Survey Data Integration for Cumulative Distribution Function and Quantile Estimation

Jeremy R.A. Flood¹

Applied Science & Technology – Data Science & Analytics North Carolina A&T State University

- **Probability samples** ensure every possible sample from a finite population possess some chance of selection [8] and hence is the gold standard for population-based inference
 - Cons: Costly, prone to non-response, and generally of small size [6, 11, 10]
- Nonprobability samples (i.e., convenience samples) are flexible, rich, and cheap sources of data
 - Cons: No probabilistic design; no way to control for sampling bias [12, 6]
- **Research Goal:** "Integrate" data from large convenience samples with that from smaller probability samples, to leverage the strengths of both

- Vulnerable populations, where new probability samples can't be obtained, but old ones only include common demographic variables
 - Can be combined with cheap, current, and colossal data
- **Political polls**, which are abundant but prone to error
 - These can be used to predict the outcome of a probabilistic, pre-election poll

- A denotes a probability sample of size n_A from a finite population U of size N
 - Has covariates X_1, X_2, \cdots, X_p
 - Has $\pi_i = \Pr\left(i \in \mathcal{U} \cap i \in \mathbf{A}\right)$
- **B** denotes a *convenience sample* of size $n_{\sf B}$ from the same finite population
 - Has covariates X_1, X_2, \cdots, X_p
 - Has Y, which is the variable of interest
- Goal: Use data from A and B to estimate finite population quantities

Sample	π	X_1	X_2	•••	X_p	Y
Probability (A)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	×
Nonprobability (B)	\times	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

 Table 1: The data integration sample setup.

Estimating Distribution Functions

 Sometimes we are interested in estimating distribution functions, as well as quantiles:

$$F_{\mathsf{N}}(t) = \frac{1}{N} \sum_{u \in \mathcal{U}} \mathbb{1} \left(Y_u \le t \right)$$

$$t_{\mathsf{N}}(\alpha) = \inf_t \left\{ t : F_{\mathsf{N}}(t) \ge \alpha \right\} \quad ; \quad \alpha \in (0, 1),$$

- Some examples:
 - Estimating % of individuals in a food desert with income at or below poverty
 - Estimating 80th percentile of BMI after conditioning on age, sex, and race
- Research Question: How can we do this using A and B?

Assume distribution of Y in finite population follows

$$Y = m(\boldsymbol{X}; \boldsymbol{\beta}_{\mathsf{N}}) + \nu(\boldsymbol{X})\boldsymbol{\epsilon}, \qquad (1)$$

where

- $m(X; \beta_N) = \mathbb{E}(Y|X)$: known function of X, parameterized by unknown β_N
- β_{N} : \mathcal{U} 's estimate of the true β in the superpopulation model
- $\nu(\cdot):$ a known, strictly positive variance function
- ϵ : a random error term satisfying $\mathbb{E}\left(\epsilon|\mathbf{X}\right) = 0$ and $\mathbb{E}\left(\epsilon^2|\mathbf{X}\right) = \sigma_{\epsilon}^2$

Semiparametric Regression (cont.)

• Let $\widehat{\boldsymbol{\beta}}$ denote a sample-based estimate of $\boldsymbol{\beta}_{\mathsf{N}}$ that solves

$$\widehat{U}(\boldsymbol{\beta}) = \frac{1}{n_{\mathsf{B}}} \sum_{j \in \boldsymbol{B}} \left(Y_j - m(\boldsymbol{X}_j; \boldsymbol{\beta}) \right) \boldsymbol{W} \left(\boldsymbol{X}_j; \boldsymbol{\beta} \right) = 0$$

for some p-dimensional function W [4]

Ex: Simple Linear Regression w/ OLS (p = 1)

$$\hat{\beta} = \min_{\beta} [\text{RSS}]$$

$$= \min_{\beta} \left[\frac{1}{n_{\text{B}}} \sum_{j \in \boldsymbol{B}} \left(Y_j - \beta X_j \right)^2 \right]$$

$$= \frac{\sum_{j \in \boldsymbol{B}} Y_j X_j}{\sum_{j \in \boldsymbol{B}} X_j^2}.$$

8/22

• Our residual, eCDF-based estimate of the finite population CDF:

$$\hat{F}_{\mathsf{R}}(t) = \frac{1}{N} \sum_{i \in \mathbf{A}} \pi_i^{-1} \hat{G}_i$$

$$= \frac{1}{N n_{\mathsf{B}}} \sum_{i \in \mathbf{A}} \sum_{j \in \mathbf{B}} \pi_i^{-1} \mathbb{1} \left(\hat{\epsilon}_j \le \frac{t - m(\mathbf{X}_i; \hat{\boldsymbol{\beta}})}{\nu(\mathbf{X}_i)} \right)$$
(2)

• Corresponding quantile estimator:

$$\hat{t}_{\mathsf{R}}(\alpha) = \inf_{t} \left\{ t : \hat{F}_{\mathsf{R}}(t) \ge \alpha \right\}$$

Asymptotic Results: Summary

Under Assumptions 1 - 7,

$$\frac{\hat{F}_R(t) - F_N(t)}{AV\{\hat{F}_R(t)\}} \xrightarrow{\mathcal{L}} N(0,1),$$

where

$$AV\{\hat{F}_R(t)\} = \frac{1}{N^2} \sum_{u \in \mathcal{U}} \sum_{v \in \mathcal{U}} \left(\frac{\pi_{uv}}{\pi_u \pi_v} - 1\right) G_u G_v$$

② An asymptotically unbiased estimate of $AV\{\hat{F}_R(t)\}$ is

$$\widehat{AV}\{\widehat{F}_R(t)\} = \frac{1}{N^2} \sum_{h \in \mathcal{A}} \sum_{i \in \mathcal{A}} \left(\frac{\pi_{hi}}{\pi_h \pi_i} - 1\right) \frac{1}{\pi_{hi}} \widehat{G}_h \widehat{G}_i$$

Simulation Overview

- We conducted a two-phase Monte-Carlo simulation study to contrast the performance of our proposed distribution estimators to that using *B* alone
- Performance metric: relative root mean squared error (RRMSE), defined generically for some estimator $\hat{\theta}$ as

$$\text{RRMSE}(\hat{\theta}) = \sqrt{\frac{\text{MSE}(\hat{\theta})}{\text{MSE}(\hat{\theta}_{\pi})}},$$

where

$$\hat{\theta}_{\pi} \text{ for CDF: } \hat{F}_{\pi}(t) = \frac{1}{N} \sum_{i \in \mathcal{A}} \pi_i^{-1} \mathbb{1} \left(Y_i \leq t \right)$$

$$\hat{\theta}_{\pi} \text{ for quantile: } \hat{t}_{\pi}(\alpha) = \inf_t \{ t : \hat{F}_{\pi}(t) \geq \alpha \} ; \quad \alpha \in (0, 1)$$

- U: Simple random sample without replacement (SRSWOR) of size N = 100,000 from four superpopulation models
- A: SRSWOR of size $n_{A} = 500$ from \mathcal{U}
- **B**: Distratified SRSWOR of size $n_{\rm B} = 10000$ from \mathcal{U}
 - **Missing at random** (MAR): binary stratification based on the covariate with the highest Pearson correlation to *Y*
 - Observe the second s
- $n_{\rm I} = .85 n_{\rm B}; n_{\rm II} = .15 n_{\rm B}$

•
$$\alpha = \begin{bmatrix} .01 & .10 & .25 & .50 & .75 & .90 & .99 \end{bmatrix}$$

• Model f_1 [3]: $Y = .3 + 2X_1 + 2X_2 + \epsilon$, where

$$X \sim \mathcal{N} (\mu = 2, \sigma = 1)$$

$$\epsilon \sim \mathcal{N} (\mu = 0, \sigma = 1)$$

• Model f_2 [3]: $Y = .3 + .5X_1^2 + .5X_2^2 + \epsilon$, where

$$X \sim \mathcal{N} (\mu = 2, \sigma = 1)$$

$$\epsilon \sim \mathcal{N} (\mu = 0, \sigma = 1)$$

Superpopulation Models (cont.)

• Model f_3 [9, 5]: $Y = -\sin(X_1) + X_2^2 + X_3 - e^{-X_4^2} + \epsilon$, where $X_1, \cdots, X_6 \sim \text{Unif}(-1, 1)$ $\epsilon \sim N(\mu = 0, \sigma = \sqrt{.5})$

• Model *f*₄ [7, 5]:

$$Y = X_1 + .707X_2^2 + 2\mathbb{1} (X_3 > 0) + .873 \ln (|X_1|) |X_3| + .894X_2X_4 + 2\mathbb{1} (X_5 > 0) + .464 e^{X_6} + \epsilon,$$

where

$$X_1, \cdots, X_6 \sim \text{Unif}(-1, 1)$$

 $\epsilon \sim \mathcal{N}(\mu = 0, \sigma = \sqrt{.5})$

CDF Estimators

- $\hat{F}_{\mathsf{B}}(t)$: The näive CDF of \boldsymbol{B}
- $\hat{F}_{\mathsf{P}}(t)$: Plug-in CDF estimator, $\hat{F}_{\mathsf{P}}(t) = \frac{1}{N} \sum_{i \in \mathbf{A}} \pi_i^{-1} \mathbb{1}(\hat{Y}_i \leq t)$
- $\hat{F}_{\mathsf{R}}(t)$: Our residual eCDF estimator
- Quantile Estimators
 - $\hat{t}_{\mathsf{B}}(\alpha)$: The näive quantile function of \boldsymbol{B}
 - $\hat{t}_{\rm P}(\alpha)$: The estimated quantile function associated with our plug-in CDF estimator
 - $\hat{t}_{\rm R}(\alpha)$: The estimated quantile function associated with our residual eCDF estimator

Name Shortening

Estimator names have been shortened to 'B', 'P', and 'R', respectively, to preserve readability.

Figure 1: RRMSE Values for MAR Missingness at $n_B = 10,000$

Figure 2: RRMSE Values for MNAR Missingness at $n_B = 10,000$

- Using NHANES [1] data, we sought to estimate the CDF / quantile function of total cholesterol (in mg/dL) using the following seven covariates:
 - X₁: Biological Sex
 - X₂: Age
 - X_3 : Glycohemoglobin (i.e., hemoglobin A1c, in %)
 - X_4 : Triglycerides (in mg/dL)
 - X_5 : Direct high-density lipoprotein cholesterol (HDL, in mg/dL)
 - X_6 : Body mass index (BMI, X_6 , kg/m^2)
 - X_7 : Pulse

- \mathcal{U} : Population of U.S. adults
- A: 2015-2016 NHANES cohort $(n_A = 2, 474)$
- **B**: 2017-2020 cohort $(n_{\mathsf{B}} = 3, 770)$
- Performance metric: **percent absolute relative bias**, defined generically for some $\hat{\theta}$ as

$$\operatorname{RB}\left(\hat{\theta}\right) = \frac{\left|\hat{\theta}_{\pi} - \hat{\theta}\right|}{\hat{\theta}_{\pi}} \times 100$$

Table 2: Percent absolute relative bias of $\hat{F}_B(t)$, $\hat{F}_P(t)$, and $\hat{F}_R(t)$, as well as their respective quantile estimators, relative to HT equivalents using the 2015-2016 NHANES dataset (A).

				$\operatorname{RB}\!\left(\hat{F} ight)$			$\operatorname{RB}(\hat{t})$		
α	$\hat{F}_{\pi}(t)$	$\hat{t}_{\pi}(\alpha)$	В	Р	R	В	Ρ	R	
1%	0.01	107.00	99.00	100.00	52.49	6.54	38.71	25.51	
10%	0.10	138.00	50.99	99.49	17.67	5.80	15.87	0.37	
25%	0.25	158.00	30.34	70.55	10.17	5.06	7.07	2.03	
50%	0.51	184.00	16.59	16.92	6.95	4.89	2.38	2.40	
75%	0.75	212.00	7.53	21.61	4.53	3.77	8.21	2.41	
90%	0.90	244.00	3.56	9.85	2.68	4.51	14.24	3.60	
99%	0.99	295.00	0.12	0.77	0.04	0.68	18.69	0.50	

- **Research Question:** How to extend the field of data integration to distribution function estimation?
- Idea: Substitute $1(Y_i \le t)$ in $\hat{F}_{\pi}(t)$ with \hat{G}_i , the eCDF of estimated residuals from a regression model built on B
- Empirical Results: $\hat{F}_{\rm R}(t)$ seemed robust to model misspecification if ignorability held, and robust to ignorability if the model was correctly specified
- **Next Steps:** Replacing semiparametric regression with a nonparametric alternative

Contact Information: jrfloodusc@gmail.com

Asymptotic Assumptions

Asymptotic Assumptions

- The sampling design of \boldsymbol{B} is ignorable; that is, $Pr(\delta_j | \boldsymbol{X}, Y) = Pr(\delta_j | \boldsymbol{X})$ for all $j \in \boldsymbol{B}$.
- 2 The sampling fraction $\frac{n_s}{N} = \frac{n_A + n_B}{N}$ converges to a limit in (0, 1] as both n_s and N tend to infinity [2].
- **③** There exist some positive real constants c_1, c_2 such that $c_1 \leq \frac{N\pi_i}{\mathbb{E}_{\mathcal{D}}(n_{\mathsf{A}})} \leq c_2$ for all $i \in \mathbf{A}$, where $\mathbb{E}_{\mathcal{D}}(\cdot)$ denotes the design-based expectation. Furthermore,

$$\lim_{N \to \infty} \left[\left(\frac{\mathbb{E}_{\mathcal{D}} \left(n_{\mathsf{A}} \right)}{n_{\mathsf{B}}} \right)^{1/2} \right] = 0,$$
 implying $n_{\mathsf{B}}^{-1/2} = o\left(\mathbb{E}_{\mathcal{D}}^{-1/2}(n_{\mathsf{A}}) \right).$

Asymptotic Assumptions (cont.)

• For any random variable z with finite $2+\delta$ population moments and arbitrarily small $\delta>0,$

$$\operatorname{Var}_{\mathcal{D}}\left(\frac{1}{N}\sum_{i\in\boldsymbol{A}}\pi_{i}^{-1}z_{i}\right)\leq\frac{c_{3}}{\mathbb{E}_{\mathcal{D}}\left(n_{\mathsf{A}}\right)\left(N-1\right)}\sum_{u\in\mathcal{U}_{\mathsf{N}}}\left(z_{u}-\bar{z}_{\mathsf{N}}\right)^{2},$$

where $\bar{z}_{N} = \frac{1}{N} \sum_{u \in \mathcal{U}_{N}} z_{u}$ is the finite population mean of z.

§ For any random variable z with a finite fourth population moment,

$$\operatorname{Var}_{\mathcal{D}} \left(\bar{z}_{\pi} \right)^{-1/2} \left(\bar{z}_{\pi} - \bar{z}_{\mathsf{N}} \right) \xrightarrow{\mathcal{L}} \operatorname{N} \left(0, 1 \right)$$
$$\operatorname{Var}_{\mathcal{D}} \left(\bar{z}_{\pi} \right)^{-1/2} \widehat{\operatorname{Var}}_{\pi} \left(\bar{z}_{\pi} \right) - 1 = O_{\mathsf{P}} \left(\mathbb{E}_{\mathcal{D}} \left(n_{\mathsf{A}}^{-1/2} \right) \right),$$

where $\bar{z}_{\pi} = \frac{1}{N} \sum_{i \in \mathbf{A}} \pi_i^{-1} z_i$ denotes the HT mean estimate of \bar{z}_{N} and $\widehat{\operatorname{Var}}_{\pi}(\bar{z}_{\pi})$ denotes the HT estimate of $\operatorname{Var}_{\mathcal{D}}(\bar{z}_{\pi})$.

 F_N(t) converges to a smooth function F*(t) as N goes to infinity; that is,

$$\lim_{N \to \infty} F_{\mathsf{N}}(t) = F^*(t),$$

where the limiting function $F^*(t)$ is uniformly continuous with finite first and second derivatives.

• There exists some positive real constants c_3, c_4, c_5 such that $X_i \leq c_3$, $\nu(X_i) \leq c_4$, and $X_j \leq c_5$ for all $i \in A$ and $j \in B$.

Works Cited

References I

- [1] Centers for Disease Control and Prevention (CDC). NHANES -National Health and Nutrition Examination Survey. https://www.cdc.gov/nchs/nhanes/index.htm (visited: 2023-10-11). 2015-2020.
- Richard L Chambers and R Dunstan. "Estimating distribution functions from survey data". In: *Biometrika* 73.3 (1986), pp. 597-604.
- [3] Sixia Chen, Shu Yang, and Jae Kwang Kim. "Nonparametric mass imputation for data integration". In: *Journal of Survey Statistics and Methodology* 10.1 (2022), pp. 1–24.
- [4] Jae Kwang Kim et al. "Combining non-probability and probability survey samples through mass imputation". In: *Journal of the Royal Statistical Society Series A: Statistics in Society* 184.3 (2021), pp. 941–963.

References II

- [5] Mateus Maia, Arthur R Azevedo, and Anderson Ara. "Predictive comparison between random machines and random forests". In: *Journal of Data Science* 19.4 (2021), pp. 593–614.
- [6] National Academies of Sciences, Engineering, and Medicine. Federal statistics, multiple data sources, and privacy protection: next steps. National Academies Press, 2018.
- [7] Marie-Hélène Roy and Denis Larocque. "Robustness of random forests for regression". In: *Journal of Nonparametric Statistics* 24.4 (2012), pp. 993–1006.
- [8] Carl-Erik Särndal, Bengt Swensson, and Jan Wretman. Model Assisted Survey Sampling. Springer Science & Business Media, 2003.
- [9] Erwan Scornet. "Random forests and kernel methods". In: IEEE Transactions on Information Theory 62.3 (2016), pp. 1485–1500.

- [10] Arkadiusz Wiśniowski et al. "Integrating probability and nonprobability samples for survey inference". In: *Journal of Survey Statistics and Methodology* 8.1 (2020), pp. 120–147.
- [11] Shu Yang and Jae Kwang Kim. "Statistical data integration in survey sampling: A review". In: Japanese Journal of Statistics and Data Science 3 (2020), pp. 625–650.
- [12] Shu Yang, Jae Kwang Kim, and Youngdeok Hwang. "Integration of data from probability surveys and big found data for finite population inference using mass imputation". In: Survey Methodology 47.1 (2021), pp. 29–58.