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Abstract

At least since the seminal work of Geman and Geman (1984), Markov random
fields have served as Bayesian models for images in computational reconstruction from
degraded, observational data. We consider fully Bayesian hierarchical models, in which
one stage of the hierarchy is a Markov random field. This field is parameterized by
a scalar A which in principle controls the degree of smoothness of random images
generated by the model. We then develop a class of conjugate priors for A. Based on
data, posterior inferences are developed employing familiar versions of Gibbs’ Sampling.
The basic hierarchical model is extended to an exchangeable model in which several
“similiar” images are to be reconstructed. Artificial examples, motivated by imaging
problems arising in materials science and stereology, are presented.

KEY WORDS: Bayesian analysis; Conjugate priors; Exchangeability; Gibbs sampling.

1 Introduction

Our focus is on image reconstruction via classes of Bayesian smoothing models. The Bayesian
paradigm provides a convenient mechanism for balancing faithfulness to observational data
with prior beliefs, incorporated via Markov random field priors, in the underlying smoothness
of images. Specifically, the true image, 6, is modeled as a realization of some Markov random
field. We observe X, a degraded version of 6, where the degradation process is modeled
via some probability density, f, given 6. Inference regarding 6 is based on the posterior
distribution of 8. Many other researchers have considered such models: Geman and Geman,
[7], Marroquin Mittier and Poggio, [10], Besag, [3], and several articles from [13], to cite only
a few.

We consider three extensions to the above, previously considered, classes of models. The

first is incorporation of uncertainty regarding the signal to noise ratio of our degradation
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model. We assume the observed data, X, follows the model, f(X|0, 0?) where parameter o2
controls this degradation rate. Most previous work has assumed o2 to be known, or estimated
in some ad hoc fashion. The second extension is the addition of a second stage prior. (For a
general review of hierarchical models, see [2].) Moving from a Bayesian image reconstruction
model to a hierarchical Bayesian model is a natural step which has been suggested, but not
pursued, in [10]. Towards this end, we assume that the aforementioned prior and degradation
model are specified given )\, a hyperparameter. Specifically, we assume @ is a realization of
some Markov random field, denoted by m(@|A). The hyperparameter A roughly controls the
amount of smoothness to be expected in images generated from this model.

Substantial flexibility in Bayesian modeling accrues from the use of hierarchical models.
One interesting possibility, pursued here, involves the simultaneous estimation of several
images deemed to be a priori “similiar” or ezchangeable. This is the third extension we
suggest to previous work. Specifically, assume that our data comprises n degraded images,
Xi,...,X,. Given true images, 01, ..., 0,, the X; are independent and each has distribution
f(:165,0%).

In the simple hierarchical model for a single image, the complete joint prior distribution

to be used here is of the form
m(0, A, 0%) = 71.1(0|\)m12(0?)ma (). (1)

The components 75(A) and 712(c?) are chosen to be appropriate conjugate priors, as de-
scribed in Section 2. For the exchangeable case, we simply assume that the 64,...,0, are
viewed as an ¢.i.d. sample, conditioned on A, from I;rio; T1.1(6| ).

Hierarchical models introduce additional computational complexities into an already dif-
ficult problem. In the hierarchical classes of models proposed, a computationally infeasible
normalizing constant present in the first stage Markov random field prior, 7;1(8|)), is actu-
ally used in the definition of the conjugate prior for A\. To deal with this problem, we suggest
use of a pseudo-posterior based on approximating this normalizing constant. Importance
sampling is employed to obtain this approximation. (See Section 3.) Fortunately, this costly
step in the analysis procedure depends only on the particular model proposed, 7(8|\), not

on the images observed. This idea is akin to the Griddy Gibbs’ algorithm proposed in [15].



We emphasize estimation of the expected posterior image rather than the more com-
monly used maximum a posteriori image or “MAP” estimate. This permits the natural use
of posterior variance estimates to reflect the credibility of the estimated image. Another
argument, though less compelling perhaps, is based on decision theoretic concerns. The loss
function corresponding to Bayesian optimality of a maximum a posteriori estimator is 0-1
loss. This is an unattractive loss function for a visually-oriented problem such as image
reconstruction where a one pixel error and a 100 pixel error are not equally detrimental. Of
course, we do not necessarily wish to imply that “sum of pixel-wise squared errors” loss is
clearly appropriate in general either.

The size of typical imaging problems forces numerically approximate Bayesian analyses.
The analysis here will involve Markov Chain Monte Carlo; Specifically, we employ Gibbs’
Sampling. A complete review of this method is omitted for brevity. The reader is referred to
Gelfand and Smith (1990). The Gibbs’ Sampler produces a sequence of dependent, simulated
observations from the joint posterior distribution. In the simple hierarchical model case here

this posterior is denoted by 7(8, A, o%|z). Note that the formulation implies that
7(0, A, 0%|z) o« (2|0, 0%)T11(0|N)710(0?)ma(N). (2)

The key to implementing a Gibbs’ Sampler is the construction of the so-called “full con-
ditionals;” Namely, the conditional distributions of each variable of the posterior given all
other variables. The purpose of Section 2 is to develop the components of the model and
display the construction of the required full conditionals. (For simplicity, the formulation
is presented in the simple hierarchical case. The C(;rre;ponding representations for the ex-
changeable model are simple modifications.) Concepts needed in this development include
graphs, Gibbs’ distributions, Markov random fields, and appropriate conjugate priors for
Markov random fields.

Section 4 contains the results of computer experiments based on both simple hierarchical
and exchangeable model examples. Mean and variance estimates presented were obtained
via Gibbs’ sampling, as described by Geman and Geman in [7]. We compare estimates from

hierarchical and non-hierarchical models. Section 5 presents some concluding remarks.



2 Model Formulation

There are two main tasks in this section. The first is the development of the four components,
f,m1.1, T2, and 72, on the righthand side of (2). These components are explicitly given in
Models 2.1, 2.3, 2.4, and 2.5, respectively. The second task is description of the resulting
“full conditionals” used by the Gibbs’ Sampler. Basic representations of these conditionals
are readily obtained from (2). Employing the notation popularized by Gelfand and Smith
(1990), we see that

[0|), 0%, z] o f(x|0,0)m1.1(8])). (3)
[)\I0,0’z,IL‘] OC7T1.1(0|/\)7I'2()\). (4)
[0%10, A, z] o< f(z|0,0?)m2(c?). ) (5)

We assume that the true image 0 is a pixel image representable as 6 = {6,|s € S} where

S is an index set for the pixels, possibly, the 7 x ¢ pixel lattice, described by
S={GEH1<i<n1<j<c) (6)

Each individual pixel, §; is an element of the discrete set © = {0, 1, -+, L—1} where L is some
fixed constant. Generally, conditional on 6, our observed image, X, will be an observation
from a random process, also indexed by S, X = {X|s € S}. The probability density
function (probability mass function for the discrete case) of X given 6 is denoted by f(X|6).
A convenient and standard assumption on the degradation process is that conditional on the
parameter 8 and for each s € S, X is independent. of X;,t # s and the distribution of X,
depends only on 6;. Hence, the density f(X|@) can be expressed as f(X|0) = [I,es fs(X;|0s)-
For our examples, we will also assume that fs(:|-) is a normal density and does not depend

on s. This is summarized as follows:

Model 2.1 Gaussian Error Model
Let the pizel degradation model be

X,|0,,0% ~ N(b,,0%) (7)

where the X,’s are assumed independent.



2.1 Graphs, Gibbs’ Distributions, and Markov Random Fields

As stated in Section 1, 8 will be modeled via a Markov random field. We briefly introduce
a variéty of necessary definitions. The reader is refered to 7] for more complete discussion.

Let S = {s1,...,sn} be a finite set of sites. N' = {n;, C S|s € S} is a neighborhood system
for S provided the following two conditions hold:

1. s¢€ns, Vs €S and
2.tens=semn,Vt,se€S.

If these conditions hold then 7, is the neighborhood of s € S. The pair G = (S, N) is a graph.
We note the correspondence between this definition of a graph and the more standard edge
and vertex definition.

To complete the notion of a graph, we define cliques. The set C C S is a clique if for all
t,s € C such that t # s, s € n. Singleton sets, C = {s} for all s € S, are also assumed to be
cliques. Let C be the set of all cliques. Consider the following example which conveniently

suggests the role of S as an index set for the pixels of an image.

Example 2.2 (2-dimensional lattice, nearest neighbors)
Let S = {(i,5)]1 <i < r,1<j<c} betherxc two-dimensional lattice. Foralls = (i,7) € S
let

neo={(k,) €S0 < (k- +( -5 <1} ®
Constructing N' = {n,|s € S}, the pair G = (S,N) is a graph. Under this neighborhood

structure, all cliques are one of three types, singletons, horizontally adjacent doubletons, or

vertically adjacent doubletons.

To define joint Gibbs’ distributions on graphs, let 8 = {6;|s € S} be a family of discrete
random variables having some joint probability mass function, denoted P. Assume that all
the ; have a common finite state space. That is let © = {0,1,...,L — 1} be the possible
values of 0, for all s € S. This implies that the state space (or configuration space) of the

family of random variables on the graph can be defined as:

Q={w = (wsy,...,wsy)|ws € ©,Vs € S}. 9)
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This construction of the joint configuration space as the cross product of the identical, finite
state spaces of the individual random variables, 6, is in general overly restrictive in the
definition of a Gibbs’ distribution. It will, however, be sufficient and notationally convenient
for our problem.

A joint Gibbs distribution is defined with respect to a graph structure, G = (S, N'). The
neighborhood structure of the graph places a restriction on the form of the probability mass
function. By definition, P is a Gibbs’ distribution with respect to G, if it can be written in

the form:

P(6=w) = 27 exp{ Y Ve(w)) (10)
ceC

for all w € Q.

The functions Vi(+), C € C are called potentials. Each Vi (w) is written as if the function
depended upon the entire vector w, but this is not the case. Each one is only allowed to
depend on the part of the vector w contained in C. The constant Z is called the partition
function. It is the normalizing constant, defined by

7= exp{Y Vo). (1)
wen cec
This is an extremely flexible model for the distribution of a family of discrete random vari-
ables. Redefining the set of sites, S, and/or the neighborhood structure, A/, enables one
to write any discrete joint distribution as a Gibbs’ distribution with respect to some graph,
G =(S,N).
By definition, this same family of random variables, 0, is a discrete Markov random field

on the graph G if the following two conditions hold:

1. P{d =w}>0VYwe Qand

2. P(Gt = wtl{t‘)s =W; .S ?é t}) = P(Gt = wt|{93 =Ws:SE T]t})

These conditions are known as the positivity condition and the Markov condition, re-
spectively. For more information on discrete Markov random fields in this context see [4],
[5], [7], and [9]. The crucial relationship between Gibbs’ distributions and Markov random
fields with respect to graphs is known as the Hammersly-Clifford Theorem: Let G be a



graph. Then @ is a discrete Markov random field with respect to G if and only if the joint
distribution of @ is a discrete Gibbs distribution with respect to G. For further discussion
see [4] or [14]. The form of the conditional distributions resulting from a Gibbs’ distribution

with respect to a graph, G, as defined by (10), is

POy =w{; =ws: s #t})=Z " exp{ Y Vo(w)}, (12)
cec(t)
where
Ct)={CeClteC} (13)
and
Zy= > exp{ Y. Vo(w)} (14)
wi€O cec(t)

Note that (12) implies the full conditional distribution of §; depends only on the neighbors
of £,

Pl = wil{ls =ws : s #t}) = P(O, = we|{0s = ws : s € 7e}). (15)

Two key uses of the Hammersly-Clifford Theorem to Bayesian image reconstruction are
as follows. First, the dual interpretation of joint Gibbs’ distributions as Markov random
fields provides a convenient mechanism for modeling local dependence structures among a
large collection of variables. Second, the high-dimensional joint distribution of @ can be
readily represented in a fashion, based on (12), permitting rapid simulation as needed in
Gibbs’ Sampling.

Consider the following model which will serve as both our example Markov random

field/Gibbs’ distribution and as the prior distribution for our image reconstruction model.

Model 2.3 First Stage Prior for 6

Let G = (S,N) be as defined in Ezample 2.2. Let 8 = {6,|s € S} be a family of discrete
random variables with p.m.f. 1. Let © = {0,1,---, L — 1} be the sample space of 0, for all
s €S. The p.m.f. 711 is defined to be

m.1(0 = w|X) = Z(\)exp{A ) Vo(w)} (16)
cec
where
0 if |IC) =1
Velw)=4¢ 1 ifw,=uws,s,teC (17)
-1 ifws #wgs,tel
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and

Z(0) =Y ep{A Y Vo(w)} (18)

wen cec
For notational convenience in subsequent formulae we define

Uw) = Y Vel(). (19)

Ccec

U(:) is known as the energy function. The full conditionals are:

7('l.l(et = wtl{as =Ws: S 75 t}a /\) = Zt—l exp{)‘ Z ‘/{s',t}(w)}7 (20)
s'ent
where
7y = Z exp{A Z Visp (@)} (21)
wt€O slent

Combination of this Markov random field prior and the likelihood resulting from condi-
tionally independent data, such as that suggested by Model 2.1, via Bayes theorem results in
a posterior which is again a Markov random field with respect to the same graph, G = (S, NV).
(It should be noted that, in general, the neighborhood structure of the posterior is not nec-
essarily the same as the neighborhood structure of the prior.) First, combination of the
Gaussian likelihood and the first stage prior results in

1
T6(0 = w|), 0%, 7) = Z(\, 0%, z) L exp{\ Z Veo(w) — —2||x - wl*} (22)
cec 20 ,
where Vo (w) is as defined in Model 2.3 and
- i 1
Z\ ot r) =Y exp(A Y Ve(w) - an - wl}. (23)
weq cec g

The Hammersly-Clifford theorem is employed to obtain the Markov random field description
of this model,

76 (0 = wil A, 0%, 2, {0 = ws, s # t}) = Z7H (N, 0%, zp) exp{N Y Vo(w) — —-1—5(xt —wy)?},
cec(t) 20
(24)
where
1
Zi(\ ot z) = Y exp{d Y Vo(w) — 2—0—2($t —w)’}. (25)

wt€O CeC(t)



2.2 Conjugate Priors for A and o2

In this section we introduce appropriate conjugate priors for A and o2. Note that the condi-
tionai independence assumptions implicit in (1) imply that choices of a conjugate prior for
A depends only on the selected conditional distribution for 8, and not on the degradation
model. On the other hand, the conjugate prior for 62 depends only on the degradation model
used.

The conjugate prior for o2 based on Model 2.1 is familiar:

Model 2.4 Prior for o
Assume the variance, o2, of the degradation model, Model 2.1 is distributed according to an

inverted gamma density, denoted o* ~ InvGamma(a, B) with density function

1 1
2 — - 2
where a > 0 and 8 > 0. The corresponding prior mean (if @ > 1) and variance (if « > 2)
of 02 are
1
E. (0% = ———
Varg, , (02) = . (27)

Fa—1)*(a=-2)

We proceed with a definition of an appropriate conjugate prior for A based on 7;1(6|)\)
given in Model 2.3. When the suggested, second stage conjugate prior is combined with the
first stage prior, the hyperparameters of the conjugate prior have a more concrete interpre-
tation than A in terms of certain properties of the expected true image, 8. This is critical
since the direct specification of A itself is difficult. This development is a special case of the

general analyses of conjugate priors for exponential families given by Diaconis and Ylvisaker

(1979).

Model 2.5 Prior for A

For parameters ng > 0 and uy € (minweq U(w), maxweq U(w)), define

Ta(A|mo, uo) = A7 (no, to) exp{nouol — noQ(\)} (28)



where

Q(\) =log Z(A) =log } exp{AU(w)} (29)
weN -
and o
h(no, uo) = /§R [%] da. (30)

First note that it is easy to check (or see Theorem 1 in Diaconis and Ylvisaker, 1979)
that these densities are proper under the assumptions on ng and uy. Next, by construction,
the posterior density of A\|@ is in the same family as the prior; simple calculation confirms
that the updated parameters are ny = no + 1 and u = %‘2)

To understand implications of the use of these priors, we investigate the interpretation
of up and ng in terms of expected features of the image. First, note that since Model 2.3 is
a member of the exponential family, it follows that conditional on A, E., ,(U(8)|A) = Q'()\)

and Varsy, ,(U(0)|A) = Q"()). Indeed, U(0) is a sufficient statistic for ).

Proposition 2.1 Under the formulation in Model 2.5, the implied marginal mean of U(6)
18

E[U(0)] = uo. (31)

Proof: Since E,, ,(U(0)|A) = Q'()), iterated conditional expectation yields E[U(8)] =
Er,[Q'(N\)]. The result is then obtained readily by application of the usual integration by
parts; see Theorem 2 in Diaconis and Ylvisaker (1979). Details are omitted for brevity. |
Next, note that the usual interpretation of ny as the f‘equivalent sample size” of the prior
is valid; see Diaconis and Ylvisaker (1979, p. 2755. E‘inally, note that in Model 2.3, the

quantity U has the following interpretation:

U(@) = [#of adjacent pairs that are the same level]

— [#of adjacent pairs that are different levels]

Hence, we have established rationales for choosing the parameters uq and ng to reflect prior

information concerning the global degree of smoothness of the image.
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2.3 Summary

Combination of all the model specifications described leads to the following joint posterior

distribution,

(0 =w,\ 0%z) o« (o%)7F oL

exv{A (oo + U(w) - 5 5+ 30—l -

(no +1)Q(N)}- (32)

First, note that the full conditionals for 6; for all ¢ € S are exactly as described in (24).
Next, the full conditional for ) is

m(A6, 0% z) o exp{\ (nouo + U()) — (no +1)Q(N)}. (33)

Finally, the full conditional distribution of ¢? is an inverted gamma with parameters, o/ =
a+rc/2and B’ = (1/8+1/2||6 —z||)~!. Hence, the required inputs for (3), (4), and (5) are
specified.

3 Estimating the partition function

We now consider the computational problem introduced due to the hierarchical structure of
the model as alluded to in Section 1. Specifically, the posterior, (32), depends upon Q(\).
Evaluation of this function is typically infeasible. We suggest the following procedure for
dealing with this problem. First, estimate Q()) via imp;)rtance sampling on a grid of values
to obtain Q()). Then, substitute the estimate int(; the joint posteriors to obtain pseudo-
posteriors from which Bayesian inference will be based. Inference from the pseudo-posteriors
proceeds via Gibbs sampling. We chose to use the Markov mesh (see [1]) importance sampling
function for discrete, ‘ﬁnite lattice Gibbs distributions as described in [11].

Figure 1 displays the estimate of Q(A) used in the examples described in the next section.
To obtain this estimate we defined a grid of 3000 A values between 0 and 3. At each grid
point, standard importance sampling estimates of Q(-) where obtained based in independent
samples, each of size 50, from the importance sampler. The final estimated function is a

smoothed estimate based on the 3000 grid points.
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Approximation was restricted to A € [0, 3]. This choice was based on rough investigations
of the posterior resulting from combination of the first and second stage priors; The “action”
of the posterior was mostly contained in this region when 6 was assumed to be a true image

such as those we will reconstruct in the next section.

log Z{a)

1 T 1 1 T T T
0.0 0.5 1.0 1.5 2.0 25 3.0

Figure 1: Markov mesh importance sa,mpler.estima,te of Q(A\!) from the first stage prior.
The n x m lattice assumed is 64 x 64. L is assumed to be 3.

4 Example: Exchangeable Images

The example is motivated by problems arising in materials science, [8]. Consider the ob-
servation of multiple fractures of a composite material. A composite material consists of at
least two distinct component materials not combined at the chemical level but making up
one body of matter; concrete is an example. The component materials are commonly known
as phases. From each fracture, we observe, with error, an intensity level, pixel image. The
distinct phases of the material produce different mean intensity levels in the corresponding
pixels of the observed image. The observed images are assumed to be degraded to an extent
which makes classification of individual pixels into constituent phases difficult. Our goal is to
produce a relevant model for improving the quality of this sequence of related images. The

exchangeable model suggested earlier in this work will serve as the vehicle for enhancement.
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Observed fracture surfaces, X, - -, X, are each assumed to be conditionally independent
observations from Model 2.1, where each X; has mean 6; and variance ¢%. A common error
variance assumption is natural when all images are obtained via the same sensing device.

The composite material is assumed to consist of L distinct phases. Each phase produces
a unique intensity level for pixels belonging to that phase from the set {0,1,---,L —1}. A
priori, we believe that the fracture surfaces will be composed of several contiguous regions
where each region contains only one phase. To encourage the formation of single phase,
local regions, the true underlying images, 6;, are modeled as i.i.d. observations from Model
2.3. The hyperparameter A is unknown but common to all the images as the same degree of
“smoothness” is expected in multiple fractures of the same composite.

As discussed in Section 2, the parameters, A and o2, are modeled as independent variables
from the appropriate conjugate priors, Models 2.5 and 2.4, respectively. In real applications
the hyperparameter values would be specified based on prior knowledge of the images we
expect and the sensing device which was employed. In our example we used the following
specifications: @ = 10 and § = 1.0 so that E(¢?) = 0.11 and Var(c?) = 0.00012 and
up = 5890 and ny = 1.0 so that F(U(0;)) = 5890 for all the underlying images.

Figure 2 displays three artifically constructed, underlying fracture surfaces, along with
their observed, degraded counterparts. All the images are on a 64 x 64 pixel lattice; The
degraded images were constructed by adding simulated, independent Gaussian noise with
a standard deviation of 0.8 to the fracture surfaces. Note that this standard deviation is
significantly larger than would be expected under the specified prior for o2. Furthermore, the
degrees of smoothness in these images, as reflected t}iroiigh their values of U, are 7292, 7374,
and 7104, respectively. The possible range on U for a 64 x 64 pixel image is [—8064, 8064].
This suggests that, though our prior mean for U, uo = 5890, is not “right on target,” the
actual values of U do not appear to contradict the exchangeability assumption.

Relevant full conditionals for the exchangeable model, necessary for implementation of

Gibbs Sampling, are

1. [0%|0, )\, 21, -+, zn), an inverted gamma density with o/ = Y7, |z;//2 + @ and 8 =

[1/8 + 2 llwi — 6il1*/2)7,
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2. [\|@,02, 1, - -, x,) from the conjugate family of densities with ug’= (nouo+3r; U(6;))/(ne+

n) and ny = ng + N,
3. [6is|A, 0%, 1, - -, T4], as described in (24) for i =1,---,n and s € S.

To estimate selected posterior quantities, a single run of the Gibbs Sampler was run for
21000 iterations. The first 1000 iterations were discarded as a burn-in phase. Estimates of
posterior expectations given below are based on ergodic averages of functions of the remaining
20000 iterations. Figure 3 displays posterior means, £(6;) and posterior variances ‘7a\r(ei)
for 1 = 1,2,3. As ancillary information we also estimated the posterior means and variances
of 02 and A: E()) = 0.9427, Var(\) = 0.000031, E(0?) = 0.6643, and Var(o?) = 0.000112.

We next describe a comparative analysis intended to evaluate whether the exchangeable
model leads to any “sharing” of information across images (i.e., “borrowing strength”).
Specifically, using the identical prior specifications used above, Image 1 was restored based
on a simple hierarchical model. That is, Images 2 and 3 were not used in the analysis. A
separate Gibbs’ Sampler, again of length 20000, after discarding 1000 iterates, was run for
this set-up. Estimates of E(6;) and Var(6;) are displayed in Figure 4. Estimates for A
and o are E(\) = 0.9202, Var()\) = 0.0000536, £(0?) = 1.022, and Var(o?) = 0.000568.
Comparing quantities of primary interest in this analysis we find the estimate of E (61) under

the exchangeable model superior to the reconstruction under the hierarchical model.

5 Comments

1. We have only briefly described the specific procedure for estimating the partition function
primarily for brevity. However, though such estimation would typically be necessary for
analysis of hierarchical models, this problem is of secondary importance relative to the main
purpose of this article.

2. Turning to the results of Section 4, we hope the reader agrees that the results are
encouraging. Though the examples presented are artifical and involve simulated “observation
errors,” the inference we take is that the quality of reconstructions obtained indicate positive
potential for the basic approach in real applications.

3. As indicated in the Introduction, we have emphasized posterior mean estimation,

14



rather than MAP estimation. Our primary reason for suggesting this direction is the pos-
sibility for obtaining natural variance estimates. The behavior of the variance estimates
presented in Figure 3 is quite interesting. As we might anticipate, posterior variances are
large at what our “eye” would perceive as boundaries between phases within an image. In
a sense, the posterior variance “images” act as simple “segmentation algorithms” or “edge-
detectors.” (See Nadler and Smith, 1993, Chapter 3.)

It is generally possible the MAP estimates may provide reconstructions which are more
faithful to the data than corresponding posterior means. Indeed, we will not speculate on
any general tendencies for which of these two estimates should be recommended. In fact we
believe that which should be recommended will typically depend on the modeling strategy
employed.
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Figure 2: The left column of images are the unobserveable, underlying fracture surfaces.
The right column of images are the corresponding observed images.
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Figure 3: The left column contains reconstructions of the three observed images based on
the exchangeable model. The right column contains corresponding variance estimates.
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Figure 4: The image on the left is an estimate of the first image based on the hierarchical
model. The right image is the corresponding variance estimate.
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