air.
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Wind speed range (WSRANGE): Difference between the minimum and maximum
hourly wind speed readings for the period 6am to 6pm. Experts have conflicting views as
to the effect of this variable. The empirical results given below suggest that large values
of WSRANGE are associated with an increase in the probability of an exceedance.

The hourly wind direction readings are broken into four classifications: NW-NE,
NE-ESE, ESE-SSW and SSW-NW. These wind directions correspond roughly to the
different types of frontal passages through the Houston area (see Shively, 1991). For each
wind direction we compute the percentage of time during the day when the hourly wind
direction fell into each of these categories.

NW/NE: Percentage of time from 6am to 6pm that the wind direction was between
NW and NE. The expected effect initially is to reduce ozone levels as a new air mass
moves into the area from the North.

NE/ESE: Percentage of time from 6am to 6pm that the wind direction was between
NE and ESE. The expected effect is to increase ozone levels because wind blowing from
the NE-ESE direction tends to blow in pollution from the Beaumont-Port Arthur area and
the Houston Shipping Channel.

ESE/SSW: Percentage of time from 6am to 6pm that the wind direction was between
ESE and SSW. The expected effect is to increase ozone levels as there are several large
industrial sources of pollution to the south of Houston.

SSW/NW: Percentage of time from 6am to 6pm that the wind direction was between
SSW and NW. The expected effect is to reduce ozone levels because there are no major
sources of pollution to the west of Houston. During the months May-October, the wind
direction is seldom SSW/NW. ,

The missing data convention for the meteorological variables is the following: If
more than 7 hourly readings in the period 6am to 6pm are missing, the data are considered

to be missing for the day.
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If either the ozone or meteorological variables are missing on a given day, then the
data for that day are considered to be missing. If there were no missing observations we
would have 1840 days of data. However, due to missing ozone and meteorological data,
our data set is reduced to 1478 observations, i.e. approximately 20% of the daily data are
missing.

Some exploratory analysis of the data is contained in.Figures 1 and 2. Figure 1
simply shows a histogram of each of the eight meteorological variables. This is useful in
giving some idea of the practical ranges of these variables. Figure 2 shows plots of the
high-level ozone values against each of the covariates. The left-hand figure for each
covariate was constructed by computing the proportion of ozone exceedances and an
approximate 95% confidence interval for each value of the covariate. The sample
proportions and upper and lower confidence limits are plotted. These figures are useful in
gaining some idea of which are the significant factors — for example, comparing Figures
2.a.2 and 2.a.4 shows that the variation in WSA VG is far more significant than that in
TMAX — but beyond that it is difficult to make definitive conclusions. One difficulty in
interpreting these plots is that the meteorological variables are themselves highly
correlated, so there is a considerable amount of confounding in the effects of the different
variables. Thus, although the plots are useful in gaining an idea of what is going on, they
are of only limited help in deciding which models to fit. The plots on the right-hand side
are of actual ozone values over 11.5 pphm against the covariate. This gives an indication
of whether the actual level of ozone, as opposed to just the probability that it is over the
threshold, depends on the covariate. Again, the confounding of meteorological variables
makes it difficult to draw definitive conclusions from these figures, but it is clear in several
plots that there is dependence between ozone level and the covariate, so a realistic model

should take this into account.
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5. Analytical Results

To model the exceedance times and exceedance sizes we need to first determine
which variables should be included in the expressions for a(f) and A7) in (2.7) and (2.4),
respectively. The variables in a(f) can be interpreted to be those variables that are related
to the frequency through time of the exceedances of the threshold level 11.5 pphm. Of
particular interest is the coefficient @, associated with the trend variable because it
represents the trend through time in ozone levels holding the important meteorological
conditions constant. The coefficients o, ..., a, provide a measure of the relationship
between meteorological conditions and the frequency of high values of ozone. Similarly,
the variables in A7) are interpreted to be those variables that are related to the size of the
exceedances of the threshold level 11.5 pphm. To interpret the individual coefficients of
A?), assuming £ ~ 0, note that the expected value of the size of the exceedance on day ¢,
given that an exceedance occurred on day ¢, is 1/f). Therefore, a downward trend in the
size of the exceedanées, holding meteorological conditions constant, would be indicated
by a positive value of S, in (2.4). The coefficients S, ..., B, provide a measure of the
relationship between meteorological conditions and the exceedance sizes.

An important point with regard to the variable selection process for a(f) and &) is
that there is no reason the same set of variables need to be included in the expressions for
a(f) and A7). In fact, due to the factorization of the density function in (2.2), we can
select the variables to be included in a(f) and &?) independently. One would expect that
for the most part meteorological conditions that are related to the frequency of
exceedances would also be related to the size of the exceedances. The results given below
confirm this. They show that TRANGE, WSAVG, and NWINE are related to both the
frequency and size of the exceedances. Two additional variables, WSRANGE and

NEJ/ESE, also appear in the expression for a(f) but do not appear in the expression for

&)
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To select the variables in a(f), we model the exceedance times using a
nonhomogeneous Poisson process. The likelihood function for a nonhomogeneous
Poisson process is the second term in square brackets in (2.2). We begin by including a
constant term, a trend variable, and all the meteorological variables listed in Section 3
(except for SSW/NW, for reasons discussed below) in the expression for a(f), and then
eliminate variables that are not statistically significant. Using this procedure, the following
expression for off) is obtained:

af)= -0.149 s(f) +0.072 TRANGE(Y) - 0.926 WSAVG(f)
(0.034)  (0.016) (0.080)

+0.223 WSRANGE() - 0.850 NW/NE(f) + 1.432 NEESE() (5.1)
(0.051) (0.408) (0.398)

The approximate standard errors of the estimated coefficients are given in parentheses.
These standard errors are obtained by computing the inverse of the Fisher information
matrix at the estimated parameters. To avoid multicollinearity among the wind direction
variables, SSW/NW was not included as an explanatory variable in the original expression
for af). The procedure we used for eliminating variables from the ekpression is as
follows: If the absolute values of the ratios of the estimated coefficients to their standard
errors (i.e. the test statistics for each coefficient) were all above 2.0, no variables were
eliminated and the variable selection process was complete. Otherwise, the yariable with
the smallest value for its test statistic (in absolute value) was eliminated. The frequency
function was then reestimated with the remaining variables and the procedure was
repeated until no tests statistics had a value less than 2.0. If the distributions of the test
statistics are approximately normal, then the value 2.0 is the approximate 5% critical value
for a two-sided test of the null hypothesis that a given coefficient is zero against the

alternative that the coefficient is not zero.
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To obtain an expression for ), we fit the exponential distribution in (2.5) to the
exceedances of the threshold level 11.5 pphm. Using a procedure simlar to the one
outlined above the final model for &) is

A= 0.035s(r)- 0.016 TRANGE(f) + 0.102 WSAVG(f) + 0.400 NW/NE(®) (5.2)
(0.011)  (0.005) (0.019) (0.179)
The approximate standard errors of the estimated coefficients are given in parentheses.

The diagnostic tests for the model in (2.2) using the expressions in (5.1) and (5.2)
for a(f) and [?), respectively, appear to be relatively well-satisfied. The correlation
coefficient for adjacent inter-event times is 0.13 with a standard error of 0.09 so it is
within two standard errors of zero. The correlation between adjacent exceedance sizes is
0.25 with a standard error of 0.18 so this correlation is also within two standard errors of
zero. The probability plot in Figure 3 for inter-event times shows that the distributions of
inter-event times specified by a nonhomogeneous Poisson process with frequency function
given by (2.6) and (5.1) provide a good fit to the inter-event times actually observed. The
probability plot in Figure 4 for the exceedance sizes shows that the exponential
distribution in (2.5) provides a good fit to the observed exceedances.

The more general model (2.3) can be used to model the exceedances. We will
assume that the paramter &(7) is a constant not depending on time or the meteorological
variables. Using the same variables in the expression for &f) as we did above, the
estimate of ¢ is -0.054 with a standard error of 0.063 so £ is not significantly different
from 0. Therefore the exponential model in (2.5) for the exceedances is the appropriate
model to use.

5.1 Interpretation

‘ The coefficients in the expression for a(f) can be interpreted as follows. To begin,
by combining (2.6) and (5.1), the probability of an exceedance on day # of the threshold
level 11.5 pphm is

17



¥ (12) = exp{~0.1495(¢) + 0.072TRANGE (t) - 0.926WSAVG (?)

+0.223WSRANGE ()~ 0.850NW / NE (t)+1.432NE / ESE (1)}

The negative coefficient -0.149 associated with s(f) implies that after allowing for the
confounding effects of meterological conditions, there is strong evidence of a downward
trend through time in the frequency of exceedances, i.e. for meteorological conditions held
constant the probability of an exceedance of the threshold level 11.5 pphm is decreasing
through time. The estimated coefficients associated with the meteorological variables are
as we would expect. The positive coefficient 0.072 associated with TRANGE imples that
the larger the range of temperatures during the day, the higher the probability of an
exceedance. Similarly, the negative coefficient -0.926 for WSAVG implies that high wind
speeds are associated with a low probability of an exceedance. When the wind blows from
NW-NE, the probability of a high ozone value decreases, while if the wind blows from
NE-ESE the probability of an exceedance increases. The latter result is an interesting
finding because when the wind blows from the NE-ESE, it is blowing into Houston from
the Beaumont-Port Arthur area and across the Houston Shipping Channel. A possible
explanation for the increase in the high levels of ozone associated with this wind is that the
wind blows the chemical precursors to ozone into Houston (where they react to form
ozone) that are released into the air in the Beaumont-Port Arthur area and/or at the
Houston Shipping Channel.

The coefficients in A(f) are interpreted as follows. Because the expected size of an
exceedance is inversely related to A7), the positive coeﬁiéient 0.047 associated with s(7)
implies that after allowing for the confounding effects of meterological conditions, there is
strong evidence of a downward trend in the exceedance sizes. Similarly, as TRANGE

increases, the expected exceedance size increases, as WSAVG increases the expected
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exceedance size decreases and when the wind blows from NW-NE, the exceedance sizes
tend to be smaller than when the wind blows from other directions.

An interesting comparison is to estimate the trend in the frequency and size of the
exceedances with and without the meteorological variables in the model. This comparison
indicates the importance of taking into account the effects of meteorology when

estimating the trends. If we omit the meteorological variables the expression we obtain
for a(f) is
a(f)= -2.104- 0.069s(f)
(0.172) (0.030)
with the approximate standard errors of the estimated coefficients given in parentheses.
The model for &) is
A= 0291+ 0.018s(?) (5.3)
(0.057) (0.011)
In comparing these expressions to the ones in (5.1) and (5.2), where the meteorological
variables are included, we see that the estimated trends are considerably smaller in the
model that does not accout for meteorological conditions. In fact, for the expression for
/X?) in (5.3), the trend is less than two standard errors from zero. Comparing the two sets
of results indicates the importance of allowing for the effects of meteorological conditions
when estimating the trends in the frequency and size of the exceedances of the threshold
level specified by the EPA.

6. Conclusion

We have identified a class of models that may be used to model both the exceedance
times and the exceedance levels as functions of time and meteorological covariaics. The

empirical results indicate that after accounting for the effects of meteorological conditions
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there is evidence of a downward trend through time in both the frequency of exceedances

of the EPA's specified threshold level and in the size of these exceedances.
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Figure 3. Probability plot for inter-event times.
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Figure 4. Probability plot for exceedance sizes.




