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Abstract

When sample sizes are too small to produce reliable direct estimates in survey statistics, the

model-based methods are often used to obtain population-level quantities of interest for those

small geographical areas or small population subgroup domains. One well-known model for

small area/domain level estimates is the Fay-Herriot model, which can be interpreted as a linear

mixed effects model in which the true domain-level means are normally distributed. However,

it is challenging to verify their distributional assumption since they are not directly observable.

In this paper, we formulate a semi-parametric extension of the Fay-Herriot model in which

the default normality assumption for the true means is replaced by a nonparametric specifica-

tion. While we investigate the intercept-only model, which is often used in the absence of the

domain-level covariates, we illustrate the robustness of our estimators for domain-level means

as well as the distribution of their “ensemble” through simulations under different distributional

assumptions. Viability of the approach and the effects are illustrated using the 2008 National

Survey of Recent College Graduates to estimate mean salaries for demographic subgroups of

interest.

Keywords: Complex survey, Dirichlet process prior, Fay-Herriot model, National Survey of Recent

College Graduates, Small area estimation.
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1 Introduction

Many government agencies administer large-scale sample surveys to study various population

attributes of interest, for which they typically represent large geographical areas, such as the entire

country, or large domains, such as country’s male population. Subject to cost constraints, these

agencies construct survey designs such that the allocated survey samples yield the estimates with

desired accuracies. Often, however, when the focus is on small geographical regions or population

subdomains, these direct design-based estimates become unreliable, primarily due to small sample

sizes. When those instances occur, survey analysts rely on small area estimation methodologies that

“borrow strength” via explicit or implicit model-based approaches to optimally estimate the desired

population attributes, such as the area means and the corresponding uncertainties. Furthermore,

those model-based methods often incorporate supplementary data, like administrative records and

other surveys, (for example, the American Community Survey (ACS)) to increase the reliability of

the estimators. For a comprehensive review of the small area estimation literature, see Jiang and

Lahiri (2001) or Rao and Molina (2015).

As illustrated in Jiang (2007), consider the estimation of true domain-level means, θi, where i

is a domain index, for a continuous characteristic of population members—for instance, salary, as

in Section 5. In this paper, we use the terms “domain” and “area” interchangeably. As discussed in

more detail in Section 2, θi can be estimated directly using model-based methods even though they

are defined from individual-level information. Within this context, one widely used model is the

Fay-Herriot (FH) model (Fay and Herriot 1979; You 2008), which assumes normal distributions for

both the domain-level direct estimates, θ̂i, and their corresponding true means, θi. While the central

limit theorem is often used as a justification for the distribution of θ̂i (Rao 2003), making the same

assertion for θi is often problematic and difficult to verify (Sinharay and Stern 2003). Moreover,

misspecification of their distribution can lead to undesired consequences for the estimators, such as

incorrect posterior distribution convergence, bias in estimates, and poor posterior variance estimates.

When the assumption of normality for θi is not tenable, other parametric models have been

proposed. For example, to capture the outliers, Bell and Huang (2006) considered the t-distribution,
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while Farrell et al. (1994) considered Laplace priors for their model. More recently, Liu (2009)

considered the use of the exponential power distribution. To use asymmetric distributions for θi,

Fabrizi and Trivisano (2010) used a skewed exponential power distribution and Diallo and Rao

(2014) used skewed normal distributions.

In this paper we propose a semiparametric model with nonparametric specification, based on

a Dirichlet process prior, for the distribution of the θi. As demonstrated in Section 4, this model

can successfully be applied when the assumed distribution for θi deviates from the normal distri-

bution, for instance, by being heavy-tailed, asymmetric, or mixed. Moreover, the model performs

comparably to the FH model even when θi are normally distributed, illustrating the robustness of

our estimators with respect to the distribution. We pay special attention to not only the point es-

timates from the models but also their empirical distribution over the domains. To this end, we

compare the empirical distributions between the ensemble of posterior estimates from our method

to the corresponding estimates from the standard FH model (Fabrizi and Trivisano 2010).

The paper is organized as follows. Section 2 introduces the FH model and discusses its previous

extensions. Section 3 describes our proposed approach with the Dirichlet process mixture (DPM)

model. In Section 4, we use simulations to compare between the DPM model with the standard FH

model under a variety of distributions for θi. In Section 5, we apply both the FH model and our DPM

model to the 2008 National Survey of Recent College Graduates (NSRCG), which was conducted by

the National Center for Science and Engineering Statistics at the U.S. National Science Foundation.

We compare the domain-level salaries between the direct estimates, posterior means from the FH

model, and those from our approach. Among our findings, the NSRCG salary data exhibit a multi-

modality captured by the DPM model but not by the FH model. Section 6 contains conclusions and

some paths for further research.

2 Previous Model-based Estimation Methods

In this section, we describe the FH model, which was originally developed to obtain model-

based county-level income estimates where the housing data and the tax records were used as the
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area-level supplementary information. Recently, the U.S. Census Bureau used the FH model that

incorporates data from the ACS and the Current Population Survey (CPS) to produce the estimates

for the numbers of school-age children in poverty in each state and its counties. See http://

www.census.gov/did/www/saipe/.

Let yi j be the response, assumed numerical (in Section 5, the response is salary), of unit/person

j in domain i, i = 1, . . . ,m. Domains can be defined in terms of geography, demography, or even a

cross-classification of several variables. We wish to estimate the true domain means θi =
1
Ni

∑
Ni
j=1 yi j,

where Ni is the population size in domain i. The direct design-based (or Horvitz-Thompson) esti-

mator is defined as θ̂i =
∑ j∈si wi jyi j

∑ j∈si wi j
, where wi j is the survey weight for the unit j, si denotes the set of

sampled units, and ni is the number of sampled units in corresponding domain i.

For inference regarding θi, Fay and Herriot (1979) introduced the following two-level hierar-

chical model:

FH model

Level 1 (Sampling model) : θ̂i|θi,ψi
ind∼N(θi,ψi) (1)

Level 2 (Prior model) : θi = x′iβ+νi,νi
iid∼ N(0,σ2

τ ) (2)

where the νi represent domain-level random effects that account for heterogeneity among domains.

The variance component in (1), ψi, is called sampling variance and assumed to be known. The

domain-level covariates are denoted as xi where they are typically drawn from external sources.

The hyperparameters β and σ2
τ are called model parameters, which are treated as unknowns and

they are usually assigned non-informative or weak prior distributions in a hierarchical Bayesian

setting.

In practice, when the domain-level covariates are not available (Sinharay and Stern 2003), the

Prior model in (2) reduces to

θi = µ +νi,νi
iid∼ N(0,σ2

τ ) (3)

where it is often referred to as an unbalanced one-way analysis of variance (Jones and Spiegelhalter

2011). In a Bayesian setting, once we appropriately specify the distributions for model parameters

http://www.census.gov/did/www/saipe/
http://www.census.gov/did/www/saipe/
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(µ,σ2
τ ), it becomes relatively straightforward to obtain the posterior distribution of θi, f (θi|θ̂), via

Gibbs sampling in a Markov chain Monte Carlo (MCMC) algorithm (You et al. 2003; Gelman et al.

2004).

Unlike the Sampling model in equation (1), where appeal to the central limit theorem can be

warranted from the superpopulation perspective, the Prior model in (2) or in (3) is challenging to

justify. To this end, there have been some efforts, especially for the Prior model to guard against

using a single parametric distribution or having a normality assumption. For example, Maiti (2001)

applied a finite mixture of normal distributions via hierarchical modeling and Articus and Burgard

(2014) used the EM algorithm to obtain the inference for θi.

3 Dirichlet Process Extension of the Fay-Herriot Model

3.1 The Dirichlet Process

A random probability distribution G is called a Dirichlet process (DP) with base distribution G0

and concentration parameter α on a space S if for every partition {T1,T2, . . . ,TK} of S,

(G(T1), . . . ,G(TK))∼ Dir (αG0(T1), . . . ,αG0(TK)) , (4)

where Dir denotes the Dirichlet distribution. We denote this by G ∼ DP(α,G0). The larger α , the

more G resembles G0; in all cases, E(G) = G0. In a Bayesian setting, we can model uncertainty in

θ by assuming θ|G iid∼ G, where G∼ DP(α,G0), which we call the DP prior.

For computational efficiency, one can use a constructive representation of the DP, referred to as

the stick-breaking representation (Sethuramen 1994), given by

G(·) =
∞

∑
k=1

πkδθk(·) (5)

πk = vk ∏
g<k

(1− vg) where
∞

∑
k=1

πk = 1

vk ∼ Beta(1,α),
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where δθ (·) is the point mass at θ .

In practice, the infinite sum in (5) is replaced by the finite sum, with a large value of K such

that ∑
∞
k=K+1 πk has a distribution concentrated near zero. Ishwaran and James (2001) suggest the

truncation approximation to DP such that

G(·) =
K

∑
k=1

πkδθk(·) (6)

πk = vk ∏
g<k

(1− vg) for k = 1, . . . ,K,

vk ∼ Beta(1,α) for k = 1, . . . ,K−1; vK = 1.

The truncation is helpful to decrease the computational burden of the MCMC implemented for

inference.

3.2 Our Approach Using the DP prior

Our model extends the FH model by relaxing the parametric distributional assumption for θi.

Specifically, for the Prior model in (3), we use a Dirichlet process mixture (DPM), which has been

widely used in Bayesian analysis (Escobar 1994; Muller et al. 1996). See Escobar and West (1995),

Kim et al. (2014), and Kim et al. (2015) for more details.

To recapitulate notation, let (θ1, . . . ,θm) be the true domain-level means and (θ̂1, . . . , θ̂m) be the

direct, design-based estimates, where m is the total number of domains. In our approach, we assume

that each domain i belongs to one of K latent mixture components where zi ∈ {1, . . . ,K} denote the

component index for domain i. The DPM model, then, comprises into three levels, such that:

DPM model

Level 1 (Sampling model) : θ̂i|θi,ψi
ind∼ N(θi,ψi)

Level 2 (Prior model I) : θi|zi
ind∼ N(µzi ,τ

2
zi
)

Level 3 (Prior model II) : zi
iid∼ Categorical(π1, . . . ,πK), (7)
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where (π1, . . . ,πK) are interpreted as component weights for the latent class k and follow the trun-

cated DP in (6). Marginalized over zi, the prior model of θi reduces to

p(θi|µ,τ 2,π) =
K

∑
k=1

πkN(θi; µk,τ
2
k ). (8)

We use the conjugate prior for µ,τ 2 given by

µk|τ2
k

ind∼ N
(

0,
τ2

k
h0

)
,τ2

k
iid∼ IG(aτ ,bτ), (9)

where IG denotes the inverse Gamma distribution. Following Wang and Dunson (2011) and Kim et

al. (2014), we simply chose the value of K large enough (K = 25 for simulations in Section 4 and for

data analysis in Section 5) to include all relevant possibilities. In contrast to Ohlssen et al. (2007),

where a prior distribution is assigned, we use a fixed value for α = 1. For the other hyperparameters,

we set fixed values as aτ = 2 and bτ = 1, which can be interpreted as small prior sample sizes and

h0 = 0.1. With these specifications, we can explicitly derive the posterior distributions for θi by the

MCMC using a Gibbs sampler. See Appendix A for detail.

4 Simulation Study

4.1 Simulation Structure

We compare the performance of our proposed DPM model and the FH model via simulation

studies in which the direct estimates, θ̂i, follow the Sampling model in (1), but the true domain-level

means, θi, may deviate from the normal distribution in (3). Specifically, we consider the following

four cases in which the distributions for θi are defined as:

Case 1: Normal distribution. θi
iid∼ N(4,1).

Case 2: Heavy-tailed distribution. θi
iid∼ T2, a t-distribution with 2 degrees of freedom.

Case 3: Skewed distribution. θi
iid∼ SN(ξ = 0,ω = 1,γ = 2), where SN(ξ ,ω,γ) denotes the skewed

normal distribution with location parameter ξ , scale parameter ω and slant parameter γ .
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Case 4: Mixed distribution. θi
iid∼ .3N(0,1)+ .5N(5,1)+ .2N(10,1).

We separately generate a set of sampling variances ψi ∼ Γ(shape = 6, rate = 2) to apply in each

case. The direct estimates, θ̂i, are then generated from θ̂i
ind∼ N(θi,ψi), i = 1, . . . ,m, and m = 500.

We simulated a total of 100 sets of replicated samples for this study.

To implement the DPM approach, we follow the model and the prior distributions described

in Section 3.2 and Appendix A. On the other hand, for the FH model we use weak priors for the

hyperparameters, µ ∼N(0,1000), στ ∼Uni f (0,∞) suggested by Gelman (2006). For both methods,

we used 10,000-iteration MCMC runs with 5,000-iteration burn-in periods with 4 thinning steps.

4.2 Simulation Results: One Replication

We first compare between our proposed DPM approach and the FH model based on one replicate

sample. Specifically, by plotting them, we examine samples from each of their posterior distribu-

tions, f (θi|θ̂), against the true distribution for the four cases listed in Section 4.1. In Figure 1, the

results from the FH models are in the left-hand panels, and those from the DPM models are in the

right-hand panels, where we use kernel density estimates to represent the distributions from each

posterior sample with gray curves and the true distribution with a black curve.

In Case 1, estimated densities of the posterior samples from the FH model are, unsurprisingly,

closer to the true density than those from the DPM approach. However, those from the DPM ap-

proach also locate the true normal distribution of θi, albeit with larger variation. In Case 2, the

estimated densities from the FH model are overly dispersed and thus fail to capture the true under-

lying density. On the other hand, those densities from the DPM approach capture the true density

reasonably well, although they may seem too concentrated around the mean. At first glance for Case

3, the FH may seem to perform slightly better than the DPM approach since the density estimates

capture the true density reasonably well. However, while the posterior draws from the FH model

seem symmetric and lack the skewness, those from the DPM model appear to be more skewed to

the left but yet only just capture the true distribution. In Case 4, the estimated densities from the

FH model overly smooth the variation of the true distribution. Moreover, they perform very poorly

due to the substantial distributional deviation from the true distribution for θi. On the other hand,
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FH DPM

(a) Case 1: θi ∼ N(4,1)

(b) Case 2: θi ∼ T2

(c) Case 3: θi ∼ SN(0,1,2)
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(d) Case 4: θi ∼ .3N(0,1)+ .5N(5,1)+ .2N(10,1)

Figure 1: Density comparison between the FH model (left panels) and the DPM approach (right
panels). The solid black curve represents the true density for θi.
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the estimated densities from the DPM model capture the variation of true distribution almost per-

fectly although it does show wide variation around the true distribution. These types of multi-modal

distribution characteristics are observed in our analyses of the NSRCG data in Section 5.

4.3 Simulation Results: Multiple Replications

Based on our analysis in the previous section, we have shown that our DPM approach is more

effective when underlying true distribution deviates from a normal distribution. In this section, we

extend our analysis by comparing the domain-level estimates based on the posterior means, θ̂ ∗i =

E(θi|θ̂), from each model and their ensembles {θ̂ ∗i }m
i=1 by using the following summary measures

on multiple replicates.

1. Root Average Squared Bias, (RASB)

RASB =

√
1
m

m

∑
i=1

(θ̂ ∗i −θi)2,

which is an aggregate of differences between the posterior mean, θ̂ ∗i , from each model of each

simulated replicate and the true domain-level mean θi.

2. Root Integrated Squared Error Loss, (RISEL)

RISEL =

√∫ (
Fn(t)− F̃∗n (t)

)2 dt,

(Shen and Louis 1998), where Fn(t) is the empirical distribution function (EDF) of the en-

semble of true θi’s, θ = {θi}m
i=1:

Fn(t) =
1
m

m

∑
i=1

I(θi ≤ t),

and F̃∗n (t) is the corresponding EDF for the estimators, θ̂∗ = {θ̂ ∗i }m
i=1, from each replicate.

RISEL measures the average difference between two empirical distributions.
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Table 1: Averages of summary statistics from posterior means over all 100 replicated samples. The
numbers in the parenthesis shows the 5% and 95% quantiles.

RASB RISEL K-S
FH DPM FH DPM FH DPM

Case 1: 1.210 1.201 0.029 0.031 0.081 0.090
Normal dist’n (1.139, 1.295) (1.139, 1.273) (0.022, 0.045) (0.024, 0.050) (0.065, 0.111) (0.073, 0.137)

Case 2: 2.141 1.723 0.030 0.010 0.158 0.081
t-dist’n (2.081, 2.202) (1.665, 1.792) (0.027,0.032) (0.008,0.013) (0.146, 0.172) (0.067, 0.102)

Case 3: 0.867 0.880 0.056 0.042 0.141 0.107
Skewed normal (0.741, 0.993) (0.826, 0.958) (0.035, 0.123) (0.031, 0.062) (0.089, 0.331) (0.084, 0.159)

Case 4: 4.495 2.032 0.047 0.032 0.103 0.087
Mixture of normals (4.352, 4.642) (1.961, 2.105) (0.044, 0.053) (0.026, 0.043) (0.093, 0.111) (0.073, 0.118)

3. Kolmogorov-Smirnov Statistic, (K-S)

D(θ, θ̂∗) = sup
t
|Fn(t)− F̃∗n (t)|,

which measures the maximum distance between the EDFs from the estimators and the true

domain-level means.

Table 1 shows the averages of each summary statistic; the numbers in the parenthesis represent

the 5% and 95% quantiles over 100 replicates. For Case 1, the DPM and FH results are essentially

identical, showing that the DPM model suffers no performance degradation when θi are in fact

normally distributed, i.e., when the assumptions for underlying model of the FH are satisfied. For

Case 2, the DPM approach outperforms the FH model rather dramatically for all three measures,

especially for RISEL and K-S. For Case 3, DPM appears to be marginally superior to FH in terms

of means, but it is more so for RISEL and K-S than for RASB. This is expected from the result

in the previous section since the DPM approach is more successful at capturing the skewness of

the distribution. Additionally, the DPM approach yields shorter inter-quantile distances than FH,

suggesting that its estimates show less variation. Lastly in Case 4, there is a factor-of-two difference

in RASB, a 50% difference in RISEL and approximately a 20% difference in K-S, all in favor of

the DPM although the DPM produced wider inter-quantile distances.
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5 Application to Salary Estimation for the NSRCG

In this section, we illustrate our DPM approach by analyzing salary data from the 2008 National

Survey of Recent College Graduates (NSRCG). We cannot, of course, know the “ground truth”, but

our results suggest a mixed (multi-modal) distribution of the domain-level means, implying that

higher credence could be placed in the results from the DPM model as demonstrated in Section 4.

5.1 The NSRCG

Conducted by the National Center for Science and Engineering Statistics (NCSES) at the Na-

tional Science Foundation, the NSRCG provides information about recent recipients of bache-

lor’s and master’s degrees in science, engineering, and health (SEH) fields from U.S. academic

institutions. The NSRCG was a biennial, cross-sectional survey carried out from 1973 to 2010,

and collected demographic, educational and employment information from respondents. Accord-

ing to the NCSES website (http://www.nsf.gov/statistics/srvyrecentgrads/),

NSRCG data “help users understand and predict trends in education, employment opportunities,

and salaries of recent (SEH) graduates.”

In particular, we analyze the 2008 NSRCG. For the survey, the eligible participants were un-

der the age 76, non-institutionalized, and obtained their degrees during the 2006 and 2007 academic

years (that is, between July 1, 2005 and June 30, 2007). The survey design follows a two-phase sam-

pling scheme. In the first phase, a sample of 288 institutions was selected with probability propor-

tional to size (PPS) from a list of 2,027 eligible institutions, and in the second phase approximately

18,000 graduates of those institutions who are in the U.S. were selected. For more information

about the survey design, see http://www.nsf.gov/statistics/nsf12328/content.

cfm?pub_id=4169&id=3.

The 2008 NSRCG survey was designed to provide reliable national estimates for domains de-

fined by degree type (bachelor’s or master’s), major field of degree, race/ethnicity, and gender.

However, it was not designed to provide estimates for a cross-classification of those domains, and

thus constructing such small-domain estimates was the original motivation for this study.

http://www.nsf.gov/statistics/srvyrecentgrads/
http://www.nsf.gov/statistics/nsf12328/content.cfm?pub_id=4169&id=3
http://www.nsf.gov/statistics/nsf12328/content.cfm?pub_id=4169&id=3
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5.2 Analysis of Salaries

Building on the work of Carrillo and Karr (2013) regarding estimation of salaries of Ph.D. re-

cipients using data from NCSES Survey of Doctorate Recipients, we restrict the data to respondents

who are employed full time, work more than 35 weeks, and report salary income exceeding $5,000

per year. The reduced data set contains approximately 8,300 respondents.

With these criteria, we estimate mean salaries for small domains constituting a cross-classification

of five variables—gender, race, degree level, field of degree, and Carnegie code of the degree-

granting institution. Although more detail is available in the data, these variables were re-coded to

the levels shown in Table 2. When fully crossed, the total number from the five variables resulted in

190 domains since two of these domains are empty in our case. The distribution of the sample sizes,

on the square-root scale, is shown in Figure 2, which shows that more than one-half of the domains

have sample sizes less than 19.

Table 2: The five variables used in the analysis of mean salaries for a total of 190 domains of
interest.

Variable Level Notation
Gender Female F

Male M
Race Asian only A

Black only B
White only W
All other races, including mixed O

Degree level Bachelor’s B
Graduate G

Field of degree Biological and environmental sciences Bio Env
Computational and mathematical sciences Comp Sci
Engineering Eng
Physical sciences Physical
Social sciences Soc
Other SEH-related fields Rel

Carnegie code Research and doctorate-granting R U
Other Other

To calculate the domain-level estimates, let yi j be the annual salary of individual j in domain i.
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Figure 2: Distribution of the sample sizes, in square root scale, of the 190 non-empty domains
defined by gender, race, degree level, field of degree, and Carnegie code of the degree-granting
institution.

The population domain-level means are given by

θi =
1
Ni

Ni

∑
j=1

yi j, (10)

where Ni is the population size in domain i. The direct design-based, or Horvitz-Thompson estima-

tor of θi is defined as

θ̂i =
∑ j∈si wi jyi j

∑ j∈si wi j
, (11)

where si is the set of sampled individuals and wi j is the survey weight for person j in domain i.

The weights reflect the complex sample design in the NSRCG. Direct use of design-based sampling

variance, ψi, for all domains is not a viable option due to the small sample sizes. Thus, we apply an

adjustment method similar to that in Ha et al. (2014). For a detailed description of our method, see

Appendix B.

5.3 Result for Domain-level Salaries

The complete set of domain-level direct design-based, FH, and DPM estimates appears in the

table in Appendix D. Here we compare the results in terms of five domains with the highest and
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Table 3: The five domains with highest estimated salaries (top) and five domains with lowest esti-
mated salaries (bottom). The underlined numbers represent the common domains between the FH
and the DPM.

Five Domains with Highest Salaries

Gender Race Degree Level Field Carnegie ni Salary ($)
Design-based estimates

M A G Rel Other 29 107,648
M O G Rel Other 1 103,000
M A G Rel R U 12 97,485
M O G Rel R U 4 92,701
M A G Rel Other 6 92,133

FH estimates
M W G Rel R U 42 89,475
F A G Eng Other 24 77,173
M W G Comp Sci R U 96 77,144
F B G Comp Sci R U 27 75,938
M W G Eng Other 105 74,603

DPM estimates
F A G Eng Other 24 77,173
M W G Comp Sci R U 96 77,144
F B G Comp Sci R U 27 75,938
M W G Eng Other 105 74,603
M A G Comp Sci R U 42 74,511

Five Domains with Lowest Salaries

Gender Race Degree Level Field Carnegie ni Salary ($)
Design-based estimates

F A B Physical Other 7 23,776
M B G Physical R U 9 26,755
M B B Bio Envir Other 5 28,990
M B B Physical Other 14 29,222
M O B Bio Envir Other 1 30,000

FH estimates
F A B Physical Other 7 23,776
M B B Physical Other 14 29,222
F W B Social Other 203 32,482
F B B Physical Other 15 33,197
F W B Bio Envir Other 73 33,320

DPM estimates
M B B Physical Other 14 29,222
F W B Social Other 203 32,482
F A B Bio Envir R U 17 32,641
F W B Bio Envir Other 73 33,320
F B B Physical Other 15 33,197
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Figure 3: Kernel densities for posterior means of salary estimates.

lowest estimated salaries, which appear in Table 3. This table shows that the posterior means from

the FH and the DPM models are quite similar for most domains, which is expected from the pos-

terior model checking with the Bayesian p-value in the Appendix C. Evidently, the choice of prior

distribution did not make a meaningful difference when we examined only the posterior means from

both models.

Figure 3 shows the estimated densities of θ̂i’s from all three (DPM, FH, and design-based) esti-

mates. As expected, there is a large difference between the design-based estimates and the FH and

DPM estimates. However, there is much less difference between posterior estimates from the FH

and the DPM models overall while the distributional difference of posterior means for the FH and

the DPM model are more apparent when the salary estimates are between $35,000 and $45,000. Ta-

ble 4 shows the groups and posterior means for each model. However, when we examined estimates

that fall within that range, we found no systematic patterns of differences for the domains.
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Table 4: Comparison of FH and DPM salary estimates lying between $35,000 and $45,000.

Gender Race Degree Level Field Carnegie FH DPM
F B B Comp Sci R U 45,161 44,041
M W G Physical R U 45,464 44,413
M A B Social R U 45,284 44,240
F O G Social R U 34,793 36,623
F B B Bio Envir Other 34,045 35,243
F A B Physical Other 33,836 36,677
M B B Eng Other 46,086 44,445

5.4 Distribution of Subdomain Salaries

Finally, we compare the models in terms of how they differentiate salaries by type of degree.

Figure 4 contains Box plots of the salary distributions for recipients of bachelor’s degrees (left) and

graduate degrees (right). Within each pair of Box plots, FH estimates are on the left, and DPM

estimates are on the right. For both degree levels, estimates from the DPM model have slightly

less variation than those from the FH model, but the differences are not substantial, and the median

estimates from the FH model slightly exceed those from the DPM model.

Figure 4: Box plots comparing densities of subdomain salaries by degree level. Left: FH estimates
compared to DPM estimates for bachelors degree recipients. Right: FH estimates compared to DPM
estimates for graduate degree recipients.

Figure 5, however, tells a more nuanced story. In the figure, we see that the density estimates
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from both methods are cross-classified with the degree types: The DPM density estimates are on

the left and the FH density estimates of the right; bachelor’s degrees are at the top, and graduate

degrees are at the bottom. The grey lines show posterior density estimates of θi from both models,

and the black lines show the distribution of design-based estimates. As expected from the Bayesian

p-value analysis, the distribution of the design-based estimates lies within the distributions from the

two models; see Appendix C.

We observe substantial differences between distributions from the DPM and FH models when

their shapes are compared. For bachelor’s degrees (upper plots in Figure 5), the posterior distribu-

tion from the DPM model clearly shows a multi-modality, whereas the posterior distribution from

the FH model does not, i.e., it is flatter and with no clear multi-modality. For graduate degrees

(lower plots in Figure 5), the results are similar: the posterior density estimates of the DPM model

demonstrate a mixture of distributions with different modes, whereas those of the FH model appears

smoother in comparison. Based on our simulation results in Section 4, we believe that the flexible

distributional assumption of the DPM approach allows it to conform better to the true underlying

distribution, which appears to be multi-modal.

6 Concluding Remarks

In this paper, we have introduced an extension of the classical FH model by employing a DP

prior for the distribution of the true domain-level means. Using simulation studies, we demonstrated

that our approach with the DPM model outperforms the FH model when the true distribution de-

viates from normality—heavy tails, skewness and mixtures, and with no loss of performance when

the normality assumption is satisfied.

For the 2008 NSRCG, the DPM model and the FH model were both applied to estimate the

salaries for 190 domains comprising from a full cross-classification of gender, race, degree-level,

field of degree, and Carnegie classification. The differences between the estimates produced by two

models are subtle but meaningful. Based on our findings from the simulations studies, we claim

that the underlying distribution for domain-level salary averages may exhibit a multi-modality and
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Figure 5: Density estimates comparing subdomain salaries by degree level. Left: DPM estimates,
with bachelor’s degrees above and graduate degrees below. Right: FH estimates, with bachelor’s
degrees above and graduate degrees below.

that the DPM model could be more successful with capturing that characteristic.

Similar to other model-based estimation methods, our approach is still subject to possible model

failure. One possible solution could be using a benchmarking method similar to that in Datta et al.

(2009). Benchmarking is a popular method in small area estimation because the method provides

techniques such that the sum of the estimates for small domains becomes equivalent to that of the

corresponding larger domains.

Our analysis focused on the intercept-only model for the prior distribution since the NSRCG

does not contain relevant covariates for the domains of our interest. However, for many cases

in small area estimation problems, there are available domain/area-level covariates, and our DPM



Semiparametric Small Domain Estimation 20

approach can be extended to those general cases.
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Appendix A Posterior Inference via MCMC

We can construct the posterior distribution for the DPM model via MCMC with the following

Gibbs sampling algorithm.

Step 1. For each i = 1, . . . ,m, draw θi ∼ N(µ∗i ,τ
∗
i ), where

µ
∗
i =

σ2
i µzi + τ2

zi
θ̂i

σ2
i + τ2

zi

, and τ
∗
i =

σ2
i τ2

zi

σ2
i + τ2

zi

.
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Step 2. For each k = 1, . . . ,K, draw σ2
k ∼ IG(a∗k ,b

∗
k), and then draw µk ∼ N

(
µ∗k ,σ

2
k /h∗k

)
, where

nk = ∑
{i:zi=k}

1, θ̄k =
1
nk

∑
{i:zi=k}

θi,

h∗k = nk +h0, µ
∗
k =

1
hk

(
nkθ̄k +h0µ0

)
,

a∗k = aτ +
nk

2
, b∗k = bτ +

∑{i:zi=k}(θi− θ̄k)
2

2
+

(θ̄k−µ0)
2

2(1/nk +1/h0)
.

Step 3. For each k = 1, . . . ,K− 1, draw vk ∼ Beta
(
1+nk,α +∑g>k ng

)
and let vK = 1. Then cal-

culate the mixture component weights πk = vk ∏g<k(1− vg) for k = 1, . . . ,K.

Step 4. For each i = 1, . . . ,n, draw zi ∼ Categorical(π∗i1, . . . ,π
∗
iK), where

π
∗
ik =

πkN(θi; µk,σ
2
k )

∑
K
k′=1 πk′N(θi; µk′ ,σ

2
k′)

for k = 1, . . . ,K.

Appendix B Sampling Variance Estimation

In the Fay-Herriot model, the sampling variances ψi are assumed to be known; however, in

practice their estimated values are used. There are two commonly used methods to obtain esti-

mated sampling variances. The first method uses a jackknife replication method to develop replicate

weights (Fay and Train 1995), and this method requires construction of replicate subsamples by us-

ing the survey design information, such as strata or the primary sampling units, (Shao 1996). The

second method employs the Generalized Variance Function (GVF, Wolter 1985), for approximating

variances. The GVF method is a model-based method in which the model describes the relationship

between the relative variance of a survey estimator and its expectation.

For our variance estimates, we primarily used the jackknife method, based on replicate weights

available in the NSRCG datasets. However, due to the small sample sizes in many domains, some

of the variance estimates were either undefined or small. Especially, the design effects (ratios of the

variance under the survey design and variance under simple random sampling) for those domains
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were less than one, which is uncommon under complex survey designs. Thus, we have made an

adjustment in the following manner, with assumptions similar to those in Ha et al. 2014.

First, we examined the variance estimates at larger domains defined by gender × race × degree

level. We made a conservative assumption, for those subdomains with design effect less than one,

that the variation for all subdomains would be similar to that of the corresponding larger domains.

Let ψi be a variance estimate for small domain i and ψ j be the corresponding variance estimate

where the domain i is a subdomain within the domain j. Then, we assume that ψi/ni ≈ ψ j/n j,

where ni and n j are sample sizes for domains i and j. Finally, we replaced the ψi with ψ∗i as defined

by

ψ
∗
i = ψ j×

ni

n j
(12)

for those domains in which the design effect was less than one.

Appendix C Model Fit via Posterior Predictive Model Checking

Sinharay and Stern 2003 and Gelman et al. 2004 and discussed using the Bayesian p-value for

checking the adequacy of a model. Let D(θ̂obs,θ) be a test statistic on the observation θ̂obs and the

parameter θ. Let θ̃ represent a sample draw from the posterior distribution, f (θ|θ̂obs) and let θ̃∗

represent a draw from f (θ̂|θ̃) as in (1). Then marginally, θ̃∗ is a sample drawn from the posterior

predictive distribution f (θ̂|θ̂obs). Subsequently, we can define our test statistic D as a χ2-type

discrepancy measure such that,

D(θ̂,θ) =
m

∑
i=1

(θ̂i−θi)
2

ψi
, (13)

where ψi denotes the sampling variance for domain i.

By using this discrepancy measure, D, the posterior predictive p−value is defined as

pB = Prob{D(θ̃∗,θ)≥ D(θ̂obs,θ)|θ̂obs}, (14)

Using the posterior simulated samples from the Gibbs sampling, the posterior predictive p−value
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(14) can be approximated easily. For each iteration ` and simulated value θ̃ `, we can draw θ̃ ∗,`, and

consequently compute D(θ̂obs, θ̃ `) and D(θ̃ ∗,`, θ̃ `). Then equation (14) can be approximated as:

pB ≈ B−1
B

∑
`=1

I{D(θ̂∗,`,θ `)≥ D(θ̂obs,θ `)}, (15)

where B denotes the total number of Gibbs samplers and I is an indicator function. An extreme

value (near 0 or 1) of pB indicates possible lack-of-fit, whereas the value near 0.5 reflects adequacy

for a given model. For our study with the 2008 NSRCG, the Bayesian p-value under the FH model

is 0.399 and under the DPM model is 0.425, and thus, both models are adequate for explaining the

data.
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Appendix D Salary ($1K) Estimates for the NSRCG

Gender Race Degree Field Carnegie Salary Standard Design Variance ni Fay- Dirichlet Difference Ni

Level of Degree Code Error Effect Herriot Process (DPM - FH)

F W B Comp Sci R U 51.117 2.301 0.952 20.038 38 51.110 51.740 0.630 4929.369

M W B Comp Sci R U 58.513 2.717 1.103 7.384 69 58.066 57.547 0.519 18622.677

F A B Comp Sci R U 52.812 3.730 0.765 37.548 14 52.458 52.303 0.156 2256.267

M A B Comp Sci R U 63.172 2.414 0.783 10.754 36 62.335 62.849 0.515 8340.328

F B B Comp Sci R U 44.712 3.345 1.093 11.192 14 45.162 44.042 1.120 822.380

M B B Comp Sci R U 72.592 16.913 2.144 286.062 10 58.262 58.129 0.133 1545.942

F O B Comp Sci R U 44.881 3.088 0.701 732.356 6 50.326 50.006 0.321 387.907

M O B Comp Sci R U 59.935 5.088 1.067 25.886 7 58.581 58.343 0.239 1439.888

F W G Comp Sci R U 63.211 3.876 1.827 15.022 75 62.064 62.474 0.409 2461.580

M W G Comp Sci R U 77.144 3.437 1.576 11.812 96 75.174 74.463 0.710 9237.450

F A G Comp Sci R U 62.185 2.726 1.255 7.430 28 61.744 62.195 0.451 3128.425

M A G Comp Sci R U 74.511 4.147 1.169 17.194 42 72.089 71.815 0.274 9197.577

F B G Comp Sci R U 75.939 4.072 1.167 16.578 27 73.331 72.875 0.456 316.010

M B G Comp Sci R U 71.221 3.720 0.750 98.605 20 62.706 63.588 0.882 585.757

F O G Comp Sci R U 77.438 15.752 2.038 248.111 8 60.428 60.916 0.489 280.011

M O G Comp Sci R U 62.382 13.626 0.499 2748.865 2 52.244 51.682 0.562 201.950

F W B Bio Envir R U 34.222 1.656 1.444 2.742 71 34.484 34.888 0.405 13908.531

M W B Bio Envir R U 35.531 2.057 1.581 4.230 79 35.985 36.262 0.277 16405.749

F A B Bio Envir R U 32.642 3.046 1.264 9.277 17 33.875 34.882 1.007 3895.783

M A B Bio Envir R U 36.891 3.742 1.483 14.003 15 38.346 38.219 0.127 3210.508

F B B Bio Envir R U 34.443 3.737 1.319 13.966 14 36.231 36.735 0.504 1421.714

M B B Bio Envir R U 41.019 6.016 1.463 36.192 7 43.093 41.896 1.198 614.300

F O B Bio Envir R U 35.865 2.853 1.898 8.139 19 36.705 37.146 0.440 2149.156

M O B Bio Envir R U 40.515 7.154 1.096 51.177 4 43.554 42.261 1.293 1008.661

F W G Bio Envir R U 42.638 3.256 1.509 10.604 56 43.235 42.175 1.060 4092.723

M W G Bio Envir R U 45.825 4.257 1.802 18.123 53 46.572 45.895 0.678 5646.711

F A G Bio Envir R U 55.552 4.718 1.132 22.261 17 54.959 54.832 0.127 1457.720

M A G Bio Envir R U 54.522 10.120 1.025 102.411 16 53.131 53.099 0.033 1318.987

F B G Bio Envir R U 62.351 8.633 1.468 74.523 17 58.803 58.453 0.350 283.225

M B G Bio Envir R U 52.954 2.555 0.659 657.367 3 52.329 51.051 1.278 61.968

F O G Bio Envir R U 49.152 12.373 1.443 153.082 6 50.845 49.934 0.911 305.575

M O G Bio Envir R U 31.564 4.803 0.554 1832.577 3 50.184 49.878 0.306 165.403

F W B Physical R U 36.921 2.011 1.709 4.045 79 37.375 37.509 0.134 3311.844

M W B Physical R U 37.680 2.471 1.481 6.105 74 38.343 38.388 0.045 5429.125

F A B Physical R U 40.126 3.575 1.567 12.782 26 41.115 40.366 0.748 703.643

M A B Physical R U 40.326 3.402 0.886 27.653 14 42.152 41.076 1.077 643.205

F B B Physical R U 40.309 4.124 2.418 17.011 24 41.385 40.593 0.792 302.035

M B B Physical R U 45.710 8.496 2.335 72.187 10 47.315 46.444 0.871 312.763

F O B Physical R U 35.289 2.911 0.802 292.942 15 46.401 45.595 0.806 290.104

M O B Physical R U 39.052 5.056 1.450 25.561 10 41.003 40.203 0.800 331.449

F W G Physical R U 53.472 4.281 1.365 18.330 53 53.154 53.452 0.298 1431.638

M W G Physical R U 45.014 3.501 1.128 12.257 57 45.465 44.413 1.051 3642.088

F A G Physical R U 40.726 7.332 0.961 193.366 8 47.099 46.269 0.830 422.466

M A G Physical R U 46.376 7.009 1.041 49.133 18 47.827 46.705 1.122 968.925

F B G Physical R U 45.005 4.561 0.923 365.284 12 49.422 48.875 0.547 47.981

M B G Physical R U 26.756 7.849 0.795 219.122 9 41.913 42.084 0.171 433.696

F O G Physical R U 41.606 6.901 1.394 47.630 7 44.211 42.981 1.229 145.972

M O G Physical R U 59.600 2.896 0.446 916.288 6 52.639 52.183 0.455 241.486

F W B Soc R U 36.845 1.690 1.114 2.857 219 37.153 37.191 0.038 58476.158

M W B Soc R U 43.458 2.296 1.369 5.272 147 43.737 42.982 0.755 39793.151

F A B Soc R U 42.360 1.520 0.421 9.222 57 42.995 41.970 1.026 12402.901

M A B Soc R U 44.966 2.637 1.060 6.955 35 45.284 44.240 1.044 7920.778

F B B Soc R U 36.721 1.526 0.995 20.477 37 38.510 38.648 0.138 5887.567

M B B Soc R U 50.354 20.915 1.180 437.450 27 50.950 50.246 0.704 3670.130

F O B Soc R U 51.778 14.483 1.004 209.759 29 51.687 51.300 0.388 6668.851

M O B Soc R U 43.190 3.641 1.340 13.256 26 43.943 42.659 1.284 5432.709

F W G Soc R U 46.073 1.813 2.086 3.287 268 46.179 45.587 0.593 13651.393

M W G Soc R U 53.059 2.998 1.417 8.987 126 52.882 53.562 0.680 7874.127

F A G Soc R U 52.175 4.332 1.038 18.763 32 52.114 52.568 0.453 2169.035

M A G Soc R U 52.216 6.115 1.092 37.398 19 52.137 52.067 0.070 1180.318

F B G Soc R U 44.267 3.027 2.487 9.162 70 44.806 43.424 1.381 1359.590

M B G Soc R U 58.346 10.060 3.983 101.197 30 55.236 55.397 0.161 692.505
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Gender Race Degree Field Carnegie Salary Standard Design Variance ni Fay- Dirichlet Difference Ni

Level of Degree Code Error Effect Herriot Process (DPM - FH)

F O G Soc R U 30.046 6.244 4.244 38.993 31 34.794 36.623 1.830 1225.449

M O G Soc R U 62.654 4.698 0.643 274.886 20 55.435 55.070 0.365 685.995

F W B Eng R U 54.624 1.012 1.772 1.024 272 54.637 54.334 0.303 7851.723

M W B Eng R U 57.143 0.874 1.247 0.764 428 57.134 56.925 0.209 41757.955

F A B Eng R U 57.414 2.044 1.390 4.176 80 57.223 56.561 0.661 3017.704

M A B Eng R U 58.710 1.732 1.499 3.001 115 58.514 58.440 0.074 12210.722

F B B Eng R U 55.372 1.414 1.204 1.998 76 55.349 54.815 0.535 843.120

M B B Eng R U 55.216 2.376 1.962 5.646 54 55.097 54.533 0.564 2146.541

F O B Eng R U 54.500 2.734 1.222 7.476 40 54.342 54.236 0.106 735.317

M O B Eng R U 57.300 4.552 2.500 20.718 49 56.655 56.078 0.577 3220.609

F W G Eng R U 64.386 1.668 2.332 2.781 406 64.151 64.353 0.202 4400.171

M W G Eng R U 69.049 1.586 2.041 2.517 506 68.711 68.859 0.148 17121.917

F A G Eng R U 61.960 2.792 1.787 7.794 119 61.357 61.641 0.284 5164.136

M A G Eng R U 69.778 2.312 1.153 5.347 175 69.131 69.193 0.062 13508.570

F B G Eng R U 62.512 2.244 1.883 5.034 115 62.118 62.454 0.336 320.147

M B G Eng R U 73.131 3.884 2.390 15.085 79 70.858 71.008 0.150 865.719

F O G Eng R U 73.878 10.268 2.802 105.442 41 64.163 64.595 0.432 233.432

M O G Eng R U 62.124 7.804 3.875 60.898 52 58.612 58.838 0.226 1969.797

F W B Rel R U 48.223 2.086 1.107 4.353 68 48.298 48.092 0.206 22960.482

M W B Rel R U 55.148 2.682 0.899 35.134 21 54.593 54.602 0.009 5213.612

F A B Rel R U 54.473 4.311 0.954 43.806 12 53.354 53.810 0.456 3323.187

M A B Rel R U 43.119 3.122 0.715 129.049 3 47.186 46.358 0.828 400.617

F B B Rel R U 50.193 3.392 0.908 63.137 12 50.874 50.187 0.687 2846.446

M B B Rel R U 79.920 7.473 0.408 1102.055 5 54.461 54.614 0.153 606.607

F O B Rel R U 39.990 5.821 0.486 2197.067 2 50.999 50.827 0.172 648.793

M O B Rel R U 70.905 0.701 0.500 321.118 2 57.504 57.053 0.451 209.352

F W G Rel R U 61.666 1.934 0.796 32.977 119 59.776 59.509 0.268 27775.236

M W G Rel R U 89.475 10.623 1.413 112.838 42 72.434 71.379 1.055 8483.949

F A G Rel R U 69.784 15.529 0.995 154.692 10 60.330 60.846 0.516 2250.846

M A G Rel R U 97.485 17.736 1.329 314.575 12 65.250 65.353 0.103 1311.377

F B G Rel R U 67.718 8.804 0.839 208.734 21 57.950 57.452 0.498 2089.641

M B G Rel R U 53.237 9.734 0.876 394.420 5 51.920 51.523 0.397 318.903

F O G Rel R U 55.702 5.132 1.387 26.340 10 54.968 55.019 0.051 1387.232

M O G Rel R U 92.701 29.269 1.198 856.662 4 57.426 57.523 0.097 768.869

F W B Comp Sci Other 39.218 1.712 0.894 13.359 57 40.263 39.807 0.456 8225.145

M W B Comp Sci Other 48.942 1.756 1.080 3.085 102 49.044 49.226 0.182 28962.298

F A B Comp Sci Other 45.341 8.382 0.478 262.835 2 49.273 48.561 0.713 270.952

M A B Comp Sci Other 60.467 5.092 0.894 35.195 11 58.577 58.600 0.024 3253.467

F B B Comp Sci Other 58.168 9.820 2.036 96.426 16 55.421 55.784 0.363 1192.103

M B B Comp Sci Other 40.325 6.248 1.561 39.043 16 43.030 41.706 1.324 2474.899

F O B Comp Sci Other 45.312 7.145 1.067 51.048 6 47.000 45.740 1.260 433.861

M O B Comp Sci Other 57.484 8.201 0.844 91.748 7 55.174 55.273 0.099 1652.306

F W G Comp Sci Other 56.600 10.288 3.452 105.850 39 54.473 53.949 0.524 1517.866

M W G Comp Sci Other 86.938 10.724 1.385 115.004 41 70.764 70.183 0.581 2542.505

F A G Comp Sci Other 53.768 5.904 1.054 34.854 9 53.421 53.474 0.053 1869.551

M A G Comp Sci Other 63.583 8.835 1.098 78.050 7 59.350 59.157 0.193 1713.134

F B G Comp Sci Other 59.055 6.132 1.222 37.597 23 57.328 57.559 0.232 233.512

M B G Comp Sci Other 72.276 10.464 1.516 109.490 8 63.168 63.648 0.480 230.120

F O G Comp Sci Other 50.844 1.966 0.527 232.660 6 51.047 51.064 0.017 110.494

M O G Comp Sci Other 78.357 14.400 1.199 207.365 5 62.222 62.323 0.101 232.416

F W B Bio Envir Other 33.321 1.776 1.117 3.153 73 33.750 34.170 0.420 15863.275

M W B Bio Envir Other 35.362 2.404 1.429 5.779 52 35.952 36.474 0.522 10476.930

F A B Bio Envir Other 33.619 5.870 1.586 34.462 11 37.427 37.811 0.384 2097.115

M A B Bio Envir Other 39.040 7.132 0.982 64.525 6 42.957 42.342 0.615 1758.101

F B B Bio Envir Other 32.749 3.354 2.269 11.247 19 34.046 35.243 1.197 1459.954

M B B Bio Envir Other 28.991 2.619 0.498 1102.055 5 49.050 48.534 0.516 419.428

F O B Bio Envir Other 37.045 3.544 1.068 12.560 10 38.226 38.161 0.065 776.384

M O B Bio Envir Other 30.000 0.000 642.236 1 47.665 47.737 0.072 319.505

F W G Bio Envir Other 39.021 5.443 2.384 29.631 36 40.931 40.257 0.674 2331.408

M W G Bio Envir Other 37.283 5.726 1.272 32.784 18 39.784 39.403 0.381 1888.476

F A G Bio Envir Other 54.302 2.638 0.706 515.641 3 51.664 51.904 0.240 336.627

M A G Bio Envir Other 45.532 3.740 0.895 235.212 5 49.546 48.898 0.649 353.043

F B G Bio Envir Other 40.099 3.572 1.089 12.759 7 41.079 40.418 0.661 106.845

M B G Bio Envir Other 46.189 10.230 1.307 104.649 5 48.631 47.662 0.969 113.463

F O G Bio Envir Other 66.099 3.315 0.254 348.989 4 55.996 54.209 1.787 242.537

F W B Physical Other 34.810 2.017 1.746 4.069 89 35.307 35.682 0.376 4181.038

M W B Physical Other 42.379 6.596 1.922 43.505 78 44.582 43.196 1.386 5453.701
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Gender Race Degree Field Carnegie Salary Standard Design Variance ni Fay- Dirichlet Difference Ni

Level of Degree Code Error Effect Herriot Process (DPM - FH)

F A B Physical Other 23.776 1.778 0.545 75.096 7 33.836 36.677 2.841 226.073

M A B Physical Other 53.469 3.251 0.724 64.525 6 52.720 52.829 0.109 387.747

F B B Physical Other 33.198 2.229 1.140 4.970 15 33.785 34.442 0.657 239.609

M B B Physical Other 29.223 4.170 1.817 17.389 14 31.613 34.024 2.411 204.678

F O B Physical Other 34.939 3.868 1.894 14.962 14 36.636 37.130 0.495 227.879

M O B Physical Other 52.070 7.141 1.011 50.993 6 51.852 51.818 0.034 181.435

F W G Physical Other 48.365 6.909 1.395 47.738 20 49.289 48.714 0.575 536.007

M W G Physical Other 44.339 6.395 1.501 40.897 16 45.875 45.174 0.702 1178.005

F A G Physical Other 50.680 0.346 0.017 515.641 3 51.230 51.243 0.013 22.779

M A G Physical Other 52.259 4.388 0.662 235.212 5 52.021 51.498 0.524 163.300

F B G Physical Other 43.187 4.648 1.223 21.600 7 44.168 42.997 1.171 30.819

M B G Physical Other 58.763 3.158 1.090 9.971 5 58.234 57.453 0.780 83.341

M O G Physical Other 52.500 0.000 5497.730 1 51.929 51.277 0.652 4.921

F W B Soc Other 32.482 1.110 1.674 1.233 203 32.655 32.885 0.230 60785.668

M W B Soc Other 38.018 1.527 1.399 2.332 129 38.221 38.233 0.012 38075.362

F A B Soc Other 36.447 2.397 0.778 18.774 28 38.163 38.256 0.093 6263.777

M A B Soc Other 46.641 4.012 0.737 32.262 12 47.544 47.056 0.488 2470.130

F B B Soc Other 36.925 2.971 1.061 8.826 58 37.810 37.931 0.121 10103.688

M B B Soc Other 36.622 4.229 1.079 17.887 14 38.307 38.552 0.245 2497.635

F O B Soc Other 31.077 2.122 0.776 175.765 25 42.454 42.635 0.181 5019.505

M O B Soc Other 36.413 3.118 1.104 9.722 12 37.363 37.646 0.284 2658.069

F W G Soc Other 44.594 1.719 1.545 2.954 135 44.742 44.243 0.498 13696.746

M W G Soc Other 53.632 3.211 1.052 10.309 46 53.515 53.696 0.181 3221.371

F A G Soc Other 54.530 6.711 1.465 45.034 10 53.622 53.851 0.229 959.774

M A G Soc Other 46.731 9.420 0.845 235.212 5 50.139 48.522 1.617 400.851

F B G Soc Other 41.989 3.267 2.621 10.672 70 42.747 41.717 1.030 2256.816

M B G Soc Other 52.165 3.716 0.447 103.795 19 51.948 51.314 0.633 450.944

F O G Soc Other 46.349 3.015 1.158 9.089 18 46.680 45.852 0.828 1401.111

M O G Soc Other 50.741 7.057 2.471 49.796 13 51.005 50.878 0.126 842.644

F W B Eng Other 51.866 1.763 1.498 3.109 87 51.828 52.697 0.870 1900.255

M W B Eng Other 54.903 1.248 1.589 1.557 171 54.866 54.455 0.412 16912.362

F A B Eng Other 61.180 4.951 1.972 24.514 7 59.696 59.525 0.170 285.852

M A B Eng Other 61.401 2.922 1.195 8.541 25 60.785 60.981 0.196 2680.325

F B B Eng Other 43.996 2.710 1.003 7.346 30 44.381 43.312 1.069 422.907

M B B Eng Other 44.284 6.288 1.847 39.534 18 46.086 44.446 1.640 738.986

F O B Eng Other 74.194 15.068 2.152 227.048 19 59.810 59.715 0.096 300.160

M O B Eng Other 59.491 6.216 1.685 38.642 20 57.672 57.887 0.214 1199.190

F W G Eng Other 67.694 3.887 2.347 15.112 66 66.087 66.695 0.608 704.764

M W G Eng Other 74.603 3.284 1.859 10.783 105 72.871 72.508 0.363 4906.013

F A G Eng Other 77.174 5.767 1.903 33.253 24 72.104 71.675 0.429 1180.027

M A G Eng Other 72.699 4.061 1.921 16.489 31 70.276 70.365 0.089 3292.968

F B G Eng Other 64.165 4.847 1.973 23.489 26 62.225 62.805 0.581 100.100

M B G Eng Other 76.003 6.282 2.854 39.468 24 70.699 70.535 0.164 359.816

F O G Eng Other 65.275 3.719 0.525 107.381 13 59.073 59.620 0.547 126.910

M O G Eng Other 73.760 5.076 1.005 25.769 7 70.107 70.356 0.249 71.938

F W B Rel Other 51.698 1.459 1.236 2.129 190 51.681 52.497 0.815 70634.199

M W B Rel Other 53.893 4.271 1.463 18.243 43 53.651 53.822 0.171 9884.133

F A B Rel Other 55.596 4.067 0.860 26.283 20 54.890 54.855 0.035 5910.623

M A B Rel Other 70.748 7.977 0.682 96.787 4 62.975 64.033 1.058 617.298

F B B Rel Other 47.253 2.812 0.990 21.046 36 47.697 47.674 0.023 8837.781

M B B Rel Other 46.985 6.270 1.381 39.316 9 47.999 47.145 0.853 1111.491

F O B Rel Other 55.396 4.487 1.118 20.129 13 54.811 54.708 0.103 3862.865

M O B Rel Other 60.825 6.061 1.175 36.733 8 58.900 58.502 0.397 1904.469

F W G Rel Other 70.289 4.123 1.506 17.003 136 68.185 68.708 0.523 33233.953

M W G Rel Other 107.648 17.306 2.612 299.493 29 69.356 68.348 1.007 7306.351

F A G Rel Other 72.615 15.552 0.502 773.462 2 54.983 54.489 0.494 380.398

M A G Rel Other 92.134 10.319 0.765 196.010 6 68.083 67.686 0.397 926.224

F B G Rel Other 64.897 4.270 1.378 18.235 39 63.505 63.968 0.463 3803.613

M B G Rel Other 55.761 6.151 0.983 179.282 11 53.776 53.189 0.586 751.088

F O G Rel Other 52.642 3.792 1.087 14.378 11 52.636 53.114 0.478 1775.584

M O G Rel Other 103.000 0.000 5497.730 1 52.648 51.778 0.870 96.716
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