Survey Data Integration for Cumulative Distribution Function and Quantile Estimation

Jeremy R.A. Flood¹

Applied Science & Technology – Data Science & Analytics North Carolina A&T State University

ITSEW 2024

- **Probability samples** ensure every possible sample from a finite population possess some chance of selection $[8]$ and hence is the gold standard for population-based inference
	- Cons: Costly, prone to non-response, and generally of small size $[6, 11]$ $[6, 11]$, [10\]](#page-29-1)
- Nonprobability samples (i.e., convenience samples) are flexible, rich, and cheap sources of data
	- Cons: No probabilistic design; no way to control for sampling bias [\[12,](#page-29-2) [6\]](#page-28-1)
- Research Goal: "Integrate" data from large convenience samples with that from smaller probability samples, to leverage the strengths of both
- **1** Vulnerable populations, where new probability samples can't be obtained, but old ones only include common demographic variables
	- Can be combined with cheap, current, and colossal data
- **2** Political polls, which are abundant but prone to error
	- These can be used to predict the outcome of a probabilistic, pre-election poll
- A denotes a *probability sample* of size n_A from a finite population $\mathcal U$ of size N
	- Has covariates X_1, X_2, \cdots, X_n
	- Has $\pi_i = \Pr(i \in \mathcal{U} \cap i \in \mathcal{A})$
- \bullet B denotes a convenience sample of size $n_{\rm B}$ from the same finite population
	- Has covariates X_1, X_2, \cdots, X_n
	- \bullet Has Y, which is the variable of interest
- Goal: Use data from \bm{A} and \bm{B} to estimate finite population quantities

Table 1: The data integration sample setup.

Estimating Distribution Functions

• Sometimes we are interested in estimating distribution functions, as well as quantiles:

$$
F_{\mathsf{N}}(t) = \frac{1}{N} \sum_{u \in \mathcal{U}} \mathbb{1}(Y_u \le t)
$$

$$
t_{\mathsf{N}}(\alpha) = \inf_{t} \{ t : F_{\mathsf{N}}(t) \ge \alpha \} \quad ; \quad \alpha \in (0, 1),
$$

- Some examples:
	- **1** Estimating % of individuals in a food desert with income at or below poverty
	- **2** Estimating 80th percentile of BMI after conditioning on age, sex, and race
- Research Question: How can we do this using A and B ?

Assume distribution of Y in finite population follows

$$
Y = m(X; \beta_N) + \nu(X)\epsilon,
$$
\n(1)

where

- $m(X; \beta_N) = \mathbb{E}(Y | X)$: known function of X, parameterized by unknown β_{N}
- Θ _N: U's estimate of the true β in the superpopulation model
- $\bullet \nu(\cdot)$: a known, strictly positive variance function
- ϵ : a random error term satisfying $\mathbb{E}\left(\epsilon\vert \bm{X}\right)=0$ and $\mathbb{E}\left(\epsilon^2\vert \bm{X}\right)=\sigma_{\epsilon}^2$

Semiparametric Regression (cont.)

• Let $\widehat{\beta}$ denote a sample-based estimate of β_N that solves

$$
\widehat{U}(\boldsymbol{\beta}) = \frac{1}{n_{\mathsf{B}}} \sum_{j \in \mathcal{B}} \left(Y_j - m(\boldsymbol{X}_j; \boldsymbol{\beta}) \right) \boldsymbol{W}(\boldsymbol{X}_j; \boldsymbol{\beta}) = 0
$$

for some *p*-dimensional function W [\[4\]](#page-27-0)

Ex: Simple Linear Regression w/ OLS $(p = 1)$

$$
\hat{\beta} = \min_{\beta} [\text{RSS}] \n= \min_{\beta} \left[\frac{1}{n_{\text{B}}} \sum_{j \in \mathbf{B}} \left(Y_j - \beta X_j \right)^2 \right] \n= \frac{\sum_{j \in \mathbf{B}} Y_j X_j}{\sum_{j \in \mathbf{B}} X_j^2}.
$$

Our residual, eCDF-based estimate of the finite population CDF:

$$
\hat{F}_{\mathsf{R}}(t) = \frac{1}{N} \sum_{i \in \mathbf{A}} \pi_i^{-1} \hat{G}_i
$$
\n
$$
= \frac{1}{N n_{\mathsf{B}}} \sum_{i \in \mathbf{A}} \sum_{j \in \mathbf{B}} \pi_i^{-1} \mathbb{1} \left(\hat{\epsilon}_j \le \frac{t - m(\mathbf{X}_i; \hat{\boldsymbol{\beta}})}{\nu(\mathbf{X}_i)} \right) \tag{2}
$$

• Corresponding quantile estimator:

$$
\hat{t}_{\mathsf{R}}(\alpha) = \inf_{t} \left\{ t : \hat{F}_{\mathsf{R}}(t) \ge \alpha \right\}
$$

Asymptotic Results: Summary

[1](#page-23-0) Under Assumptions 1 - [7,](#page-25-0)

$$
\frac{\hat{F}_R(t) - F_N(t)}{AV\{\hat{F}_R(t)\}} \xrightarrow{\mathcal{L}} N(0, 1),
$$

where

$$
AV\{\hat{F}_R(t)\} = \frac{1}{N^2} \sum_{u \in \mathcal{U}} \sum_{v \in \mathcal{U}} \left(\frac{\pi_{uv}}{\pi_u \pi_v} - 1\right) G_u G_v
$$

2 An asymptotically unbiased estimate of $AV\{\hat{F}_R(t)\}\$ is

$$
\widehat{AV}\{\hat{F}_R(t)\} = \frac{1}{N^2} \sum_{h \in \mathcal{A}} \sum_{i \in \mathcal{A}} \left(\frac{\pi_{hi}}{\pi_h \pi_i} - 1\right) \frac{1}{\pi_{hi}} \hat{G}_h \hat{G}_i
$$

Simulation Overview

- We conducted a two-phase Monte-Carlo simulation study to contrast the performance of our proposed distribution estimators to that using B alone
- Performance metric: relative root mean squared error (RRMSE), defined generically for some estimator $\hat{\theta}$ as

$$
RRMSE(\hat{\theta}) = \sqrt{\frac{MSE(\hat{\theta})}{MSE(\hat{\theta}_{\pi})}},
$$

where

\n- $$
\Theta
$$
 $\hat{\theta}_{\pi}$ for CDF: $\hat{F}_{\pi}(t) = \frac{1}{N} \sum_{i \in \mathbf{A}} \pi_i^{-1} \mathbb{1}(Y_i \le t)$
\n- Θ $\hat{\theta}_{\pi}$ for quantile: $\hat{t}_{\pi}(\alpha) = \inf_t \{ t : \hat{F}_{\pi}(t) \ge \alpha \}$; $\alpha \in (0, 1)$
\n

- \bullet U: Simple random sample without replacement (SRSWOR) of size $N = 100,000$ from four superpopulation models
- A: SRSWOR of size $n_A = 500$ from U
- B: Distratified SRSWOR of size $n_{\rm B} = 10000$ from U
	- **1** Missing at random (MAR): binary stratification based on the covariate with the highest Pearson correlation to Y
	- **2 Missing not at random** (MNAR): binary stratification based on the population mean
- $n_1 = .85n_B$; $n_{II} = .15n_B$

•
$$
\alpha =
$$
 $\begin{bmatrix} .01 & .10 & .25 & .50 & .75 & .90 & .99 \end{bmatrix}$

• Model f_1 [\[3\]](#page-27-1): $Y = .3 + 2X_1 + 2X_2 + \epsilon$, where

$$
X \sim \mathcal{N}(\mu = 2, \sigma = 1)
$$

$$
\epsilon \sim \mathcal{N}(\mu = 0, \sigma = 1)
$$

Model f_2 [\[3\]](#page-27-1): $Y = .3 + .5X_1^2 + .5X_2^2 + \epsilon$, where

$$
X \sim N(\mu = 2, \sigma = 1)
$$

$$
\epsilon \sim N(\mu = 0, \sigma = 1)
$$

Superpopulation Models (cont.)

Model f_3 [\[9,](#page-28-2) [5\]](#page-28-3): $Y = -\sin(X_1) + X_2^2 + X_3 - e^{-X_4^2} + \epsilon$, where $X_1, \cdots, X_6 \sim \text{Unif}(-1, 1)$ $\epsilon \sim \text{N}(\mu=0, \sigma=$ √ .5)

• Model f_4 [\[7,](#page-28-4) [5\]](#page-28-3):

$$
Y = X_1 + .707X_2^2 + 21(X_3 > 0) + .873 \ln(|X_1|) |X_3|
$$

+ .894X₂X₄ + 21(X₅ > 0) + .464e^{X₆} + ϵ ,

where

$$
X_1, \cdots, X_6 \sim \text{Unif}(-1, 1)
$$

$$
\epsilon \sim \text{N}(\mu = 0, \sigma = \sqrt{.5})
$$

o CDF Estimators

- $\hat{F}_{\texttt{B}}(t)$: The näive CDF of \boldsymbol{B}
- $\hat{F}_P(t)$: Plug-in CDF estimator, $\hat{F}_P(t) = \frac{1}{N} \sum_{i \in \mathbf{A}} \pi_i^{-1} \mathbb{1}(\hat{Y}_i \le t)$
- $\hat{F}_{\sf R}(t)$: Our residual eCDF estimator
- Quantile Estimators
	- \bullet $\hat{t}_{\mathsf{B}}(\alpha)$: The näive quantile function of \boldsymbol{B}
	- $\hat{t}_P(\alpha)$: The estimated quantile function associated with our plug-in CDF estimator
	- $\hat{\tau}_{R}(\alpha)$: The estimated quantile function associated with our residual eCDF estimator

Name Shortening

Estimator names have been shortened to 'B', 'P', and 'R', respectively, to preserve readability.

Figure 1: RRMSE Values for MAR Missingness at $n_B = 10,000$

Figure 2: RRMSE Values for MNAR Missingness at $n_B = 10,000$

- Using NHANES [\[1\]](#page-27-2) data, we sought to estimate the CDF / quantile function of total cholesterol (in mq/dL) using the following seven covariates:
	- \bullet X_1 : Biological Sex
	- \bullet X_2 : Age
	- \bullet X_3 : Glycohemoglobin (i.e., hemoglobin A1c, in %)
	- X_4 : Triglycerides (in mq/dL)
	- X_5 : Direct high-density lipoprotein cholesterol (HDL, in mq/dL)
	- X_6 : Body mass index (BMI, $X_6,\ kg/m^2)$
	- \bullet X_7 : Pulse
- \bullet U: Population of U.S. adults
- A: 2015-2016 NHANES cohort $(n_A = 2, 474)$
- B: 2017-2020 cohort $(n_B = 3, 770)$
- Performance metric: percent absolute relative bias, defined generically for some $\hat{\theta}$ as

$$
\mathrm{RB}\left(\hat{\theta}\right)=\frac{\left|\hat{\theta}_{\pi}-\hat{\theta}\right|}{\hat{\theta}_{\pi}}\times100
$$

Table 2: Percent absolute relative bias of $\hat{F}_B(t)$, $\hat{F}_P(t)$, and $\hat{F}_R(t)$, as well as their respective quantile estimators, relative to HT equivalents using the 2015-2016 NHANES dataset (A).

				$RB(\hat{F})$			$RB(\hat{t})$		
α	$\hat{F}_{\pi}(t)$	$\hat{t}_{\pi}(\alpha)$	B	P	R	B	P	R	
1%	0.01	107.00	99.00	100.00	52.49	6.54	38.71	25.51	
10%	0.10	138.00	50.99	99.49	17.67	5.80	15.87	0.37	
25%	0.25	158.00	30.34	70.55	10.17	5.06	7.07	2.03	
50%	0.51	184.00	16.59	16.92	6.95	4.89	2.38	2.40	
75%	0.75	212.00	7.53	21.61	4.53	3.77	8.21	2.41	
90%	0.90	244.00	3.56	9.85	2.68	4.51	14.24	3.60	
99%	0.99	295.00	0.12	0.77	0.04	0.68	18.69	0.50	

- **Research Question:** How to extend the field of data integration to distribution function estimation?
- **Idea:** Substitute $\mathbb{1}(Y_i \leq t)$ in $\hat{F}_{\pi}(t)$ with \hat{G}_i , the eCDF of estimated residuals from a regression model built on B
- **Empirical Results:** $\hat{F}_{\mathsf{R}}(t)$ seemed robust to model misspecification if ignorability held, and robust to ignorability if the model was correctly specified
- **Next Steps:** Replacing semiparametric regression with a nonparametric alternative

Contact Information: jrfloodusc@gmail.com

Asymptotic Assumptions

Asymptotic Assumptions

- \bullet The sampling design of B is ignorable; that is, $\Pr(\delta_i | \mathbf{X}, Y) = \Pr(\delta_i | \mathbf{X})$ for all $j \in \mathbf{B}$.
- **2** The sampling fraction $\frac{n_{\rm s}}{N} = \frac{n_{\rm A}+n_{\rm B}}{N}$ converges to a limit in $(0,1]$ as both n_s and N tend to infinity [\[2\]](#page-27-3).
- **3** There exist some positive real constants c_1, c_2 such that $c_1 \leq \frac{N\pi_i}{\mathbb{E}_{\mathcal{D}}(n_{\sf A})} \leq c_2$ for all $i \in \bm A,$ where $\mathbb{E}_{\mathcal{D}}\left(\cdot\right)$ denotes the design-based expectation. Furthermore,

$$
\lim_{N\to\infty}\left[\left(\frac{\mathbb{E}_{\mathcal{D}}\left(n_{\mathsf{A}}\right)}{n_{\mathsf{B}}}\right)^{1/2}\right]=0,
$$

implying
$$
n_{\mathsf{B}}^{-1/2}=o\left(\mathbb{E}_{\mathcal{D}}^{-1/2}(n_{\mathsf{A}})\right).
$$

Asymptotic Assumptions (cont.)

 \bullet For any random variable z with finite $2+\delta$ population moments and arbitrarily small $\delta > 0$,

$$
\operatorname{Var}_{\mathcal{D}}\left(\frac{1}{N}\sum_{i\in A}\pi_i^{-1}z_i\right)\leq \frac{c_3}{\mathbb{E}_{\mathcal{D}}\left(n_{\mathsf{A}}\right)(N-1)}\sum_{u\in\mathcal{U}_{\mathsf{N}}}\left(z_u-\bar{z}_{\mathsf{N}}\right)^2,
$$

where $\bar{z}_{\mathsf{N}}=\frac{1}{N}$ $\frac{1}{N}\sum_{u\in\mathcal{U}_\mathsf{N}} z_u$ is the finite population mean of $z.$

 \bullet For any random variable z with a finite fourth population moment,

$$
\operatorname{Var}_{\mathcal{D}}\left(\bar{z}_{\pi}\right)^{-1/2}\left(\bar{z}_{\pi}-\bar{z}_{\mathsf{N}}\right) \xrightarrow{\mathcal{L}} \operatorname{N}\left(0,1\right)
$$

$$
\operatorname{Var}_{\mathcal{D}}\left(\bar{z}_{\pi}\right)^{-1/2}\widehat{\operatorname{Var}}_{\pi}\left(\bar{z}_{\pi}\right)-1=O_{\mathsf{P}}\left(\mathbb{E}_{\mathcal{D}}\left(n_{\mathsf{A}}^{-1/2}\right)\right),
$$

where $\bar{z}_{\pi}=\frac{1}{\Lambda}$ $\frac{1}{N}\sum_{i\in \boldsymbol{A}}\pi_{i}^{-1}z_{i}$ denotes the HT mean estimate of \bar{z}_N and $\text{Var}_{\pi}(\bar{z}_{\pi})$ denotes the HT estimate of $\text{Var}_{\mathcal{D}}(\bar{z}_{\pi})$.

 $\bullet~~ F_{\mathsf{N}}(t)$ converges to a smooth function $F^*(t)$ as N goes to infinity; that is,

$$
\lim_{N \to \infty} F_{\mathsf{N}}(t) = F^*(t),
$$

where the limiting function $F^*(t)$ is uniformly continuous with finite first and second derivatives.

• There exists some positive real constants c_3, c_4, c_5 such that $\mathbf{X}_i \leq c_3$, $\nu(\boldsymbol{X}_i) \leq c_4$, and $\boldsymbol{X}_i \leq c_5$ for all $i \in \boldsymbol{A}$ and $j \in \boldsymbol{B}$.

Works Cited

References I

- [1] Centers for Disease Control and Prevention (CDC). NHANES -National Health and Nutrition Examination Survey. <https://www.cdc.gov/nchs/nhanes/index.htm> (visited: 2023-10-11). 2015-2020.
- [2] Richard L Chambers and R Dunstan. "Estimating distribution functions from survey data". In: Biometrika 73.3 (1986), pp. 597–604.
- [3] Sixia Chen, Shu Yang, and Jae Kwang Kim. "Nonparametric mass imputation for data integration". In: Journal of Survey Statistics and Methodology 10.1 (2022), pp. 1–24.
- [4] Jae Kwang Kim et al. "Combining non-probability and probability survey samples through mass imputation". In: Journal of the Royal Statistical Society Series A: Statistics in Society 184.3 (2021), pp. 941–963.

References II

- [5] Mateus Maia, Arthur R Azevedo, and Anderson Ara. "Predictive comparison between random machines and random forests". In: Journal of Data Science 19.4 (2021), pp. 593–614.
- [6] National Academies of Sciences, Engineering, and Medicine. Federal statistics, multiple data sources, and privacy protection: next steps. National Academies Press, 2018.
- [7] Marie-Hélène Roy and Denis Larocque. "Robustness of random forests for regression". In: Journal of Nonparametric Statistics 24.4 (2012), pp. 993–1006.
- [8] Carl-Erik Särndal, Bengt Swensson, and Jan Wretman. Model Assisted Survey Sampling. Springer Science & Business Media, 2003.
- [9] Erwan Scornet. "Random forests and kernel methods". In: IEEE Transactions on Information Theory 62.3 (2016), pp. 1485–1500.
- [10] Arkadiusz Wiśniowski et al. "Integrating probability and nonprobability samples for survey inference". In: Journal of Survey Statistics and Methodology 8.1 (2020), pp. 120–147.
- [11] Shu Yang and Jae Kwang Kim. "Statistical data integration in survey sampling: A review". In: Japanese Journal of Statistics and Data Science 3 (2020), pp. 625–650.
- [12] Shu Yang, Jae Kwang Kim, and Youngdeok Hwang. "Integration of data from probability surveys and big found data for finite population inference using mass imputation". In: Survey Methodology 47.1 (2021), pp. 29–58.