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ABSTRACT
Motivation: We propose a stepwise approach to identify recomb-
ination breakpoints in a sequence alignment. The approach can be
applied to any recombination detection method that uses a permuta-
tion test and provides estimates of breakpoints.
Results: We illustrate the approach by analyses of a simulated dataset
and alignments of real data from HIV-1 and human chromosome 7.
The presented simulation results compare the statistical properties of
one-step and two-step procedures. More breakpoints are found with a
two-step procedure than with a single application of a given method,
particularly for higher recombination rates. At higher recombination
rates, the additional breakpoints were located at the cost of only a
slight increase in the number of falsely declared breakpoints. However,
a large proportion of breakpoints still go undetected.
Availability: A makefile and C source code for phylogenetic profiling
and the maximum χ2 method, tested with the gcc compiler on Linux
and WindowsXP, are available at http://stat-db.stat.sfu.ca/stepwise/
Contact: jgraham@stat.sfu.ca

INTRODUCTION
Recombination leads to different evolutionary histories for different
sites within samples of sequences from a population. The multiple
correlated histories that result provide more evolutionary information
than a single common history. Thus, the presence of recombination
can improve the estimation and testing of genetic parameters in pop-
ulation biology. For example, genomic regions with recombination
are preferred for detecting geographic subdivision when migration
between subpopulations is relatively low (Hudson et al., 1992).

Per se, locating recombination breakpoints plays a role in under-
standing gene genealogies (e.g. DuBose et al., 1988) and haplotype
structure within populations (e.g. Daly et al., 2001). Locating break-
points is also essential to assessing the possibility of an individual
being infected by two genetically diverse viral strains (that have sub-
sequently recombined). For instance, in the case of HIV-1, there is
an evidence of recombination of strains from the same subtype (e.g.
Groenink et al., 1992) and different subtypes (e.g. Leitner et al.,
1995; Fang et al., 2004).

The strength of signal left by a recombination event varies and is
affected by factors such as the mutation rate, the level of divergence
of the parental sequences that gave rise to the recombinant, how
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far back in time the recombination event occurred and the relative
numbers of descendants of the recombinant and parental sequences
in the alignment (e.g. Weiller, 1998; Posada et al., 2002). Many
recombination events have little or no impact on the data and so are
difficult or impossible to detect (Hudson and Kaplan, 1985; Myers
and Griffiths, 2003). Likelihood methods for inference of recomb-
ination rates (e.g. Griffiths and Marjoram, 1996; Kuhner et al., 2000;
Nielsen, 2000; Fearnhead and Donnelly, 2001) can take into account
such undetectable events.

A variety of methods have been developed to detect recombination
within alignments. Posada and Crandall (2001) provide a review and
comparison (see also Brown et al., 2001; Wiuf et al., 2001). Several
of these methods also estimate the location of breakpoints within
the alignment and are therefore useful for locating breakpoints not
proposed in advance.

Since some recombination events would leave stronger signals
than others, conditioning on previously found breakpoints can reduce
the unexplained variability in the data and improve a method’s ability
to find further breakpoints. We introduce such a stepwise approach.
The approach can be applied with any permutation-based method
for detecting recombination, which also identifies breakpoint loc-
ations. Examples of such methods include phylogenetic profiling
(Phylpro) (Weiller, 1998) and the maximum χ2 (MaxChi) method
(Smith, 1992), as implemented by Posada and Crandall (2001) and
Wiuf et al. (2001), Chimaera (Posada, 2002) and the Geneconv

method (Sawyer, 1989). We illustrate the approach with analyses
of a simulated dataset and alignments of HIV-1 env gene sequences
and single nucleotide polymorphisms (SNPs) in a 150 kb region of
human chromosome 7. Following this, we present simulation res-
ults comparing statistical properties of the one-step and two-step
procedures.

SYSTEMS AND METHODS
For detecting recombination breakpoints that are not proposed in advance,
several methods may be used in conjunction with permutation tests. Loosely
speaking, each possible breakpoint or fragment with different ancestry within
the alignment is considered, and the strength of its recombination signal is
summarized by some site- or fragment-specific measure. The set of rank-
ordered measures may then be considered in permutation tests. Assuming
that sites have independent mutation processes with identically distributed
outcomes, their permutations are equally likely outcomes of the same ran-
dom evolutionary process, under the null hypothesis that all sites share the
same ancestry (no recombination). A null distribution for the rank-ordered
measures can thus be obtained by permuting sites in the alignment. The
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permutation approach makes fewer assumptions than approaches based on
models of sequence evolution, thus providing a potentially more robust
method.

A valid test of significance of the maximum of the observed site- or
fragment-specific measures would involve comparing this maximum to the
distribution of maxima over permutation replicates. Similarly, the signific-
ance of the second-largest observed measure might be assessed against the
distribution of second-largest values over permutation replicates, etc. To avoid
keeping track of the null joint distribution of the ordered measures, we use the
null distribution of the maximum as the reference distribution for all observed
measures. Hence, significance of each of the observed measures is assessed
against the permutation null distribution of the maximum recombination sig-
nal over the alignment. A similar idea has been used in analysis-of-variance
contexts for post hoc tests of the significance of pairwise differences between
means, and is also the basis of the global P -values of Geneconv. Our pro-
cedure for detecting recombination breakpoints differs from the associated
procedure for detecting the occurrence of recombination in the key aspect
of the choice of the observed test statistic. For detecting the occurrence
of recombination, the test statistic is the extreme value of the site-specific
measures of recombination signal. In contrast, the test statistic for detect-
ing breakpoints is the set of ordered site-specific measures. However, the
reference distribution used in either case is the same.

A new stepwise procedure
Permutation tests assume that sites with the same ancestry are independ-
ent outcomes of the same random evolutionary process. Known breakpoints
define segments of the alignment whose ancestries may differ. Hence, per-
mutation of sites is appropriate within these segments but not between them.
The idea of permuting sites within segments may be used in a stepwise proced-
ure that, at each step, conditions on breakpoints declared at earlier stages of the
analysis. Specifically, in the first step, the null hypothesis is that there are no
recombination breakpoints and the permutation null distribution is obtained
by permuting all sites in the alignment. If any breakpoints are declared, we
proceed to a second step in which the null hypothesis is that there are no
additional recombination breakpoints. At the second step, the null distribu-
tion is constructed by permuting sites within segments of the alignment with
common ancestries given the breakpoints declared at the first stage. Condi-
tioning on previously found breakpoints reduces variability of the test statistic
which, in principle, increases the ability to detect additional breakpoints. The
stepwise analysis continues until a prespecified number of steps is reached
or until no additional breakpoints are declared.

To illustrate, consider a Phylpro-based procedure with a moving window
of fixed width. In the first step, the permutation null distribution would be
built from the minimum correlation, over all test sequences and over all poly-
morphic sites outside a window half-width of the ends of the alignment. All
polymorphic sites in the alignment would be permuted. In subsequent steps,
the permutation null distribution would be built from the minimum correla-
tion, over all test sequences and over all polymorphic sites outside a window
half-width of the ends of the alignment or previously declared breakpoints.
Permutation of sites would be restricted to within the same segments of the
alignment defined by breakpoints declared in previous steps.

As pointed out by a reviewer, McGraw et al. (1999) described a related
approach in which segments of sequences defined by previously proposed
breakpoints are partitioned at the location showing strongest recombination
signal. The partitioning continues recursively for a fixed number of steps to
produce a list of proposed breakpoints. The significance of breakpoints is then
assessed by using a Monte Carlo procedure. Although each step involves pro-
posing breakpoints, the significance of these breakpoints is not assessed until
all steps are completed. In calculating the reference distribution for the test
statistics, the null hypothesis is that there are no recombination breakpoints.
In contrast, we assess significance at each step, conditional on breakpoints
declared in the previous steps. At each step of our approach, the reference
distribution is based on a null hypothesis that there are no breakpoints other
than those declared previously.

Implementation
We implemented the stepwise approach with Phylpro, MaxChi and
Geneconv, using a Monte Carlo permutation test to assess statistical sig-
nificance of potential recombination locations. For all analyses, P -values for
each statistical test were approximated from 1000 permutation replicates and
significance was assessed at the 5% level.

Even when analysis of the HIV alignment is restricted to polymorphic
sites within highly variable regions, heterogeneity in selection pressure along
the HIV genome makes the assumption of an independent and identically
distributed mutation process potentially problematic. In an attempt to reduce
the effect of varying selection pressure in the HIV alignment, a second set of
permutation tests was performed in which third-position sites within codons
were treated separately from first- and second-position sites.

Moving-window approaches such as MaxChi and Phylpro cannot identify
breakpoints within a window half-width of previously declared breakpoints.
To minimize the resulting loss of resolution at each step for these moving-
window approaches, we chose to identify breakpoints simultaneously rather
than one-at-a-time at each step. However, a single true breakpoint may lead
to recombination signal that exceeds the critical value not only at the true
breakpoint location but also at several nearby polymorphic sites. We there-
fore attributed declared breakpoints clustered in nearby polymorphic sites to
a single underlying true breakpoint. Specifically, adjacent polymorphic sites
at which the site- or fragment-specific measures exceeded the critical value
were blocked together. In simulations, true breakpoints tend to be associated
with longer runs of significant sites punctuated by a few marginally signi-
ficant sites. In contrast, false-positive signals were relatively infrequent and
associated with shorter runs of significant sites. On the basis of these obser-
vations, blocks of adjacent polymorphic sites were expanded by ∼1% of the
total number of polymorphic sites at each end and merged if they overlapped.
For Geneconv, blocks containing the first or last site in the alignment were
discarded. For all analyses, a single breakpoint was declared from the most
extreme measure within a block.

For simulated data, a declared breakpoint was classified as an accurate call
of location if a true breakpoint was within the block. Each block was said to
accurately call only a single true breakpoint even if more than one true break-
point was present within the block. Another possible choice would be to count
all true breakpoints within a block as accurate calls. However, in practice,
any method would have difficulty distinguishing nearby breakpoints. Hence,
such a convention would tend to inflate the proportion of accurately called
breakpoints. In contrast, the scoring scheme we have adopted is expected to
under report the proportion of accurately called breakpoints, particularly for
higher recombination rates. The rate of falsely declared breakpoints could
also be decreased. However, any downward bias in false-positive rates is
expected to be minimal given that false-positive signals are relatively infre-
quent and associated with shorter runs of significant sites. For moving window
approaches, a further scoring issue relates to the counting of true breakpoints
within a window half-width of the ends of the alignment or of previously
declared breakpoints. Such breakpoints will necessarily go undetected and
are therefore counted as true breakpoints that are not detected.

Statistical properties
In a stepwise procedure, the possibility of multiple applications of a given
recombination detection method raises the issue of multiple testing. Multiple
testing is often addressed by controlling the experiment-wise type I error rate,
which is defined as the chance of rejecting any of the null hypotheses given
that all hold. In a procedure taking up to n steps, the null hypotheses at each
step are,

• H01: no breakpoints exist in the alignment,

• H02: no breakpoints exist other than those declared at the first step,

• H03: no breakpoints exist other than those declared in the first and second
steps, and so on up to

• H0n: no breakpoints exist other than those declared in the first n − 1
steps.
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If all null hypotheses hold, the event that any of them is rejected is equivalent
to the event that the first (H01) is rejected. To see why, consider the event that
H01 is rejected. It then follows that at least one of the hypotheses is rejected.
Conversely, if at least one of the hypotheses is rejected, it must be the case
that H01 was rejected because of the stepwise nature of the procedure. The
experiment-wise type I error rate for detecting recombination is therefore the
chance that H01 is incorrectly rejected which, in turn, is the size of the test at
the first step.

However, the experiment-wise type I error rate reflects errors in detect-
ing the presence of recombination rather than in identifying the location of
recombination breakpoints. In fact, investigators may be more concerned that
any declared breakpoint reflect a nearby real breakpoint. Falsely declared
breakpoints may correspond to true breakpoints whose locations are inaccur-
ately called, or they may have no correspondence to any true breakpoint. In
either case, declared breakpoints that are far from any true breakpoint can be
considered as false-positive results.

Statistical properties of the one-step and two-step versions of Phylpro and
MaxChi were compared in a simulation study since these methods were relat-
ively straightforward to automate as stepwise procedures. To assess statistical
properties with respect to detecting the presence of recombination, we sum-
marized the empirical size and power of the one-step and two-step procedures
(for H01 and H02, respectively). To assess statistical properties with respect
to identifying the location of breakpoints, we summarized the proportion of
all declared breakpoints that were inaccurately called (i.e. the rate of falsely
declared breakpoints), the proportion of true breakpoints that were accur-
ately called, and the mean number of true and falsely declared breakpoints
found per simulated alignment for the one-step and two-step procedures. We
also summarized the means and selected percentiles of the histograms of
the number of additional true and falsely declared breakpoints per simulated
alignment in the second step of the two-step procedure.

DATA
We examined simulated sequence alignments, for which the loca-
tion of recombination breakpoints was known, and alignments of
HIV-1 and human chromosome 7 sequences, for which the location
of recombination breakpoints was unknown.

Simulated alignments
Evolutionary histories were simulated for random samples of 30
sequences of length 1000. Simulation parameters were chosen to
roughly mimic evolution of the env gene in a population of HIV-1
particles within an infected individual. The simulation programs
Treevolve version 1.3 (Grassly and Holmes, 1997) and Hudson
(Schierup and Hein, 2000) were used to generate data under a coales-
cent simulation with recombination (Hudson, 1983; Griffiths and
Marjoram, 1997), assuming a constant effective population size of
N = 2000 (Leigh Brown, 1997). The coalescent with recombination
assumes that each recombination event involves a single breakpoint
and that sequences evolve neutrally. Therefore, the model does not
describe the possibility of multiple breakpoints per recombination
event and the selection observed in viral evolution. Nonetheless,
coalescent simulation is a useful starting point for understanding
properties of recombination detection methods (Posada, 2002). The
alignment used to illustrate the approach had a recombination rate
of r = 4 × 10−3 per sequence per generation (i.e. replication cycle),
leading to a compound recombination parameter of 2Nr = 16. To
evaluate statistical properties in the simulation study, 2Nr was set
to be 0, 2, 4, 8, 16 and 28 when using Treevolve and to 32, 64 and
128 when using Hudson. Under values of 2Nr > 28, simulation
of multiple datasets with Treevolve was computationally prohibit-
ive. For 2Nr = 0, 10 000 alignments were generated. For values of

Table 1. Average relative substitution rates

A C G T

A — 1.7254 4.3979 0.6212
C 1.7254 — 0.9954 4.1248
G 4.3979 0.9954 — 1
T 0.6212 4.1248 1 —

2Nr > 0, a total of 1000 alignments with at least one recombination
breakpoint were generated at each setting. For 2Nr = 2, only 1002
simulated alignments were required to obtain 1000 with recomb-
ination. For each value of 2Nr > 2, all 1000 alignments simulated
had recombination. The overall per-site mutation rate was chosen to
be µ = 3.4 × 10−5 per replication cycle, a value consistent with the
estimated mutation rate for the HIV-1 envelope gene (Mansky and
Temin, 1995). In Treevolve simulations, the general time-reversible
substitution model (Tavaré, 1986; Rodrígues et al., 1990) was used,
with a gamma distribution of rates. Random rates were used to model
heterogeneity in selection pressure. Base frequencies and relative
substitution rates were taken from the estimates of Anderson et al.
(2000) for a region of the HIV-1 env gene (region 6) close to the
V1–V2 and V3 subregions. Nucleotide frequencies were 0.3820 for
A, 0.1758 for C, 0.1846 for G and 0.2576 for T; the gamma shape
parameter was 0.54366. Relative rates of nucleotides are reported in
Table 1. The Hudson program does not currently support simulation
of sequences under the general time-reversible model. Therefore,
for 2Nr = 32, 64 and 128, the Kimura two-parameter substitution
model with a gamma distribution of rates was used. Rates of trans-
ition and transversion for the Kimura two-parameter model were
set equal to the mean rates of transition and transversion in the
corresponding general time-reversible model.

We chose a single alignment at random from those generated
under 2Nr = 16 to illustrate the approach. This alignment consisted
of 28 unique sequences with 239 polymorphic sites. As summar-
ized in Table 2, there were 26 potentially detectable breakpoints;
that is, breakpoints associated with recombination events which
changed the coalescent tree (topology and/or branch lengths) for
polymorphic sites.

HIV-1 alignment
The HIV-1 alignment consisted of 72 unique, ungapped sequences
of length 294 from the V1–V2 and V3 regions of the envelope gene.
There were 63 polymorphic sites. Sequences were derived from
proviral DNA of peripheral blood mononuclear cells (PBMCs) and
cervical secretions, and from plasma viral RNA. Only hypervariable
regions were analyzed since selection varies across the HIV genome.
Samples were collected from a Kenyan woman infected with a clade
A virus six times over a period of 17 months post seroconversion,
from August 1993 to January 1995. As noted by Poss et al. (1998),
the patient had two distinct viral subpopulations at seroconversion.

Chromosome 7 alignment
We considered 135 SNPs with a minor allele frequency of at least
5% in a densely genotyped 150 kb region of chromosome 7 (base
positions 126224043–126374042) from release 7 of the International
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Table 2. Recombinations in simulated alignment

Intervala Next
breakb

Whenc Parental
divergencec

Expected
difference (%)d

93, 96 2 128 286 2.9
98, 100 6 711 1738 15.5

120, 126 2 1938 2569 21.5
127, 139 3 141 267 2.7
152, 154 41 859 1411 12.9
300, 305 8 59 473 4.7
335, 342 1 1505 766 7.4
342, 347 2 17 1227 11.4
350, 366 5 955 380 3.8
377, 392 1 364 880 8.4
392, 401 12 111 177 1.8
453, 463 2 65 468 4.6
470, 483 2 19 2252 19.3
486, 496 8 48 1512 13.7
549, 556 9 9 1550 14.0
588, 604 1 197 2073 18.0
604, 616 7 43 340 3.4
637, 644 15 1096 463 4.6
712, 720 20 48 649 6.3
776, 782 2 248 2023 17.6
784, 790 4 895 1376 12.6
802, 805 10 2216 1809 16.0
827, 828 5 374 3652 28.2
851, 852 9 3183 843 8.1
883, 884 5 1129 2896 23.6
896, 908 — 29 503 4.9

aBreakpoint between polymorphic sites.
bNumber of polymorphic sites to next downstream breakpoint.
cOne time-unit is 1 generation back.
dExpected percentage of sites at which parents differ.

HapMap Project (http://www.hapmap.org/). Haplotypes for 60 par-
ents in the 30 available Caucasian parent–child trios were inferred
using PHASE version 2.0.2 (Stephens et al., 2001; Stephens and
Donnelly, 2003). Only haplotypes for the 47 individuals for whom
phase could be determined with posterior probability ≥98% were
considered. The resulting alignment contained 25 unique haplotypes
and 135 polymorphic sites.

PARAMETERS
The MaxChi method makes pairwise comparisons between
sequences. Briefly, for each pair, a χ2-statistic is computed from
a 2 × 2 table with counts of matches and mismatches upstream
and downstream of the proposed breakpoint. Large values of the
maximum χ2-statistic over all pairs are taken as evidence for recomb-
ination at the breakpoint. In Phylpro, pairwise genetic distances
between a target sequence and all other sequences in the alignment
are contrasted upstream and downstream of a proposed breakpoint.
Discordance between upstream and downstream distance vectors
may be measured by the sample correlation. The minimum cor-
relation over all sequences in the alignment, each regarded in turn
as a target sequence, is taken as evidence for recombination at the
proposed breakpoint.

Phylpro and MaxChi were applied with moving windows, which
have fixed rather than variable numbers of sites in order to avoid a
bias toward proposing recombination breakpoints at the ends of the
alignment, where test statistics are more variable. For the simulated
alignments, window half-widths of 30 polymorphic sites were selec-
ted. The half-width of 30 was approximately 1/10 of the polymorphic
sites in the simulated alignments and permitted good resolution of
breakpoints while controlling variability in computed correlations
(Phylpro) and MaxChi statistics. Since the HIV-1 and chromomsome
7 alignments had only 63 and 135 polymorphic sites, respectively,
we reduced the window half-width from 30 to 20 in order to achieve
better resolution of breakpoints. A window half-width of 20 allowed
consideration of 24 and 96 possible breakpoint locations for the
HIV-1 and chromosome 7 alignments, respectively.

Geneconv, like MaxChi, makes pairwise comparisons between
sequences but uses fragment scores to assess the evidence for
recombination or gene conversion events. A fragment may be viewed
as the maximal segment on which a pair of sequences is similar and
its score measures similarity over sites within the segment relative
to similarity over all sites. The GSCALE parameter of Geneconv

determines the mismatch penalty for fragment scores. Smaller val-
ues allow for more discrepancies between sequence pairs and tend
to produce longer fragments than larger values. Smaller GSCALE
values also make Geneconv more sensitive to fragments from more
distant recombination events, such as those in the histories of the
simulated alignments. To strike a balance between detection of dis-
tant versus recent recombination events, we applied GSCALE = 2
throughout. For the HIV-1 alignment, Geneconv was also applied
with GSCALE = 3, 4 and ∞, leading to similar results.

RESULTS

Simulated alignment
The results of the analysis are summarized in Figure 1. In the first
step, two breakpoints were declared with Phylpro, three with MaxChi
and eight with Geneconv. In step two, one additional breakpoint was
declared with both Phylpro and MaxChi. In step three, one further
breakpoint was declared with Phylpro.

Three of the eight breakpoints declared by Geneconv were clas-
sified as false-positive results because they are within blocks that do
not overlap a true breakpoint location. All breakpoints declared by
both Phylpro and MaxChi were classified as true-positive results. The
most recent breakpoint in the alignment, between polymorphic sites
549 and 556, also involved relatively divergent parental sequences
and is marked by an asterisk in Figure 1. Not suprisingly, this
breakpoint had a consistently strong signal across all three meth-
ods. For any given method, true breakpoints declared after the
first step appeared to derive from either older recombination events
or from less divergent parental sequences (or both) than break-
points found in the first step. The associated recombination events
would be expected to leave weaker recombination signal in the
dataset.

HIV-1 alignment
The Results of the HIV analysis are summarized in Figure 2. In the
first step, one breakpoint was declared with Phylpro and Geneconv,
while two were declared with MaxChi. In the second step, one addi-
tional breakpoint was declared with both Phylpro and Geneconv.
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90 200 400 600 800 960

*

Phylpro:

MaxChi:

GENECONV:

Fig. 1. Graphic summarization of results from the analysis of the simulated
alignment. Clustered polymorphic sites with significant recombination signal
have been collected into blocks indicated by horizontal lines. A single break-
point is declared from the strongest signal within each block and is marked
by a circle for Phylpro, a triangle for MaxChi and a square for Geneconv.
Declared breakpoints from the first, second and third steps are colored in
blue, red and green, respectively. The vertical lines on the upper and lower
horizontal axis give the location of true breakpoints. The breakpoint for the
most recent recombination event is marked with an asterisk.

90 120 150 180 210

90 120 150 180 210

Phylpro:

MaxChi:

GENECONV:

Fig. 2. Graphic summarization of results from the analysis of the HIV-1
alignment. Declared breakpoints from the first step are colored in blue and
those from the second step are colored in red.

10 30 60 90 120

10 30 60 90 120

Phylpro:

MaxChi:

GENECONV:

Fig. 3. Graphic summarization of results from the analysis of the chromo-
some 7 alignment. Declared breakpoints from the first, second and third steps
are colored in blue, red and green, respectively.

The same results were obtained when third codon positions were
permuted separately from first and second codon positions.

Chromosome 7 alignment
Figure 3 summarizes the results from the chromosome 7 ana-
lysis. In the first step, 2 breakpoints were declared with Phylpro,
4 were declared with MaxChi and 13 were declared with Geneconv.
In the second step, two additional breakpoints were declared
with Phylpro. In the third step, Phylpro declared one further
breakpoint.

Simulation study
Table 3 reports the empirical size (first row) and power (subsequent
rows) of Phylpro and MaxChi at the first and second steps. The first
column of the table gives the value of the compound recombination
parameter (2Nr) and the second reports the expected number of

Table 3. Empirical power (%) at first and second steps

2Nr E(R)a Phylpro MaxChi
Step 1 Step 2 Step 1 Step 2

0 0 5.4 5.1 5.2 1.0
2 7 54.3 28.7 62.1 11.8
4 13 68.4 40.9 84.7 19.4
8 27 81.4 52.2 94.4 40.3

16 53 89.9 57.4 99.2 59.2
28 93 94.4 62.2 99.9 68.0
32 106 95.4 63.0 100 71.5
64 212 94.4 63.1 100 71.9

128 424 91.9 58.7 100 70.6

aExpected number of breakpoints.

breakpoints (Wiuf et al., 2001). The third and fifth columns describe
the percentage of alignments going to a second step; i.e. the power to
reject H01 that there are no breakpoints in the alignment. The fourth
and sixth columns describe the percentage of those alignments going
to a second step for which further breakpoints were declared; i.e.
the power to reject H02 that no breakpoints exist other than those
declared in the first step. In the first step, the empirical sizes of the
tests approximate the nominal 5% level to within simulation error.
Power is lower in the second step than in the first because recomb-
ination breakpoints with weaker signals are more difficult to detect.
In the second step, the empirical size of the Phylpro test (5.1%)
approximates the nominal 5% level, but the size of the MaxChi test is
lower (1.0%). After the first step, as possible values of the test statistic
are limited by the permutation restrictions, test size for statistics
whose null distribution is particularly discrete will decrease relative
to the nominal level. In the simulations, the possible null values of the
MaxChi test statistic were much more limited than those of Phylpro.
Consequently, the test for MaxChi is conservative at the second step,
as reflected not only in the size of the test at the second step but also
in the reduced power relative to Phylpro at the second step for values
of 2Nr between 2 and 8. On the other hand, in the first step, MaxChi
appears to be more powerful than Phylpro.

Table 4 summarizes the percentage of true breakpoints that are
accurately called (RT), the percentage of declared breakpoints that
are false or inaccurately called (RF), and the mean number of true
breakpoints detected (mT) and of falsely declared breakpoints (mF)

per alignment for the one-step and two-step procedures. For the two-
step procedure, RT, RF, mT and mF are cumulative. The table also
reports the mean number of additional true (�T) and falsely declared
(�F) breakpoints per alignment gained from taking a second step,
along with the corresponding 5th (q5) and 95th (q95) percentiles.
The measures RT, mT and �T are not meaningful when there are
no true breakpoints, and are not reported in the table for 2Nr = 0.
The measures related to falsely declared breakpoints are reported
for 2Nr = 0, including the rate RF of falsely declared breakpoints,
which is necessarily 100%. Generally, both the rates of accurately
called and falsely declared breakpoints decrease with increasing
recombination rates. The rate of accurately called breakpoints is
low because many recombination events leave little trace in the
alignment, but also because of the way we define an accurate call
(counting only one true breakpoint per block), particularly at higher
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Table 4. Rate (%) of accurately called (RT) and of false or inaccurately called (RF) breakpoints, the mean number of true breakpoints detected (mT) and of
falsely declared breakpoints (mF) per alignment for the one-step and two-step procedures, along with the mean number of additional true (�T) and falsely
declared (�F) breakpoints identified in the second step with fifth (q5) and 95th (q95) percentiles

2Nr Step Phylpro MaxChi
RT RF mT �T (q5, q95) mF �F (q5, q95) RT RF mT �T (q5, q95) mF �F (q5, q95)

0 1 — 100 — — 0.07 — — 100 — — 0.06 —
2 — 100 — — 0.07 0.0 (0, 0) — 100 — — 0.06 0.0 (0, 0)

2 1 9.6 20.3 0.62 — 0.16 — 13.8 13.8 0.89 — 0.13 —
2 11.4 23.8 0.73 0.1 (0, 1) 0.23 0.1 (0, 1) 14.4 14.8 0.92 0.0 (0, 0) 0.16 0.0 (0, 0)

4 1 8.9 12.5 1.14 — 0.16 — 12.9 9.2 1.66 — 0.17 —
2 11.2 15.7 1.44 0.3 (0, 2) 0.27 0.1 (0, 1) 13.9 11.8 1.78 0.1 (0, 1) 0.24 0.1 (0, 1)

8 1 7.0 9.6 1.73 — 0.18 — 11.3 6.7 2.77 — 0.20 —
2 9.1 11.4 2.25 0.5 (0, 2) 0.29 0.1 (0, 1) 12.9 9.2 3.16 0.4 (0, 2) 0.32 0.1 (0, 1)

16 1 5.4 3.5 2.49 — 0.09 — 9.0 3.8 4.16 — 0.16 —
2 7.3 4.2 3.36 0.9 (0, 3) 0.15 0.1 (0, 1) 10.6 5.3 4.89 0.7 (0, 2) 0.27 0.1 (0, 2)

28 1 4.0 1.5 2.91 — 0.04 — 7.2 1.4 5.28 — 0.07 —
2 5.5 1.9 4.06 1.1 (0, 3) 0.08 0.0 (0, 0) 8.6 2.0 6.29 1.0 (0, 3) 0.13 0.1 (0, 0)

32 1 3.3 1.0 3.03 — 0.03 — 5.9 0.8 5.50 — 0.04 —
2 4.5 1.1 4.16 1.1 (0, 3) 0.04 0.0 (0, 0) 7.1 1.1 6.55 1.1 (0, 3) 0.07 0.0 (0, 0)

64 1 2.1 0.2 3.13 — 0.01 — 4.3 0.1 6.26 — 0.01 —
2 2.9 0.2 4.25 1.1 (0, 3) 0.01 0.0 (0, 0) 5.0 0.2 7.33 1.1 (0, 3) 0.01 0.0 (0, 0)

128 1 1.2 0.0 2.45 — 0.00 — 3.3 0.0 6.79 — 0.00 —
2 1.7 0.0 3.42 1.0 (0, 3) 0.00 0.0 (0, 0) 3.9 0.0 7.92 1.1 (0, 3) 0.00 0.0 (0, 0)

recombination rates. When comparing a two-step procedure with the
corresponding one-step method, the rates of accurately and falsely
called breakpoints are always higher. However, the increase per align-
ment in the mean number �T of accurately called breakpoints from
the second step is always greater than the increase �F in the mean
number of falsely declared breakpoints. This discrepancy between
�T and �F is more pronounced with higher recombination rates.
Furthermore, for 2Nr ≥ 28, gains of three or more true breakpoints
are plausible from taking a second step. For example, at least q95 = 3
additional true breakpoints were obtained from a second step in 5%
of simulated alignments. On the other hand, q95 = 0 additional false
breakpoints were incurred in 95% of simulated alignments. Never-
theless, the gains are small relative to the number of breakpoints that
go undetected.

In summary, the simulation results indicate modest gains from
taking a second step that offset the costs of additional falsely declared
breakpoints, particularly at higher recombination rates. However,
when recombination is pervasive, only a small fraction of breakpoints
are expected to be identified, even when an additional step is taken.
Still, our results suggest that there is little to lose from taking a
second step because the number of additional false-positive calls is
minimal.

DISCUSSION AND CONCLUSIONS
We propose a stepwise procedure for identifying recombination
breakpoints. The approach can be applied with any permutation-
based method for detecting recombination that also provides estim-
ates of breakpoint locations. The approach is illustrated by analyses
of a simulated alignment and alignments of HIV-1 sequences from an
individual and SNPs from a 150 kb region of human chromosome 7.
Stepwise application of phylogenetic profiling, the maximum χ2

method and the Geneconv method to these datasets detected more
breakpoints than a single application.

Methods to identify breakpoints that are based on a permutation
test produce extreme values of test statistics when segments of sites
in the alignment have different ancestries. The idea motivating the
stepwise approach is that conditioning on segments known to have
different ancestries will reduce the unexplained variability in the data
and lighten the tails of the permutation null distribution. Thus, in
subsequent steps, it will be easier to detect breakpoints with weaker
recombination signal.

As previously noted, the experiment-wise type I error rate for
detecting recombination is the size of the corresponding test at the
first step. Our simulation results and those of others (e.g. Posada and
Crandall, 2001) indicate that the two methods considered achieve the
nominal level. Our simulations also illustrate that more breakpoints
are found with a two-step procedure than with a single application
of a given method, particularly for higher recombination rates. For
example, at 2Nr ≥ 28, a second step of Phylpro and MaxChi
each found at least three additional true breakpoints in 5% of the
simulated alignments. In contrast, the number of additional false
breakpoints from the second step was usually no more than one at
any recombination rate. Not surprisingly, recombination breakpoints
with weaker signals are more difficult to pinpoint, as reflected by the
higher proportion of inaccurate calls at the second step. Accuracy is
also expected to fall as the number of previously declared breakpoints
increases and more of the alignment lies within a window half-width
of a declared break. However, at higher recombination rates, the
additional real breakpoints that are found offset the cost of a slight
increase in the number of inaccurately called or falsely declared
breakpoints. We would therefore argue that a stepwise approach is
worthwhile for finding additional recombination breakpoints within
an alignment.
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Even with these improved methods for detecting recombination
breakpoints, a large proportion will still be missed. Ignoring recom-
bination in phylogenetic analysis of population sequence data can
lead to important errors in interpretation (Schierup and Hein, 2000).
Our results underscore the need to further develop and adopt meth-
ods for inference of evolutionary parameters that take into account
the large proportion of recombination breakpoints that cannot be
identified.
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