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• The new, formally private Disclosure Avoidance 
System (DAS) implemented in the 2020 Census has 
injected random noise into published Census counts 
at smaller geographies

• As the Bureau strives to educate stakeholders by 
quantifying the effects of DAS, we must 
acknowledge that published Census counts have 
always been subject to many kinds of non-sampling 
error 

• Estimates of coverage error (erroneous 
enumerations and omissions) were provided by the 
2020 Post-Enumeration Survey (PES), but impacts of 
other sources of error have not been quantified to 
the same extent

• Leveraging new data sources and computing 
capabilities, we can now attempt to model the 
combined effects of nonsampling error on published 
Census statistics at varying levels of geography
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Some Background 



• Overall purpose: To quantify uncertainty in results from 
the Decennial Census accruing from as many sources as we 
can within a reasonable time frame. Not only to assess 
what happened in 2020, but to inform decisions about 
2030 and beyond

• Who is involved: Joint research effort by staff with 
expertise in statistical modeling; Census operations, data 
processing, and imputation; Census evaluation studies and 
the Post-Enumeration Survey; use of administrative 
records; research computing. Louis Avenilla, Andrew Keller, 
Timothy Kennel, Ryan King, Brian Knop, Rafael Morales, 
Tom Mule, James Noon, Aneesah Williams, Julianne 
Zamora

• History: Project began during the 2020 Census and was 
originally led by Paul Biemer (RTI). After PB’s retirement, 
the work has continued internally at the Bureau

• Theoretical framework: Historically, uncertainty was 
framed in frequentist terms as the variation over 
hypothetical repeated censuses of same population under 
similar conditions. We have now shifted to a Bayesian view, 
describing posterior uncertainty in unknown true census 
roster given the observed data.  

• Current state of project: Creating a data product (first 
version late 2024) to represent random draws from a 
posterior distribution of integer person counts at the 
block level within categories of age, sex, race/Hispanic 
origin, and counts of housing units (HUs) by occupancy 
status and tenure. Product will be for internal use, but 
findings/summaries of uncertainty at varying levels of 
geography will be made available to public, subject to 
disclosure avoidance protocols

• Group quarters: No plans to describe uncertainty in GQ 
population, due to limited information on GQ data quality
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Total Uncertainty Analysis (TUA) Project 



1. Sources of uncertainty: Types of error that contribute to uncertainty in published 
Census statistics

2. Inputs: Sources of data for the TUA project

3. Modeling: Constructing a joint model for the “true” and “observed” census; 
flexible methods and software for fitting multilevel latent-class models with a new 
R package bigLC

4. Computation: How we will create the data product using three stages of multiple 
imputation
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Remainder of this Presentation 



1. Content errors / errors in characteristics: Discrepancies in 
recorded or imputed age, sex, race, origin and tenure 
relative to what the person or a knowledgeable surrogate 
(e.g., parent) would report under ideal conditions

2. Errors in Master Address File (MAF): Discrepancies 
relative to a complete list of units habitable on Census 
Day, with no duplicates and every unit in correct block

3. Errors in person counts: Arising from inaccurate or 
incomplete information from self response, field reports, 
USPS reports, admin sources, status and count imputation

4. Errors arising in processing and unduplication. Mistakes 
in combining information from multiple responses 
(Primary Selection Algorithm) and special operations for 
unduplication of units and persons

5. Disclosure Avoidance: Noise added by TopDown algorithm
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1. Types/Sources of Error in Published Census Statistics 



1. Content errors / errors in characteristics: Discrepancies in 
recorded or imputed age, sex, race, origin and tenure 
relative to what the person or a knowledgeable surrogate 
(e.g., parent) would report under ideal conditions

2. MAF errors: Discrepancies relative to a complete list of 
HUs habitable on Census Day, with no erroneous 
inclusions and every unit place in correct block

3. Errors in person counts: Arising from inaccurate or 
incomplete information from self response, FR reports, 
USPS reports, admin sources, status and count imputation

4. Errors arising in processing and unduplication. Mistakes 
in combining information from multiple responses 
(Primary Selection Algorithm) and special operations for 
unduplication of units and persons

5. Disclosure Avoidance: Noise added by TopDown algorithm

Addressed in current activity of TUA?

Partially

Yes

Yes

Yes

No
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1. Types/Sources of Error in Published Census Statistics 



American Community Survey (ACS)

• Five-year (2016-2020) tract-level 
estimates of housing and person 
characteristics which are predictive 
of 2020 Census data

• Readily available from the 2022 
Planning Database, which aligns with 
2020 Census geography

2020 Master Address File (MAF)

• Source of 2020 tabulation geography 
(State, County, Tract, Block) and HU 
identifiers (MAFIDs)

2020 Census Edited File (CEF)

• Source for official 2020 Census 
tabulations, prior to noise injected 
by DAS

2020 Census Unedited File (CUF)

• Census responses from all HUs from 
the 2020 Decennial MAF, including 
vacant and delete units, after 
Primary Selection Algorithm and 
unduplication 

• Also has pre-census variables for HUs 
(single/multi-unit building, USPS, 
undeliverable as addressed (UAA), 
adrec counts…) that were used as 
predictors for status and count 
imputation

• HU-level variables (vacant/delete 
status, self-response, tenure) and 
final person counts (some imputed)

•  Person-level characteristics (pre-edit 
and imputation)

2020 Post-Enumeration Survey 

(PES)

Data files that were used to estimate 
logistic models for 2020 Census 
coverage

• E-sample HU model: predicts 
erroneous enumerations and mis-
locations of housing units

• E-sample person model: predicts 
erroneous enumerations and mis-
locations of persons

• P-sample HU model: predicts 
omissions of housing units

• P-sample person model: predicts 
omissions of persons
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2. Data Inputs



“Distributional parameterization”

Factor the joint distribution as

where 𝜃𝜃 represents all unknown parameters

• Intuitively appealing 

“Direct parameterization”

Factor the joint distribution as

• Appears computationally simpler for TUA

• Aligns more closely with our available data sources

• Aligns more naturally with census coverage estimation as it 
was implemented in the PES

• Easier to critique models and diagnose lack of fit with 
respect to the observed census data 
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3. Joint Modeling of True and Observed Census
(Rubin and Zaslavsky, 1989; Zaslavsky, 2004) 

𝑃𝑃 true census, observed census,𝜃𝜃  = 𝑃𝑃 𝜃𝜃

× 𝑃𝑃 true census |𝜃𝜃

                                        × 𝑃𝑃 observed census | true census,𝜃𝜃                   

𝑃𝑃 true census, observed census,𝜃𝜃  = 𝑃𝑃 𝜃𝜃

× 𝑃𝑃 observed census |𝜃𝜃

                                        × 𝑃𝑃 true census | observed census,𝜃𝜃                   



• Our Bayesian framework requires generative probability 
models describing the joint distribution of Census HU and 
person counts and characteristics over the landscape

• Previous approaches based on logistic and log-linear 
models (Zaslavsky, 2004; Zaslavsky and Zanutto, 2006) 
don’t easily scale up to the large number of observations 
and variables, nor to the complicated patterns of missing 
values, appearing in this project

• Census data are multilevel (persons within HUs, within 
blocks, within tracts, …), multivariate (multiple 
intercorrelated variables at each level, with missing values), 
and mostly categorical. Census data also tend to be 
clumpy, with HUs and persons of similar characteristics 
clustering nearby 

• Vermunt et al. (2008) and Vidotto et al. (2015, 2018a) 
proposed latent-class (LC) models with a possibly large 
number of classes for multiple imputation of missing 
values in multivariate categorical datasets

• We call these predictive LC models because, unlike 
traditional applications of LC analysis, the meaning and 
interpretation of classes are not of main interest

• Handling large datasets: Computations for LC models are 
linear in the number of observations, classes, and variables

• With Markov chain Monte Carlo (MCMC) and a Dirichlet 
Process (stick-breaking) prior, the effective number of 
classes can be adaptively chosen by the data (Dunson and 
Xing, 2009; SI and Reiter, 2013)

• Nonparametric in the sense that any joint distribution for 
categorical variables can be represented by an LC model 
with finite number of classes (Dunson and Xing, 2009)

• LC models for multilevel data (Vermunt, 2003, 2008; Hu, 
Reiter and Wang, 2018; Vidotto, 2018b) can account for 
clustering and use covariates at higher levels. In a 
multilevel LC model, each observational unit at each level 
belongs to a latent class, with class prevalences that vary 
across the classes at higher levels
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Modeling Census Data



Motivation

• Commercial products for LC modeling including Mplus 
(Muthen and Muthen, 2017) and Latent GOLD (Vermunt 
and Magidson, 2016), and existing packages for SAS, Stata 
and R are not well suited to this project

• We are developing a new R package called bigLC

• Designed for predictive LC modeling and imputation of 
single- and multilevel multivariate data

• Already being used in TUA and several other research 
projects at the Census Bureau

• After more testing, validation and documentation, we will 
make bigLC available to the public via CRAN and the Census 
Bureau GitHub 

Features

• Designed to handle large datasets; no internal limit to the 
number of observations, variables, or levels

• Pre- and post-processing coded in R

• Model fitting implemented in Fortran, using the 
dotCall:.C64 interface data (Gerber et al., 2018), which can 
pass long arrays (those having more than 231 − 1 ≈ 2.14 
billon elements) and avoids unnecessary copying of data

• Major loops are parallelized using OpenMP, distributing 
computations over all available CPU cores (up to 8 on a 
Census Bureau Windows laptop; 64 on a single node of the 
IRE research cluster) which greatly enhances speed
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Software for Predictive LC Modeling
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4. Three Stages of Imputation 
Stage 1: Status, count, and 
characteristic imputation

Start with the CUF, with tabulation 
geography added from MAF; wipe out 
any imputed values produced in the 
status and count imputation

Multiply impute missing values of

• delete and vacancy status,

• number of persons, 

• tenure, and

• person characteristics

under a joint model in a single, 
integrated procedure.

Result: Multiple versions of a census 
with coverage errors but no missing 
values  

Stage 2: Imputing erroneous 
enumeration (EE) status

For each dataset produced in Stage 1, 
impute EE status using probabilities 
estimated from PES E-sample regression 
models

Two versions:

• EE status for HUs

• EE status for persons

Result: Multiple versions of a census of 
housing units and a census of persons, 
with no missing values and no erroneous 
inclusions, but having less-than-
complete coverage

Stage 3: Imputing missed HUs and 
missed persons

For each dataset from Stage 2, impute

• missed HUs in the HU-level file

• missed persons in the person file

using probabilities estimated from the 
PES P-sample regressions

Uses a new method called Bayesian 
expansion, motivated by the inverse-
probability weighting used in the PES

Result: Multiple versions of a census of 
housing units and a census of persons, 
with no missing values, no erroneous 
inclusions, and no omissions
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Stage 1: Status + Count + Characteristic Imputation 

Type of model

Version of a multilevel latent-class model with up to four 
levels

Level 1: persons. Items include age, sex, race, Hispanic origin

Level 2: HUs. Items include delete/vacancy status, number of 
persons, tenure, predictors used for status and count 
imputation, possibly the characteristics of Person 1

Level 3: Blocks. Number of HUs listed in the MAF

Level 4: Tracts. Number of blocks, estimated vacancy rates, HU 
density, average number of persons per HU, proportions of 
persons by race and Hispanic origin from ACS five-year 
estimates

Partitioning

To keep computations manageable, we are running separate 
models for counties

Special features of bigLC needed for this model

• Edit constraints to enforce structural zeros (Manrique-
Vallier and Reiter, 2014a, 2014b)

• Number of level-1 units (persons), which appears as an 
item at  level 2, is sometimes missing

Separating results into two files

When this integrated imputation procedure is finished, we can 
separate each imputed dataset into

• HU-level file containing HU-level items, with HUs nested 
within blocks

• Person-level file containing person-level variables, with 
persons nested within blocks. Grouping of persons within 
HUs won’t be necessary for Stage 2 or 3

 



13

Stage 2: Imputing Erroneous Enumeration Status 

For each level (HU and person), we will

• Draw parameters of E-sample model from their posterior 
distribution, then

• Impute an erroneous enumeration status for each HU or 
person based on the resulting fitted probabilities

Categories

• correct enumeration within block

• correctly enumerated, but mis-located to this block

• duplicate

• other type of erroneous enumeration

Handling mis-locations

For each HU deemed to be mis-located, we will need to 
impute the correct block location (not difficult; PES says that 
most of them are from a surrounding block)

For each person deemed to be mis-located, we will need to 
impute the correct block location (more difficult)

• different block, same county

• different county, same state

• different state

PES created procedures to address this; we can use those 
procedures as our starting point
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Stage 3: Imputing Missed HUs and Persons

For each level (HU and person), we will

• Draw parameters of P-sample model from their posterior 
distribution

• Compute omission probabilities for each HU and person

• Use these probabilities to impute omitted HUs and 
persons, using a new technique of Bayesian expansion

Bayesian expansion

• Given a model for the units that you actually see, and the 
probabilities of seeing them, draw from the posterior 
distribution of the unseen units

• Similar in spirit to Horvitz-Thompson expansion (inverse-
probability weighted) estimator, adapted to a Bayesian 
finite-population framework

• Resembles methods for generating synthetic populations 
from survey data, reversing the complex sample design 
(Zhou, Elliott and Raghunathan, 2016)

• Like a weighted finite population Bayesian bootstrap 
(Cohen, 1997; Little and Zheng, 2007; Dong, Elliott and 
Raghunathan, 2014), but replaces the empirical 
distribution for the observed units with a parametric model 
to allow innovation (i.e., may impute an omitted person 
into a block whose characteristics do not exactly match 
someone who already exists in the block)
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Bayesian Expansion

• Done within every block

• Done separately for persons and HUs; this is the person 
version

• Categorical person characteristics (age, sex, race/origin, 
tenure, …) used in P-sample models for person omissions 

• Cells 𝑐𝑐 = 1, … ,𝐶𝐶 of the cross-classified 𝑿𝑿 table

• Total number of persons in cell 𝑐𝑐 is

• Let 𝜸𝜸 = 𝛾𝛾1, … , 𝛾𝛾𝐶𝐶  = probabilities for 𝒏𝒏 = 𝑛𝑛1, … ,𝑛𝑛𝐶𝐶  that 
characterize the distribution of 𝑿𝑿 for the captured persons; 
can be drawn from the posterior distribution from a 
multilevel LC model for persons within blocks 

• Let 𝝅𝝅 = 𝜋𝜋1, … ,𝜋𝜋𝐶𝐶  = capture probabilities drawn from the 
posterior distribution under P-sample logistic model

• Conditionally given 𝜸𝜸,𝝅𝝅,𝑁𝑁+ ,  the total counts 𝑵𝑵 =
𝑁𝑁1, … ,𝑁𝑁𝐶𝐶  and the missing counts 𝒎𝒎 = 𝑚𝑚1, … ,𝑚𝑚𝐶𝐶  are 

multinomial with cell probabilities proportional to ⁄𝛾𝛾𝑐𝑐 𝜋𝜋𝑐𝑐 
and ⁄𝛾𝛾𝑐𝑐 1 − 𝜋𝜋𝑐𝑐 𝜋𝜋𝑐𝑐, respectively

• Under a diffuse prior for 𝑁𝑁+, the posterior distribution for 
the missing counts given the observed counts is 

𝑿𝑿 = 𝑋𝑋1, … ,𝑋𝑋𝑝𝑝  

𝑁𝑁𝑐𝑐 =  𝑛𝑛𝑐𝑐 +  𝑚𝑚𝑐𝑐

                      𝑛𝑛𝑐𝑐 = observed

                     𝑚𝑚𝑐𝑐 = missed

𝒏𝒏 | 𝑛𝑛+,𝜸𝜸 ~ Mult 𝑛𝑛+,𝜸𝜸  

𝑚𝑚+ |𝒏𝒏,𝜸𝜸,𝝅𝝅 ~ NegBin size = 𝑛𝑛+, mean =  ⁄𝑛𝑛+ 1 − �𝜋𝜋 �𝜋𝜋  

𝒎𝒎 |𝑚𝑚+,𝜸𝜸,𝝅𝝅 ~ Mult 𝑚𝑚+,𝜸𝜸∗ 

𝛾𝛾𝑐𝑐∗ ⁄ proportional to 𝛾𝛾𝑐𝑐 1 − 𝜋𝜋𝑐𝑐 𝜋𝜋𝑐𝑐
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Some Issues Yet to be Addressed

Current round of TUA

• How to incorporate prior information about sex ratios from 
demographic analysis (In PES, dual-system estimates (DSEs) 
were adjusted to match sex ratios provided by Census 
Bureau demographers at the national level, to help correct 
the DSEs for correlation bias.)

• How to summarize posterior draws. (Likely scenario: Each 
draw from the posterior distribution of the “true” census 
will be tabulated and compared to the corresponding 
tabulations from the CEF; the distribution of these 
discrepancies over the posterior draws represents the 
uncertainty.)

• How to release summaries of TUA while controlling 
disclosure risk

Future rounds of TUA

• Modeling errors in person characteristics using 
administrative records

• Accounting for additional noise added by Disclosure 
Avoidance

• Use of administrative records, Demo Frame, and more 
sophisticated capture-recapture models (e.g., log-linear or 
latent-class analysis) for better estimates of omissions 
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