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• Measurement	error	is	widely	observed	during	the	data	
collection	process	such	as	daily	calories	intake,	self-
reported	survey	data,	exposure	dose	to	radiation.	

• In	Logistic	regression	with	binary	responses,	ignoring	
measurement	error	in	covariates	causes	parameter	
estimation	bias	(Stefanski	and	Carroll,	1985).	

• In	case-control	studies,	when	the	covariate	is	error	free,	
Geng	and	Sakhanenko	(2016)	developed	an	integrated	
square	distance	(ISD)	estimation	approach	which	shows	
superior	performance	in	severely	imbalanced	cases.

• When	measurement	error	is	present	in	covariate,	we	aim	to	
investigate	the	bias	in	the	naïve	ISD	estimation	and	propose	
a	bias-corrected	estimator	using	the	deconvolution	kernel	
density	estimation.

Methodology

Bias	corrected	ISD	estimators

• We applied	our	method	to	the	Framingham	Heart	Study to	
explore	the	relation	between	the	systolic	blood	pressure	
(two	repeated	measurements	𝑍!	and	𝑍")	and consequences	
of	cardiovascular	disease.	

• There	are	128	individuals	with	cardiovascular	disease	and	
1487 individuals	without	the	disease.	To	fit	the	case-
control	framework, we	generated	a	nested	case-control	
dataset	by	matching	5	controls	for	each	case	with	
cardiovascular	disease	according	to	their	age	and	smoking	
status.

• The	four	parameter	estimators	are	shown	in	the	table	
below.	The	proposed	estimator	seems	to	capture	higher	
effect	size	of	the	blood	pressure.

• In	the	proposed	estimator,	the	
						measurement	error	was	assumed
						to	follow	the	double	exponential
						distribution	with	estimated	
						variance	 "𝜎#" = 5.54".

Motivation Results

Real	Data	Application

Discussion

• The	proposed	bias-corrected	ISD	estimator	shows	the	
smallest	bias	for	both	small	and	large	measurement	errors	
in	most	of	the	imbalanced	cases.

• The	bias	corrected	estimator	by	Stefanski	&	Carroll	(1985)	
works	fairly	comparable	with	the	proposed	estimator	when	
the	control	sample	size	is	much	larger	than	the	case	sample	
size	such	as	𝑛$ = 500, 𝑛! = 100.	

• The	MSE	of	the	proposed	estimation	is	larger	compared	to	
the	bias	corrected	estimator	by	Stefanski	&	Carroll	(1985)	
due	to	the	slow	convergence	rate	of	the	Deconvolution	
kernel	density	estimator.

Simulation	Study
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• Integrated	Square	Distance:	
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• 2𝑓( 𝑥 	are	the	deconvolution	kernel	density	estimators
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• The	bias-corrected	estimator	is	defined	as

"𝛼, 2𝛽 = 𝑎𝑟𝑔min
/,1
	𝑇% 𝑠, 𝑡

Covariate	𝑋:	Gaussian	or	Laplace
Measurement	error	U:	Double	exponential

Estimation	comparison:
M𝜷:	the	proposed	bias-corrected	ISD	estimator
M𝜷𝑰𝑺𝑫:	the	naïve	ISD	estimator
M𝜷𝑴𝑳𝑬:	the	naïve	maximum	likelihood	
estimator
M𝜷𝑩𝑪:	the	bias-corrected	est.	by	Stefanski	&	
Carroll	(1985)

Table	1:	Bias	and	RMSE	comparison	of	estimators	for	imbalanced	sample	sizes	with	Gaussian	covariates	
when	𝜎#" = 0.5"	and	𝜎#" = 1.

• Although	the	estimation	approach	was	proposed	for	the	
ordinary	smooth	errors,	the	method	can	be	applied	to	
super	smooth	errors	such	as	Gaussian	error,	however,	the	
theoretical	results	in	Theorems	1-2	need	to	be	re-
established.	

• Because	of	superior	bias	reduction	for	imbalanced	case	
control	cases	of	the	ISD	method,	it	is	desirable	to	further	
generalize	the	approach	to	weighted	ISD	for	more	flexibility	
and	possibly	reduced	MSE.

• Logistic	regression:

𝑃 𝑌 = 1 𝑋 = 𝑥 =
𝑒𝑥𝑝(𝛼∗ + 𝛽𝑥)

1 + 𝑒𝑥𝑝(𝛼∗ + 𝛽𝑥)

• Measurement	error	model:	
𝑍 = 𝑋 + 𝑈

• Let	𝑓$(𝑥)	and	𝑓!(𝑥)	be	 the	covariate	density	of	 the	control	
and	case	groups.	In	the	case	control	framework:

𝐥𝐧
𝒇𝟏 𝒙
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• Data	structure:
						Case	group	(𝑌 = 1):	{𝑧!!, 	z"! , … ,	𝑧%"

! }
						Control	group	(𝑌 = 0):	{𝑧!$, 	z"$ , … ,	𝑧%#

$ }

Model	&	Data	Structure
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Theorem	1.	 0 < 𝜌 = lim %"
%"=%#

< 1 	For	ordinary	smooth	measurement	errors	in	covariate	(𝜙# 𝑡 =

𝑂 𝑡)> ),	with	proper	choices	of	the	Kernel	density	𝐾	and	bandwidths	ℎ$, ℎ!,	we	have	 "𝛼, 2𝛽 	are	consistent	
estimators	of	 𝛼, 𝛽 .	Moreover,

𝑛$ + 𝑛!
"𝛼 − 𝛼
2𝛽 − 𝛽 →? 𝑁 0, Σ , Σ = 𝜌)!Σ$ + 1 − 𝜌 )!Σ!.

Theorem	2.	 𝜌 = 0	𝑜𝑟	1 	 𝑛!
"𝛼 − 𝛼
2𝛽 − 𝛽 →? 𝑁 0, Σ! 	for	𝜌 = 0;	 𝑛$

"𝛼 − 𝛼
2𝛽 − 𝛽 →? 𝑁 0, Σ$ 	for	𝜌 = 1.

Table	2:	Bias	and	RMSE	comparison	of	estimators	for	imbalanced	sample	sizes	with	Laplace	covariates	
when	𝜎#" = 0.1"	and	𝜎#" = 0.2"

Gaussian	covariates Laplace	covariates


