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►Content

►Why we care about Causality?

►Three Major Schools of Thought

►Extension to Uplift Modeling

►Summary

Disclaimer: The views expressed here are solely those of the 

speaker and do not in any way represent the views of 

Fidelity Investments
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►Turing Award and Nobel Econ Prizes on Causality

Can anyone think of a causal question for any industry that can support decision making?

2010 Turing Award for contributions to AI through a calculus for 

probabilistic and causal reasoning 

https://amturing.acm.org/award_winners/pearl_2658896.cfm 
Judea Pearl, UCLA

2021 Nobel Econ for development and applications of Causal 

Inference techniques using observational data

https://www.nobelprize.org/uploads/2021/10/advanced-

economicsciencesprize2021.pdf 

Joshua 

Angrist, MIT
Guido Imbens, 

Stanford
David Card, 

UC Berkeley

2019 Nobel Econ for application of Randomized 

Experiments for poverty and health

https://www.nobelprize.org/prizes/economic-

sciences/2019/popular-information/ 
Esther Duflo, MIT;   Michael Kremer, Harvard;  Abhijit Banerjee, MIT

https://amturing.acm.org/award_winners/pearl_2658896.cfm
https://www.nobelprize.org/uploads/2021/10/advanced-economicsciencesprize2021.pdf
https://www.nobelprize.org/uploads/2021/10/advanced-economicsciencesprize2021.pdf
https://www.nobelprize.org/prizes/economic-sciences/2019/popular-information/
https://www.nobelprize.org/prizes/economic-sciences/2019/popular-information/
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►Correlation vs. Causality

The time on your watch is highly correlated with the time on mine 

– so the movement on my watch is driven by yours…?

Your time
My time

associate

Your time

My time

= Your time + 10 min

Corr coefficient = 100%!
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►Correlation vs. Causality

Time and time (continued):

Your time My time

Official time

Your time ╨ My time │Official time



6

►So What’s the Point of Understanding Causality?

• Attribution 
• Impact of an intervention (e.g., marketing, medicine, 

product, policy)

• Counterfactual questions: what-if (e.g., causal fairness)

• Effects of Causes (EoC)

• Explanation
• Why something happened? What are the possible causes?

• What’s the “causal mechanism”?

• Causes of Effects (CoE) and Effects of Causes (EoC)

• Optimization
• How can we do better in the future?
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►Common Causality Related Questions in Business

►Price: Would a price discount generate high demand?

►Promotion: What are the Impact of direct marketing and 

advertising?

►Place: What are the effects of new store location and 

appearance on business outcomes?

►Product: Would an improvement in product feature be 

valuable to customers? 
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►“Gold Standard”: Randomized Experiment, A/B 

Test, or Randomized Controlled Trial (RCT)

❑Ensures that the characteristics of the treatment and 

control groups are the same prior to the design

➢Balanced in both observable and unobservable characteristics 

8

“A/B Testing is a Randomized Experiment with two variants, A and 
B. It includes application of statistical hypothesis testing.” Wikipedia

Ronald A. Fisher

Charles Sanders Peirce

What if Randomized Experiment is not possible?

Target Group

Treatment

Focus on Durability

Control

Emphasize on multi-
functional feature for 
business & leisure

Test two promotional messages

Randomization

http://en.wikipedia.org/wiki/File:R._A._Fischer.jpg
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►Causal Inference of Observational Data

►Three Major Schools of Thought:

I. Statistics

II. AI / CS

III. Economics / Econometrics

Rather than directly competing, they share some similarities and can 

mostly complement each other…, despite some “philosophical” 

differences
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I. Statistical School of Thought: 

        Rubin Causal Model (RCM)

- Followed by statisticians, social scientists (e.g., economists, 

political scientists, sociologists), and medical scientists (e.g., 

epidemiologists, biostatisticians)

Donald Rubin, Harvard, 

Tsinghua, and Temple
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►What are Potential Outcomes

Customer Treatment 

Assignmen

t

Y(C) = 

Response if 

not called

Y(T) = 

Response if 

called

A C 0 1

B C 0 0

C T 1 1

D T 0 1

Customer Treatment 

Assignmen

t

Y(C) Y(T)

A C 0 ?

B C 0 ?

C T ? 1

D T ? 1

In reality, only one outcome is observable (Fundamental Problem of Causal Inference)

Customer Retention Program 

Y(C) and Y(T) are potential outcomes for each customer under the scenarios of no call and call, resp.

Statistical adjustment can be applied through matching or weighting



12

►Blocking the “Back-Door” Path

By breaking the Confounder-Treatment link, we can have a cleaner 

estimate of Treatment Effect, similar situation applies to measuring 

product value

 

Causal

Treatment 

(or Control) 

Assignment

Outcome

Confounder 

(if known)

E.g. Sales Effort
E.g. Buy or not

E.g. age, income, geography, 

etc.

X

Propensity Score Matching (PSM)

Sales reps 

cherry-picked by 

demographics

Historical Sales Data
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►Illustration of Weighting Method

• Baskets A and B are not comparable due to different composition of fruit types

• Construct weights (#𝐴𝑖/#𝐵𝑖 for all i where i represents a fruit type)

• Apply weights to Basket B to form Basket C – now compatible with Basket A

• PSM can handle biases due to multi-dimensional variables

x 5/3

x 2/1

x 3/4

x 1/1

Basket A Basket B Basket C

x 0/2

Weights generated

Measures treatment effect by neutralizing audience biases (confounders)

Single Variable Illustration

Very similar:

Horvitz-Thompson estimator from survey sampling, Covariate Shift in machine learning, Domain Adaption from transfer learning 
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II. AI/CS School of Thought: 

 Pearl Causal Model (PCM)

- Followed by a subset of computer scientists, data scientists, 

philosophers, and epidemiologists

Judea Pearl, UCLA

Turing 2011
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►  Directed Acyclic Graphs (DAG)

• Path: variables (‘vertices’) and links (‘edges’)

• No cyclic paths

• Given its parents, each variable is independent of its non-parents and 

non-descendants (Markov condition, Spirtes et al 2000)

• Joint distribution of variables is encoded in its DAG

How are we able to come up with a DAG for the FULL dependence structure?

𝑃 𝑋1, … , 𝑋𝑝|Θ =  ෑ

𝑖=1

𝑝

𝑃(𝑋𝑖|𝑝𝑎 𝑋𝑖 ; Θ)

If not, can we “estimate” a DAG based on data?
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►Total Well-Being Analysis 

Source: 

Arnost, William and Victor S.Y. Lo (2023), 

“Prioritizing Workplace Benefits Using 

Bayesian Networks,” Joint Statistical 

Meetings, Toronto.
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►Key Steps for Causal Inference under the Pearl Causal 

Model

1. Construct a DAG as much as possible based on domain 

expertise

2. Apply Structure Learning on a data set to complete the 

DAG

3. Identify confounders for the treatment to outcome 

relationship of interest

4. Estimate the treatment effect by controlling for the 

identified confounders, using any or multiple techniques
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►Structure Learning (Causal Discovery) 

• Constraint-based algorithms

• Use conditional independence tests to check whether two variables 

are independent conditional on a third variable

• Link variables (nodes) that are not found to be independent 

• Classic: the PC algorithm

• Score-based algorithms

• Optimizing a score function, typically BIC:

• Hybrid algorithms

• Combine the above

Source: Scutari et al (2018) “Who Learns Better Bayesian Network Structures”

Tools: Tetrad, bnlearn, DoWhy, and more

𝐵𝐼𝐶 = log likelihood + penalty term = 

𝑖=1

𝑝

log 𝑃(𝑋𝑖|𝑝𝑎 𝑋𝑖 ; Θ) − # 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠
2 log 𝑛 

https://www.bnlearn.com/about/slides/slides-pgm18.pdf
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►Marketing Funnel Analysis

Interventions

E.g., email, outbound 

call contact, coupon, 

price change, app 

enhancement

Engagements

E.g., app usage, webinar 

attendance, store visits

Outcome

Outcomes

E.g., product sales, 

customer retention, 

revenue change 

Correlation or Causality? What Business Questions Can Be Answered?

Hypothetical Causal Pathway

Indirect 

Impact
Indirect 

Impact

Direct Impact

Separating direct from indirect effects enables better optimization
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III. Economics School of Thought: 

 - Difference-In-Difference (DID)

 - Synthetic Control Method (SCM)

 - Regression Discontinuity Design (RDD)

 - Instrumental Variable (IV)

- Embraced by economists and other social scientists

Story of Imbens, Angrist, and Rubin

https://www.gsb.stanford.edu/insights/unexpected-result-how-nobelist-guido-imbens-helped-kick-start-credibility-revolution
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►Difference In Difference (DID):

Simplest Causal Inference Method?

Extension: Synthetic Control Method (SCM)
• Create a control group that is a weighted average of multiple potential groups

Another: PSM + DID, see Li, Lo, Liu, and Smith (2022) for a health policy application 

Perhaps the simplest causal technique for model monitoring (without A/B testing)

Assumption: Parallel Trend

(Treatment_post - Treatment_pre) - (Control_post - Control_pre)

Outcome

Time

Pre-treatment Post-treatment

Treatment effect

Constant difference if not treated

https://link.springer.com/content/pdf/10.1186/s13033-022-00535-w.pdf
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All Targets in 
the Campaign

Z=1: Attempt to 
Call

C=1: Pickup the 
Phone 

(Compliers)

Y=1: Respond
Y=0: Not 
Respond

C=0: Not Pickup 
the Phone 

(Non-compliers)

Y=1: Respond
Y=0: Not 
Respond

Z=0: NOT 
Attempt to Call

Y=1: Respond
Y=0: Not 
Respond

Decision Tree of Outbound Call Program

ITT = Compare the entire 

Treatment to entire 

Control, as they are 

randomized split

How about using Propensity Score Matching (PSM) to find a group from C=0 that looks like C=1?

What are the confounders?

Question: 
What is the Average Treatment Effect among the Compliers?
I.e., Compare the response rate in C=1 with its counterfactual group if they did not pick up the phone

Randomization

Source: Lo & Li (2021) 

https://ww2.amstat.org/meetings/proceedings/2021/data/assets/pdf/1913751.pdf
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All Targets in 
the Campaign

Z=1: Attempt to 
Call

C=1: Pickup the 
Phone 

(Compliers)

Y=1: Respond
Y=0: Not 
Respond

C=0: Not Pickup 
the Phone 

(Non-compliers)

Y=1: Respond
Y=0: Not 
Respond

Z=0: NOT 
Attempt to Call

Y=1: Respond
Y=0: Not 
Respond

Introducing Instrumental Variable (IV)

See Imbens and Rubin (2015) and the Story of Imbens, Angrist, and Rubin

 

Definition of Instrumental Variable (IV): 
❑ IV -> Treatment (T) -> Outcome (Y)
❑ IV does not have any other path to impact Y (Exclusion Restriction)
❑ Z is a perfect IV, and C is the actual treatment

Randomization

https://www.gsb.stanford.edu/insights/unexpected-result-how-nobelist-guido-imbens-helped-kick-start-credibility-revolution
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►LATE (Local Average Treatment Effect): 
Wald Estimator

𝐴𝑇𝐸 (ITT) = 𝐴𝑇𝐸 (Complier)  ∗ 𝑃(Complier) + 𝐴𝑇𝐸 (Non − Complier) ∗ 𝑃(Non − Complier)

If we assume 𝐴𝑇𝐸 (Non − Complier)  =  0, i.e., non-compliers are NOT impacted by “failed to 

treat” though attempted, we have the Wald Estimator:

 𝐀𝐓𝐄 𝐂𝐨𝐦𝐩𝐥𝐢𝐞𝐫 =
𝐀𝐓𝐄 (𝐈𝐓𝐓)

𝐏(𝐂𝐨𝐦𝐩𝐥𝐢𝐞𝐫)
 , known as 𝐋𝐀𝐓𝐄 or 𝐂𝐀𝐂𝐄 (𝐂𝐨𝐦𝐩𝐥𝐢𝐞𝐫 𝐀𝐯𝐞𝐫𝐚𝐠𝐞 𝐂𝐚𝐮𝐬𝐚𝐥 𝐄𝐟𝐟𝐞𝐜𝐭).

Practical usage of LATE:

1) Direct attribution of effect to the “real treatment”

2) If the overall ATE (ITT) is low, is it driven by a) low complier rate or b) low 

LATE? This enables us to focus on the right component for improvement

Proportion of Compliers in the “attempt to treat” group
Technically, it is ATT, average 

treatment effect on the “treated”

0

See Lo & Li (2021) for further description

https://ww2.amstat.org/meetings/proceedings/2021/data/assets/pdf/1913751.pdf
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►Extension to Uplift Modeling or Conditional 

Average Treatment Effect (CATE)

Uncover the most responsive customers (or voters, 

patients) to treatment and optimize future targeting
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►Uplift Modeling: Find The Most Persuadable Voters

https://www.predictiveanalyticsworld.com/machinelearningtimes/how-uplift-modeling-helped-obamas-campaign-and-can-aid-marketers/2613/#:~:text=The%20models%20enabled%20the%20campaign,political%20campaigns%2C%20according%20to%20Porter.
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►                                   
Personalized Medicine:

Uplift Modeling to find the right treatment for 

each patient 

Source: Chapter 3 of Yong (2015), with permission

https://dash.harvard.edu/bitstream/handle/1/17463130/YONG-DISSERTATION-2015.pdf?sequence=4&isAllowed=y
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►Uplift Modeling Software

Open Source or 
Commercial

Uplift on RCT Data Uplift on RCT or Observational 
Data

Open Source: R • Uplift (Gruelman 2015) – tree, 

RF

• Tools4uplift (2019) – 2-model, 

interaction

• quint (2020) – tree, based on 

effect size

• mr_uplift (2020) – multiple 
treatments, neural net

• grf (Athey et al 2019 and 

Tibshirani et al 2023) – 

transformed outcome, tree, 

RF, PSM-IPW

• rlearner (2020) – meta 
learner, PSM-IPW 

Open Source: 
Python

• Pylift (Wayfair 2019) – 

transformed outcome

• scikit uplift (2022) – single 

model, 2-model, transformed 
outcome

• CausalLift (2019) – 2-model, 

PSM-IPW

• Causal ML (Uber 2023) – tree, 

RF, meta learners, PSM-IPW

• Econ ML (Microsoft 2023) – 

RF, meta learners, DML

Commercial 
Software

• JMP Pro: Uplift Model – tree

• SAS Enterprise Miner: 

Incremental Response Model – 
2-model, interaction
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►Prediction versus Causal AI

Estimating E(Y|T=t) or 

P(Y=1|T=t) 

Prediction

Forecasting Yt 

Classification

Supervised Learning

Pattern Recognition

Estimating 
𝜕𝐸(𝑦)

𝜕𝑥
 

Attribution

Explanatory Model

Causal Impact of Intervention or 

Treatment

E(Y|do(T=1)) - E(Y|do(T=0))

Direct and Indirect Effects

(Pure) Prediction Problem Causal AI

“Predictive Modeling” can achieve either or both but the techniques are slightly different
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►Summary

▪ Causal AI enables attribution, explanation, and 

optimization

▪ Three key schools of thought: Statistics, AI, and 

Economics – not really competing

▪ From average treatment effect (ATE) for measuring 

overall impact to conditional average treatment effect 

(CATE) or uplift modeling for prioritization / 

optimization

▪ Plenty of business applications! 
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APPENDIX
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►Other Variations, Extensions, or Related Techniques 

of the Statistical School of Thought
• Doubly Robust (DR) Estimation

• Generalized Propensity Score (GPS)

• Target Maximum Likelihood Estimation (TMLE)

• Double Machine Learning (DML)

• Exact Matching and Almost Exact Matching

Other statistical methods for causal inference:

• Regression adjustment

• Time series regression

• Mixed effects models

• Structured equation models 
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►Future Applications?

• More Personalization and Optimization

• More AI-generated contents ⇒ more demand for measurement & 

optimization

• Impact of AI models (when A/B testing is difficult)

• Causal Fairness in AI ethics: causal effects of sensitive variables on 

model score

• How about LLM-based causal analysis or causal based LLM?
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