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Overview

1 Setup and Foreshadowing: Original Solutions to Old Problems

Trees and random forests
Early work connecting random forests and u-statistics
Asymptotic normality and hypothesis tests for feature importance
[Mentch and Hooker, 2016, 2017, Coleman et al., 2022]

2 Why do random forests work?

Randomization as regularization
Degrees of freedom
Exporting the RF mechanism

3 Why that’s a problem ... new perspectives bring new problems

Alternative forms of regularization
Implications for VIMP measures
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Part I: Introduction

The Random Forest (RF) procedure is a supervised learning tool
introduced by Breiman [2001].

Assume we have data of the form Dn = {Z1, ...,Zn} where each
Zi = (Xi ,Yi ), Xi = (X1,i , ...,Xp,i ) denotes a vector of p features, Y ∈ R
denotes the response, and the variables have a general relationship of the
form Y = f (X ) + ε.

Random forests are constructed by drawing B resamples of the original
data, building a (randomized) model (base-learner) on each, and taking
the average. Given some point x , the RF prediction is given by

ŷ = RF(x ;Dn,Θ) =
1

B

B∑
i=1

T (x ;Dn,Θi )
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Introduction

In the original construction of RF given by Breiman [2001] ...

Resampling is done via bootstrapping

Base learners are CART-style trees

Trees are recommended to be fully-grown

Besides drawing resamples, the randomness Θ serves to randomly
select a subset of mtry < p features available for splitting at each
node of each tree

For classification problems, split quality measured via reduction in
Gini impurity and final predictions taken as majority vote

Note: Many recent works (including mine) take a more general RF
definition for theoretical convenience
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Subsampling

Goal of our early work was to develop inferential procedures for RFs –
greedy nature and bootstrapping (correlation) complicate this

Instead let’s do subsampling – construct trees with mn subsamples of
size kn instead of full bootstrap samples

f̂ (x) =
1

mn

mn∑
i=1

T (x ; (X ,Y )i1 , ..., (X ,Y )ikn ; Θ)

Can draw connection to u-statistics (randomized kernels with growing
rank) =⇒ predictions are asymptotically normal so long as
subsample growth rate is controlled

Confidence intervals can be produced with consistent variance
estimate; rates of convergence (Berry-Esseen Theorems) can be
established [Peng et al., 2022]
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Testing Feature Significance

Asymptotic results also provide a means of formally testing feature
importance (details given on next slide):

Given S ⊂ {X1, ...,Xp}, build RF and RF∗ with permuted or
randomized replacement for S

Predictions from each are AN =⇒ differences should be AN and
centered at 0 under H0 =⇒ large differences in predictions should
indicate a contribution by the features in S

Can be extended to test additivity by structuring the test points
[Mentch and Hooker, 2017]

Need to estimate the (co)variance (lots of trees); becomes very difficult
for large numbers of test points

More efficient and scalable version of this test that involves exchanging
trees between the two forests given in Coleman et al. [2022]
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Real Data: Indigo Bunting Presence/Absence 2010
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Figure 1: Monthly counts of Indigo Bunting observations in 2010.
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Real Data: Indigo Bunting: Effect of Month

Testing the importance of month during the year 2010. (Critical
Value from χ2

20 = 31.41)

Test Test Statistic p-value
Month vs. No Month 4233.10 0.0000
Randomized Month vs. No Month 58.02 0.0001
Randomized Month vs. Randomized Month 2.36 0.9999
Month vs. Randomized Month 2336.14 0.0000

Final test implies that Month improves prediction beyond what could
be expected by simply adding random noise.
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Explaining RF Success

Part II: Why do RFs Work?
Despite the vast recent theoretical/statistical progress with RFs, there has
been very little work exploring reasons for their robust success

From recent review paper by Biau and Scornet [2016]:

Research investigating the properties of random forest tuning
parameters is “unfortunately rare”

“present results are insufficient to explain in full generality the
remarkable behavior of random forests.”

Good reason to think there really is something particularly nice about RFs:
recent large-scale empirical study comparing 100s of models on 100s of
datasets (entire UCI repository), Fernández-Delgado et al. [2014] found:

RFs ranked 1st overall and of the top 5 performing classifiers, 3 were
some variant of RFs
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Existing Explanations

1. Breiman [2001]: The additional randomness in RFs serves to
de-correlate trees, thereby reducing the variance of the ensemble
(accuracy/correlation tradeoff ⇐⇒ bias/variance tradeoff)

2. Biau and Scornet [2016]: “The authors’ intuition is that tree
aggregation models are able to estimate patterns that are more complex
than classical ones—patterns that cannot be simply characterized by
standard sparsity or smoothness conditions.”

3. Wyner et al. [2017]: Random forests work well because they are
“self-averaging interpolators” that fit the training data perfectly while
retaining some degree of smoothness due to the averaging – Random
forests “work not in spite, but because of interpolation”
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Relative Performance of RFs

Perhaps it would be more fruitful to consider RF performance in relative
terms (why do RFs do well compared to other models) instead of
absolute terms (why might models like RFs do well in general)

Let’s look at some preliminary experiments ...

Linear model with correlated features (following Hastie et al. [2017])

MARS model (interactions and non-linearities; Friedman [1991])

Consider SNRs ranging from 0.05 to 6 equally spaced on the log scale

Compare difference in test error of random forests (mtry = 0.33) to
bagging (mtry = 1) averaged over N = 500 simulations. Note:
Slightly different convention here – mtry denotes the proportion of
the p features available for splitting, rather than the raw number
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Relative Performance of RFs
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Figure 2: Error(Bagg) - Error(RF) vs SNR. Positive values indicate better
performance by RFs.
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Relative Performance of RFs

In each case we see a clear pattern: as the SNR goes up, the advantage
offered by RFs dies out.

How about on real-world data?

Since we don’t know the true SNRs, we inject additional random
noise ε ∼ N(0, σ2) into the response

σ2 chosen as a proportion α of the sample variance of the response
for α = 0, 0.01, 0.05, 0.1, 0.25, 0.5

Consider the relative test error defined by

RTE =
Êrr(Bagg)− Êrr(RF)

σ̂2y
× 100%

where Êrr(Bagg) and Êrr(RF) correspond to 10-fold CV error and σ̂2y
is the empirical variance of the original response.
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Relative Performance of RFs
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Figure 3: (Shifted) RTE on real data where additional noise is added. The left
plot shows results on low-dimensional datasets taken from the UCI repository; the
right plot shows results on high-dimensional datasets.
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Takeaways

Turns out, you can demonstrate that RFs with larger values of mtry
(more variables at each split; less random) have more degrees of
freedom

Results are interesting and helpful, but perhaps not shocking: more
randomness =⇒ trees more independent =⇒ bigger variance
reduction =⇒ less overfitting =⇒ improved performance at low
SNRs.

More surprising: there is nothing tree-specific about this. Could we
export the RF mechanism (feature subsampling) into other
modeling/fitting procedures and see similar gains?

BaggFS: Bootstrap original data, perform linear model forward
selection (FS) on each, take average

RandFS: Same as BaggFS, except that only random subset of
remaining predictors available at each step in the FS procedure
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Extensions to RandFS
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Figure 4: Performance Comparisons in low setting.
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Figure 5: Performance Comparisons in low setting.
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Extensions to RandFS
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Figure 6: Performance Comparisons in low setting.
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Extensions to RandFS
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Figure 7: Performance Comparisons in low setting.
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Extensions to RandFS
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Figure 8: Performance Comparisons in medium setting.
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Randomization as Regularization

Randomized forward selection is doing a sort of implicit regularization:
imagine we do an idealized version of this kind of randomized LM forward
selection without resampling to a “depth” of d < p

For each of the b = 1, ...,B models, features are either selected or not
=⇒ for each feature Xk , β̂k,b = 0 w.p. ≥ 0

Given an orthogonal design:

β̂RandFSk =
1

B

∑
k

β̂k,b = αk β̂k,OLS + (1− αk) · 0 = αk β̂k,OLS

Each selection proportion/shrinkage αk depends on:

(i) the probability Xk is made eligable (mtry and model depth d) and
(ii) the probability of being chosen if eligible (true relative
“importance”)
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Randomization as Regularization

Coefficient estimates are effectively shrunk by amount proportional to
that selection proportion

In fact, can show that RandFS with mtry parameter is equivalent to
ridge regression with penalty λ = p−mtry

mtry
:

Theorem (Mentch & Zhou (2020))

Under the data setup given above, assume that n > p and the design
matrix X is orthogonal. Then

β̂ens B→∞−−−−→ mtry

p
β̂OLS

where β̂ens denotes the estimate formed by averaging across B different
OLS models, each built using only a subset of mtry < p features selected
uniformly at random, and β̂OLS denotes the standard OLS estimate on the
original data.
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RFs and Regularization

Part III: The “Problem”

We just argued that the randomization (mtry parameter) in RFs acts
as a regularizer – each feature is effectively shrunk by an amount
proportional to its selection proportion αk

Key Point: Column subsampling (mtry) is only one way to affect
those selection proportions – if we hold mtry fixed and add more
features, shouldn’t we intensify the effect?

• In other words it’s not really mtry alone at work, but really mtry/p
and we just think of p as fixed

If that’s really what is “making RFs work”, then bagging with extra
features should improve predictions in a similar fashion to RFs
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Augmented Bagging

Suppose we create an augmented dataset D∗n = {Z ∗1 , ...,Z ∗n} where each
Z ∗i = (Xi ,Ni ,Yi ) and Ni = (N1,i , ...,Nq,i ) is an additional set of noise
features. The original bagging procedure is then performed on D∗n so that
these predictions from Augmented Bagging (AugBagg) take the form

ŷAugBagg =
1

B

B∑
b=1

T ((x,n); Θb,D∗n). (1)

where n can be filled in with random draws from the additional noise
features.

We assume only that N is conditionally independent of Y given X .
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Simulations on AugBagg

Consider the same general linear model setup as before:

Set n = 100, p = s = 5.

q additional i.i.d. noise features sampled from N (0, 1) independent of
X are then added with q ranging from 1 to 250.

The noise term ε was sampled from N (0, σ2ε ) with σ2ε chosen to
satisfy a particular SNR given by βTΣβ/σ2ε .

SNR = 0.01, 0.05, 0.09, or 0.14.

Models built via the R package randomForest with default settings
except for mtry = p + q.

Test error is calculated on an independent, randomly generated test
set containing 1000 observations and averaged over 500 repetitions.
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Simulations on AugBagg
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Figure 9: Performance of Augmented Bagging
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Variable Importance

The fact that inclusion of noise features can potentially improve
model performance has a crucial implication for variable importance,
which is of interest across almost all scientific domains.

Given Y = f (X ) + ε, many different versions of testing procedures
developed that (generally speaking) proceed by partitioning
X = (X0,Xtest) and evaluating a null hypothesis along the lines of

H0 : f (X0,Xtest) = f0(X0) (2)

[Mentch and Hooker, 2016, 2017, Coleman et al., 2022, Lei et al., 2018]

Generally involves building two models – one with the original features
and one in which Xtest is either dropped or randomly replaced
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Variable Importance

But ...

If model performance can be improved simply by adding randomly
generated features that are (at least conditionally) independent of the
response, then observing a significant drop in accuracy when a
particular set of features is excluded does not imply that any
relationship to the response or even the other covariates need exist.

To emphasize this point, we implement recent testing procedures and
investigate their behavior under the same linear model settings as
above.

Consider X0 = (X1, ...,X5) (true signal features) and
Xtest = (N1, ...,Nq) (noise features)
X0 and Xtest are independent or correlated.
In the altered dataset, Xtest is dropped (drop test) or replaced
(replacement test)
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Tests: Independent Features
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Figure 10: Probability of Rejecting Null Hypothesis when dropping vs replacing
independent features.
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Tests: Correlated Features
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Figure 11: Probability of Rejecting Null Hypothesis when dropping vs replacing
correlated features.
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Tests: Features Sampled from Wrong Distribution
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Figure 12: Probability of Rejecting Null Hypothesis when replacing features with
others from a different distribution.
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Bad Tests or Bad Interpretations?

So are these tests just wrong ... ?

Well not exactly ... the tests themselves are simply looking for a difference
in predictions/accuracies between the models. Adding noise really can
improve the models.

But there is a big issue with equating

“feature set S improves predictions”

with

“feature set S must explain/be related to the response”
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Takeaways

Additional randomness in RFs offers an implicit form of
regularization, making them particular strong in noisy data settings

Just as ridge/lasso are thought of as regularized versions of OLS, can
think of RFs as regularized form of bagging

This kind of regularization can also be accomplished by adding
additional noise features

Tests that measure importance as a function of drop in model accuracy
when features are removed can produce highly misleading results

Still preferable to traditional out-of-bag measures which have been
shown to suffer serious systematic bias

Effect can largely be mitigated by replacing features in question with
knockoffs rather than dropping them
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Takeaways

These are not tree-specific results – similar “shrinkage-via-additional
noise” effects can be seen in things as simple as linear models

“Optimal ridge penalty can be 0 even in high dimensions” [Kobak
et al., 2020]

This may not be the whole story – at least in some settings, RFs can
continue to improve over bagging even at very high SNRs

“Randomization Can Reduce Both Bias and Variance: A Case Study in
Random Forests” [Liu and Mazumder, 2024]
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Part II: Why Random Forests Work:
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regularization: A degrees of freedom explanation for random forest
success.” Journal of Machine Learning Research. 21(171).

Part III: Why That’s a Problem:
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