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Abstract

Estimation of total county crop yields is of interest to both federal and state gov-
ernments. This article focuses on estimation of corn production in the counties of Ohio;
Our primary goal is producing accurate estimates of corn yield per acre stratified by
county and by size of farm. These estimates can be used in conjunction with census
data to produce the desired total county corn yield estimates. Our data is responses of
3,842 farms to a voluntary survey. A Bayesian hierarchical random effects model is pro-
posed. The key idea in this formulation involves the input of prior information based
on anticipated spatial dependence of corn production between neighboring counties.
The model suggested is sufficiently complex to prohibit simple computations. Hence,
we employ Gibbs Sampling. The resulting estimates of yield per acre show a strong
spatial trend. Lower productivity in the Appalachian foothills gradually increases to
higher productivity in the central-northwest region. The geography of Ohio suggests
this effect is reasonable. We also estimate the posterior covariance structure of the
random effects, including the spatial county effect. This is a large covariance matrix
and, thus, difficult to examine carefully. Our approach to investigation of this matrix
is graphical examination of one row or “slice” at a time. The “slices” examined display
a desirable spatial property; Neighboring counties are generally more correlated than
distant counties. Our methodology is easily adaptable to other crops and states.

KEY WORDS: Bayesian analysis; Gibbs sampling; Markov random field.

1 Introduction

The United States Department of Agriculture (USDA), in cooperation with state agricultural
departments, is interested in estimating the corn yield in the state of Ohio on a county basis.
They have available for this project data of two types, 1) responses (to a voluntary survey)
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of 3,842 farms in the state of Ohio which reported planting corn and 2) farm census data
collected every five years reporting total farm acreages and acreages planted in particular
Crops.

The data for the farms responding to the voluntary survey includes an indication of the
county in which the farm is located, total acres planted, acres planted in corn, acres of corn
harvested, and yield in bushels per acre harvested. The census data available includes the
total number of farms and total acreage of farmland for each county stratified by size of
farms. There are twelve strata of farm sizes in the census data. For simplicity the twelve
categories of farm size available in the census data will be condensed to three categories.
The size groups were chosen to make the number of farms in each group roughly equivalent.
(This implies that the total acreage in farmland in each group is not similar.) Group 1
contains farms with 0-179 acres, Group 2, 180-499 acres, and Group 3, 500+ acres.

Inspite of the fact that the voluntary survey data’s size covariate was available as a
quantitative variable, it was decided that size should be incorporated as a categorical effect
in modeling the voluntary data. The disadvantage of possibly introducing non-existent
regression effects into the model, by categorizing a quantitative variable, was outweighed by
the advantage of compatibility with the census data which only reported size information as
a categorical effect.

Figure 1 displays the yield per acre harvested averages for each county, group combina-
tion. (Note that counties which are not shaded have no data collected for the size group
being represented.) Notice the tendency of neighboring counties to have similar yield per
acre harvested averages. This is indicated by contiguous regions, larger than county size,
having the same color. The data also indicates that there is an overall tendency of the yield
per acre harvested to decrease from the northwest corner of Ohio to the southeast. Looking
at all three size groups suggests that overall, the Group 1 averages are smaller than the
Group 2 averages which in turn are smaller than the Group 3 averages. The number in each
county is the sample size collected in that particular county, size strata.

The procedure for producing total county yield estimates will be as follows: 1) estimate
from the voluntary survey data the yield per acre harvested for each county, size pair, call
this f/i,j; 2) estimate (also from the voluntary survey data) the proportion of acres of corn
harvested to total acres of farmland for each county, size pair, call this Pi,j; 3) use the census
information available to determine the total acreage, say Ai,j, of farmland in each county,
size pair. The yield per county can then be estimated as Y = Zﬁle Yiyj.éi,in,j.

The main portion of this article is devoted to the development of the Y;;. Section
2 presents a detailed formulation of a Bayesian model for the Y;;. The key idea in this
formulation involves the input of prior information based on anticipated spatial dependence of
corn production between neighboring counties. The model suggested is sufficiently complex
to prohibit simple computations. Hence, the popular notions of Gibbs Sampling are employed
in the analysis; The procedure used is described in Section 3. In Section 4 the results are
used to produce the desired estimates of corn production on a county basis.



Figure 1: County maps of Ohio are shaded to reflect average yield per acre of the data
collected from the voluntary survey in each county in each of the three size groups. The map
on the upper left is Group 1; the upper right is Group 2; the lower is Group 3. The numbers
in each county represent the sample size for that particular county, size pair.

2 Model Development

The first step in producing the desired estimates of corn yield per county is to propose a
model for the yield per acre harvested. A Bayesian hierarchical random effects model is
proposed. The effects will be a mean effect, u, a county effect, C, and a group effect, G.
Priors will be places on all three effects.

Model 2.1 Corn Yield per Acre Harvested Model
We consider the following linear model for the observed bushels of corn produced per acre of
land harvested for each farm within a county, size pair:

where

andi=1,..,N¢, j =1,2,3, k=1,...,n;; and the e; ;x are assumed i.i.d.

Vector notation for this model will be desirable. Let Yi; = (Yij1, Y52, ..., Yijn;,;)T and
Y = (Y115, Y127, Y137, Y217, ., YN 37)7. Let B = (4, CT,GT)T. The design matrix

3



X can be written as a partitioned matrix, X = (X; : X5 : X3), to provide easy manipulation
of the posterior distribution. Using this notation the linear model can be written as:

Y = XfG+e
Y = X1M+XQC+X3G+6.

(3)

A key feature of our analysis involves the incorporation of prior information about the
county effects. (Other prior specifications used here are more standard. A discussion of
the specifications is given at the end of the section.) The county effects are meant to
account for variability introduced into corn yield per acre harvested due to local growing
conditions such as terrain, soil fertility, and rainfall. The county borders in Ohio were
drawn arbitrarily and do not reflect the division of Ohio into areas which are internally
homogeneous, but independent of each other as regards local growing conditions. It is
believed that “neighboring” counties should have similar growing conditions. We therefore
propose prior model specifications which incorporate spatial dependence structures.
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Figure 2: County map of Ohio used to create neighborhood structure.

Let S = {1,..., Nc} be an arbitrary labelling of the counties of Ohio. We will define a
neighborhood structure N' = {n;|i € S} for the counties which mirrors their physical location.
Specifically, counties 7 and j are neighbors if they share a common border. (County borders
that are extremely short such as that between Darke and Auglaize counties in Western Ohio
are not considered to be neighbors. See Figure 2. The corn yield per acre harvested estimates
of interest were also produced under the model considering counties with short borders as
neighbors. This produced insignificant changes in the final results.)

The prior distributional assumptions for the model components of Model 2.1 will be as
follows:



Model 2.2 First Stage Prior for Corn Yield per Acre Harvested Model
Given hyperparameters 0%,%, and o% and assuming independence of p, C, and G given the
hyperparameters the first stage of the prior is:

g~ N(po,o3)
C ~ N(0,0%%)
G ~ N(0,0%])

1
7r(02) = =t

(4)
where we set uy = 100 and o2 = 100.
These assumptions imply that the distribution of 8 given the hyperparameters is normal

with mean b, where b is an (N¢ +4) X 1 vector whose first entry is yo and remaining entries
are all 0, and the following partitioned, block diagonal covariance matrix, denoted by A,

2 0 0
A=|0 o¢iX 0 |. (5)
0 0 il

2.1 Modeling spatial dependence

The covariance matrix ¥ will introduce the desired spatial effect into the model. Define
A = ((6;;)) to be the N¢ x N¢ symmetric matrix determined by the “shared boundary”
neighborhood structure, where:

1 ifi=j
5,',]' =<1 ifi€e n . (6)
0 otherwise

There are at least two ways that the neighborhood matrix, A, can be used to specify T.
For example, by defining

Y= (1-pI+pA, (7)

special implications follow concerning the marginal independence of counties which are not
neighbors. In this article we seek specifications motivated by the notion of a Markov random
field. These models are popular in imaging and spatial statistics problems, primarily because
of their ability to build in varieties of spatial dependence structures. (See for example [5],
[4], or [1] for discussions.) Throughout this paper we will make use of the increasingly
popular notation; Specifically, for random variables or vectors U and V| let [U|V] denote
the conditional distribution of U given V. The essential feature of a Markov random field
model involves specifications of the conditional distributions of county effects as

[CilCj, 5 #14] = [CilCj, 5 € mi] (8)

for arbitrary neighborhoods. In this paper we only consider the aforementioned nearest
neighbor structure, though more complex structures can be analyzed by similar methods.
Note that in general (7) is incompatiable with (8).
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To construct ¥ compatiable with (8), consider the associated precision matrix 1.
Specifically, represent £~! as
Y7t =(1-a)I +aA. 9)

(Note that the parameter,a, cannot be viewed as a correlation coefficient.) We now demon-
strate that this leads to the desired conditional independence model in (8). The full condi-
tional distribution of C; is proportional to the joint distribution of C,

[Ci|Cj, § # ] o [C]. (10)
By definition, .
(€] o (o8) %127} exp{~ 55 CTE7IC} (11)
20¢
which, together with (9), imply that the full conditional distribution of C; is
(Ci|C;,j # 1] o exp{—%[(l — a)CTIC + aCTAC]). (12)
c

Expressing the matrix multiplications in (12) as sums leads to

1 . N¢ ) N¢ Nc¢
[C,lCJ,] 75 Z] X exp{—2—2[(1 - a) Z Ck +a Z Z Ckék,jC'j]}. (13)
oc k=1 k=1j=1

The definition of 6 ; reduces the range of the double sum yielding

oy 1 & ok
[CilCj, 5 # 1] o eXP{—z—f[z Ci+a)_ > GG} (14)
0C k=1 k=1jen

Removing the unnecessary pieces from the above proportionality statement reduces the ker-
nel of the full conditional to

(Ci|Cy 5 # ] exp{—%[C’f +240, Y ) (15)

JEM

which can be recognized as

[CilCj,j #1] = N(=a ) _ Cj, 00). (16)

JEM

There is a difficulty inherent in this specification of the distribution of C. The mean of the
full conditional for a particular C; is based on the total of the neighbors, 3;c,, C;, rather
than the mean, I—;J Y jen; Cj- Since all counties don’t have the same number of neighbors, the
parameter a, representing the strength of the dependence on neighbors, cannot account for
this. Development of a similar Markov random field model which accounts for this problem
has proven to be difficult. We proceed with the model as specified.

In the specification of ¥, we will require ¥ to be positive definite. The resulting con-
straints are considered next. Let A;,,l = 1,..., N¢ be the eigenvalues of the neighborhood
matrix A. Each eigenvalue of X!, say 7, can be expressed as a function of an eigenvalue
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of A. By definition, each eigenvalue of 7! is a solution to the equation obtained by setting
the characteristic function of £ equal to zero,

|7t — I = 0. (17)
Expansion based on the definition of X! leads to,
|(1—-a)]+aA —nI|=0. (18)

Manipulating (18) yields a similar characteristic function equation for neighborhood matrix
A,

a|A-—(g+1—%)I| = 0
A =]

Il
e

(19)

Provided a # 0, in which case the analysis is trivial, the N¢ solutions to (19) can be matched,
even accounting for multiplicity if necesary, to yield

1
Ti1-> = N
a v a

m = 1—a+a/\l.
(20)

In general, we know little about the eigenvalues of A beyond the facts that they are real
and sum to N¢. This implies that at least one eigenvalue lies on each side of 1. These facts,
combined with a simple algebraic analysis of (20), yield the final constraint on a insuring
that each 7, is positive:

o~ = (1 - max M)7T<a<(1- min M)t =at. (21)

Our neighborhood matrix for the counties of Ohio resulted in ¢~ = —0.1817 and a* = 0.3431.
A third stage prior is still needed to complete the hierarchical model. Some discussion
of the role of a in this model is needed first.

2.2 Normalizing constants

A difficulty which frequently arises in complex hierarchical Bayesian models is that evaluation
of normalizing constants becomes necessary. This difficulty is discussed in [6]. In our model, a
normalizing constant makes sampling, as needed in our implementation of the Gibbs Sampler,
difficult. The posterior density for Model 2.1 provided the first stage prior is specified by
Model 2.2 is:

™, C, G, 0’|Y,0%,a,08) o« (02)'1(02)'7(0%)—%2|2'1|%(02:)_%Q
1
exp{——5(Y - X8)"(Y - X )
I SRS S, SRR

(22)



The function Z(a) =%/ |S~!| arises from the normalizing constant of [C|o3,a). In a non-
hierarchical model this could be ignored. It cannot be ignored in our analysis as we intend

to introduce a second stage prior on a. The definition of ¥~! leads immediately to a formula
for Z(a):

N¢ N¢
2@ =121 =I10H =I10 -~ +ax). (23)

This function appears in both the joint posterior and the full conditional for a. Since
we will implement the Gibbs Sampler, sampling the full conditional distribution of a is a
necessity. This step will be handled via the Griddy Gibbs approach of [7]. Specifically,Z(a)
will be evaluated on a grid of values and a’s will be drawn from the resulting discrete
approximation to the correct distribution. Figure 3 displays graphs of a vs Z(a) and a vs
log Z(a), demonstrating the effect of Z(a) on the posterior.
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Figure 3: The left graph displays the behavior of log Z(a) as & function of a. The right shows
how this affects the posterior distribution of a.

Model 2.3 Second Stage Prior for Corn Yield per Acre Harvested Model
Priors will be taken as:

0% ~ InverseGamma(ag, Bg)
m(ok) = 1,05 >0
a ~ Uniform(a™,a"),
(24)

where we set ag = 2 and Bg = 0.02.



We conclude this section with comments motivating some of the prior specifications
made. First, an uninformed, though proper, uniform prior for a seems natural, though
a more complete specification of prior information might be given if @ is restricted to be
less than or equal to 0. We did not use this extra condition. Our hope was that by not
forcing a to be negative, the extra flexibility would allow the data to convincingly verify our
prior beliefs. We believe this hope was realized; the results described below indicate that
the posterior for a assigns very little probability to positive a. Next, the natural invariant
noninformative prior 1/02 is used for 02. However, we employ a uniform, improper prior
for o%. This choice was made to insure the existence of a proper posterior. This aspect is
more completely discussed in the Appendix. The discussion is of general interest beyond the
scope of this paper. Finally, proper, though not very sharp, priors are used for both x and
oZ. It seems quite plausible that an expert in Ohio corn production would have useful prior
beliefs concerning both “average” corn yields and the “average” effects of farm size.

3 Analysis via Gibbs Sampling

Estimation in this model is accomplished via Gibbs sampling. See [3], [2], or [8] for a review
of Gibbs sampling. Our primary goal involves estimation of the posterior expected yield
per acre harvested in each county and group. To obtain these estimates based on (3), an
estimate of the posterior expected value of 3 is needed. An estimate of the covariance matrix
of (3 is essential to estimating the associated variances.

Let 6 = (8,02%,0%,a,0%)T. In order to run the Gibbs sampler, the full conditionals for
each of the elements of § are needed. For ease of notation define §_s = (02, 0%, a,0%)T and
make similar definitions for the other parameters. The full conditionals can be determined
by direct calculation and are:

BIY,0_5 ~ N(D-Y(XTY + 02A~'b), 02D (25)
where ‘
D= (XTX +0%47Y), (26)
oY, 0_ 2 ~ InverseGamma(&, 3, )
27 (y - XPB)T(y — XB)
N¢ 2
JclY, 9_0%' ~ InverseGamma(T - 1, m),
Ne g’g 1.,
oalY,0_q2 ~ InverseGamma.(—2— + ag, (—2— + %) )
(27)
and
a 1 3¢
alY,0_, exp{—za2 [T(A =TI)c] + 5 > log(l—a+a\)}. (28)
c =1

We performed an initial investigation of the posterior distribution using multiple, shorter
runs of the Gibbs sampler. These results will not be reported here. Estimates which are



reported in this work are based on one Gibbs run of 32,000 iterations, the first 10,000 of
which are thrown away as a burn-in phase. The first and second moments of each parameter
of the posterior are estimated as ergodic averages of the iterations not in the burn-in phase.
Mean and variance estimates for the parameters are based on these moment estimates. We
report our posterior mean and variance estimates in Figure 4.

17 G1 G2 G3
Expected Value 106.774 || -5.789 | -0.065 | 7.256
Standard Deviation || 4.102 2.622 2.640 | 2.670
a ol 0% o2
Expected Value -0.119 || 630.027 | 413.225 | 21.507
Standard Deviation || 0.041 14.544 | 362.986 | 21.156

B -29.107--19.228 10.408 - 20.287 3.99- 6.74 14.96 - 17.70
| -19.228 - -9.350 20.287 - 30.166 6.74 - 9.48 17.70 - 20.44
-9.350 - 0.529 30.166 + 9.48 -12.22 20.44 +
0.529 - 10.408 12.22 - 14.96

Figure 4: Estimates of F(f3) and standard deviation of 5. The left image of Ohio displays
the estimates of county means. The right image of Ohio displays the standard deviation
estimate for the county effect.

We adopt a Rao-Blackwellized estimator for inference regarding the marginal posterior
covariance matrix of §. Recall from (25) that the full conditional form for the covariance
matrix of § is 02D, Based on this, we estimate the posterior covariance matrix of 3 with
M, where M is the ergodic average of 02D~! evaluated at each iteration,

n 1 X
M=z > oiD;t. (29)
=1
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A fortuitous side effect of this estimator of the covariance of B|Y arises from the multi-
variate normal structure of the full conditional of 8; Appropriate blocks of M serve as Rao-
Blackwellized estimators of the covariance matrices of u|Y, C|Y, and G|Y. These secondary
estimators are based on their respective posterior distributions given the hyperparameters,
a, 0, and 0%, and o?.

M is an (1 4+ N¢ + Ng) % (1 4+ N¢ + Ng) matrix, and thus, is difficult to examine care-
fully. We chose to focus our attention of the Ngo x N¢ block of the estimated covariance
matrix which corresponds to the county effect. Figure 5 graphically displays three rows of
our estimate of the covariance matrix of C|Y. These rows contain the estimated posterior
covariances between Cuyahoga, Lake, and Vinton counties and all the other counties. Cuya-
hoga, Lake, and Vinton counties were chosen due to their small sample sizes. We believe
counties with small sample sizes will benefit most from the dependence structure introduced
in the prior of the county effect which allows local pooling of information. Examination of
Figure 5 reveals a desirable covariance structure. Spatially local counties appear to have
larger covariances than distant counties.

529- 750
7.50- 9.71
9.71-11.92
11.92-14.13
14.13-16.34
16.34 - 18.55

18.55 +

Figure 5: Posterior covariance maps for Cuyahoga, Lake, and Vinton counties.

As noted previously, estimates of the yield per acre harvested for each county, group pair
are based on Model 2.1. Stated explicitly,

Yij = ﬂ+éi+éj (30)
for i = 1,---,N¢g and j = 1,-++,Ng. For notational convenience, we represent all of

these estimates by Y°¢ = (Y11,--+, Ving, -  YNe1,++, Yngng). Defining Xy to be the
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(NcNg) x (1 + N¢ + Ng) matrix as dictated by the above relation this allows us to write
YCC = Xy 8. (31)

We estimate the covariance matrix of Y°¢ by Xy MXZ. Obtaining the final estimates of
the county yield requires some further work.

4 Results

Computation of estimates of total corn yield per county requires calculation of the inter-
mediary quantities mentioned earlier, namely ﬁ’i,j, an estimate of the proportion of acres
harvested to total acres of farmland, and A, ;, the total acres of farmland for each county,
size group as reported by the census data. Estimation of 15,] is performed using the volun-
tary sample data. Let P, ;x equal the ratio of acres harvested to total acres of farmland for
the kth responding farm in the ith county, jth size group. We define 13zJ to be

. 1 T
Pyj=—73 Pij (32)
i k=1
foralli=1,---,Nc and j =1,2,3.

There were four county, size groups in which no data was observed. For the purposes
of obtaining our initial estimates of the total yield, we used mean imputation across the
size group to impute the missing values. To do this we computed the average, P; for each
j = 1,2,3 without the missing counties, then let missing P,, equal the average from the
appropriate size group. Figure 6 displays the resulting estimates of 13”

As noted, the census data total acres in farmland was reported in size by county groups.
There are twelve size groups in the census data which were condensed to three for are
analysis. The total acres in farmland for some county size groups was not reported due to
confidentiality concerns. Some missing values in the census data had to be imputed. We
imputed values at the twelve size group level. When k of the size groups were not reported,
we imputed the smallest k£ — 1 values by taking the median of the size range and multiplying
by the reporfed number of farms in that size group. We then imputed the remaining size
group by subtracting the total acreage already allocated from the county total. The resulting
exact totals and imputed values are displayed in Figure 7.

As stated in Section 1, we estimate expected total yield per county, Y;, by

Y; =) Ai;P;Yi; (33)
Jj=1
Once again vectorizing our estimates, let YC = (Yl, Vs, - - -,?NC). Defining P as the appro-

priate N¢ x (N¢Ng) matrix to produce the above relations, we write
V¢ =PYC = PXyp. (34)

Clearly, P depends on the proportions estimated from our data. However, for the purpose
of estimating the covariance matrix of Y we will ignore this dependence. It is our hope

12



0.0181 - 0.1023
0.1023 - 0.1866
0.1866 - 0.2709
0.2709 - 0.3552
0.3552 - 0.4395
0.4395 - 0.5237

] o0s237+

Figure 6: County maps of Ohio are shaded to reflect the proportions of acres harvested in
total acres of farmland for each county group pair. The legend is also displayed. The upper
left is Group 1. The upper right is Group 2. The lower left is Group 3.

that in the future, the proportions, like the total acreages in corn, can be obtained from the
census data. We estimate the covariance of Y€ by PXy MXZTPT. Expected total yield and
the associated standard deviation estimates are pictured in Figure 8.

To summarize issues of special interest to statisticians, we first note that the general
dependence structure generated by the model does indeed roughly correspond to the geo-
graphical features of Ohio. (See Section 3.2.) This lends some credence to the suggestion
that the model used does capture relevant behavior. Furthermore, the Bayesian approach
taken here, while allowing the imputation of prior information, permits analysis in the p-
resence of variable sample sizes from county to county. Such unbalanced data sets typically
cause serious problems in non-Bayesian approaches. On the other hand, we do not claim the
model used here is best possible; some concerns and oversimplifications have been mentioned
earlier. However, the overall results should encourage additional study of such models, and
hybreds, in spatial statistics problems.

APPENDIX
We now provide arguments involving the existence of proper posteriors for a normal, hier-

archical Bayesian model. The discussion borrows heavily from that given in Berger (1985,
Section 4.6.3).
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673 - 29521
29521 - 58368
58368 - 87216
87216 - 116064
116064 - 144911
144911 - 173759
173759 +

Figure 7: County maps of Ohio are shaded to reflect the total acres of farmland for each
county group pair. The legend is also displayed. The upper left is Group 1. The upper right

is Group 2. The lower left is Group 3.
Consider the following hierarchical model: For an (n x 1) data vector Y, assume that
Y ~ N(X8,0%])

where X is an n >< p, full rank design matrix, # is a p x 1 vector of unknown regression

coefficients, and o2 is the unknown model variance.
Suppose next that the first stage of the prior assigns a p-variate normal distribution to

[ with mean p and covariance matrix A:
B~ N(u, A).
Finally, the last stage of the prior assigns independent distributions, denoted respectively
by 7,71, and 759, to the variables o2, u, and A. For the moment, we only assume that 72,

insures that A is positive definite, with probability 1.
To investigate existence of a proper posterior, we consider the implied full joint distribu-

tion, denoted by j, and see whether or not it is integrable. Specifically, consider

joc ) <7§§ifﬁ)|)?’2(“‘) exp{—5{(Y = XB)"(Y - XB)/0* + (8 — )TA (6 — m)}}-
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165965 - 2417941
2417941 - 4669918
4669918 - 6921894
6921894 - 9173870

9173870 - 11425847
11425847 - 13677823
13677823 +

26039 - 79486

79486 - 132934
132934 - 186381
186381 - 239828

239828 - 293276

Figure 8: Estimate of total county yield are displayed on the left. Associated standard
deviation estimates are pictured on the right.

Following Berger’s analysis, consider the familiar representaion
(Y = XB)" (Y = XB) = (Y = XP)T(Y = XB) + (B - B (XTX)(8 - B),

where £ is the usual least squares estimate (XTX)"'XTY. Substituting this expression into
j and integrating with respect to 8, the resulting integrated joint distribution, denoted ij, is

10'2(XTX)—1|'5 =

Z] X 7"(0'2) 71-2,1(#') 7r2,2(A) (0‘2)—'5"‘ IO_Q(XTX)_l + Al5 6.’1?[){—-5]{,‘},

where
k=(Y - XB)T(Y - XB)/o*+ (B - wTlo*(XTX)™" + A7 (B — ).
Note that a standard result from linear algebra implies that
|0.2(XTX)-—1|.5 <1
lo2(XTX)"1+ A5 —

Therefore, we can guarantee integrability if both 73 ; and 75 2 are bounded, even if the natural
invariant distribution, 7(c?) = 1/0? is used, as long as n is large. Also, we can interpret the
above bound to suggest that the boundedness of 795 is typically necessary.

To apply this reasoning to our model, note that our prior for A is actually parameterized
through three hyperparameters: a,02, and cZ. Integrability of our model follows directly
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from the previous discussion. Note that this argument suggests that using the natural
noninformative priors, rather than bounded priors, for 0% and 0% would have lead to an
improper posterior.
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