

Proteomics data sharing: why?

- Since the Enlightenment, Science is built upon the sharing of knowledge and information
 - "If I have looked further, it is because I stood on the shoulder of Giants"
 - -- Sir Isaac Newton, paraphrasing Bernard of Chartres
- Data producers are not always the best data analysts
 Sharing of data allows analysts access to real data, and in turn allows better analysis tools to be developed
- Meta-analysis of data can recycle previous findings for new tasks putting findings in the context of other findings increases their scope
- Sharing data allows independent review of the findings
 When actual replication of an experiment is often impossible, a reanalysis or spot checks on the obtained data become vitally important

• Simple economics

"Information, no matter how expensive to create, can be replicated and shared at little or no cost." -- Thomas Jefferson

Simply sharing data is not enough...

Table 1 Identities of stress-induced protei		Table I. Identification of exosomal proteins based on MALDI-TOF peptide mass fingerprinting or MS/MS-derived sequences									40.044		2 marine	
	ruentities of stres	s-induced protei	Band (Fig. 1)	Protein Name	Identification Method ²	Accession Number ⁰	Molecular Mass (kDa)	Matching Pentides	Sequence Covernme (%)			(KDa)/p/	Accession NO.	Species
			A	Mac-1 α-chain = CD11b			Théry et al., 1999 (14)			hase				
Spot ID	Synonym	Function	1	Complement C3 ^c PK-120 ^c	MS/MS (7) MS/MS (3)	4093220 Not in databa	ses				Stress	ntal Theoretical		
1000	8000505	Llupathatiaalu	2	a2-Macroglobulin [®] Plasminogen [®]	MS/MS (2) MS	Not in databa P06868	91	28	37		00	69.07/5.8	BAA97338	Arabidopsis
2207	SC00525	Hypotrietical p	3	Alix	MS MS/MS (6)	6755002 ^a	96	26	34		CS CS			thaliana
3507	SCO2900	Dutativa dibua	3	Mac-1 β -chain = CD18	MS MS/MS (1)	P11835	85	27	38		60		-	
6412	SC02180	Putative uniyo	4	hsp90- β = hsp84 Serum albumin ^c	MS MS	P11499 P02769	83 69	30 42	38 66		03	62.82/6.4	P42863	Oryza sativa
6410	SC06027	2 Debudroqui	р	her73	MS/MS (3)		Théres et al. 1999 (14)				CS			
6803	SCO1494	S-Denyaroqui	B, C	MFG-E&/lactadherin	ME	105218	Théry et al., 1999 (14)	20			CS	65.29/6	Q43097	Lotus
119	SC01340	Consorved by	7	Annexin VII = synexin	MS	Q07076	50	6	13		EtOH	80 80/6 /	D/2062	japonicus Onza
1104	SC02368	Conserved hy	7	Bovine coagulation factor X ^c	MS/MS (3) MS/MS (2)	P00743	54				EtOH	02.82/0.4	-42803	sativa
1617	SCO2366	ATD synthese	7	PEDF ^c Tumor susceptibility protein	MS/MS (3) MS/MS (2)	Q95121 3184260 ^d	46 44				EtOH			
2601	SC05373	ATP synthase	7	(tsg) 101 Rab GDP dissociation inhibitor	MS	0615984	51	10	21		EtOH	67.71/6.9	<u>Q00775</u>	Salanum tuberosum
2616	SC05373	ATP synthase		(GDI) 3	MS/MS (1)	001350	50	10			EtOH			
5701	SC04814	Rifunctional n	7	EIGngation factor (EF) 1-a-1 EIF-4A-II	MS/MS (2) MS/MS (2)	P10126 P10630	46	_			EtOH	67.69/7.1	BAA77351	Triticum
1515	SCO2180	Putativo dihvo	8	Annexin I	MS MS/MS (2)	P10107	39	7	25		HS	80 BA/9 5	042608	Brassica
1616	SC03661	Putative chap	8	Reverse transcriptase/pol (murine leukernia virus)	MS/MS (1)	61790 ^a					HS	02.04/8.3	Q42008	rapa
2706	SC03671	Heat shock n	D E	γ-Actin G protein G→α subunit			Théry et al., 1999 (14) Théry et al. 1999 (14)				HS		_	
2906	SC05999	Aconitase	F	Annexin II	MS	D48036	Théry et al., 1999 (14)	16	54		HS	54.96/5.2	Q38681	Acetabularia acetabulum
3504	SCO1936	Putative trans	3	Annexin V	MS/MS (4)	148030	36	10			HS	57,44/7	P30567	Gossypium
5310	SC00506	NH(3)-depend	10	Annexin IV	MS/MS (4)	P97429	36	20	63		HS			hirsutum
7417	SC05477	Putative olido	10	Galectin-3 = Mac-2	MS MS/MS (6)	P16110	27	11	37		HS	57.94/8	P37215	Lycopersicon
505	SCO1998	30S ribosoma	11	Syntenin	MS MS/MS (6)	2197106 ^d	32	17	35		NaCl			escurentum
1711	SCO1352	Xaa-pro amin	G	Gag polyprotein (murine leukemia virus)			Théry et al., 1999 (14)				NaCl			
2618	SC00681	Putative ferrer	G	MHC class II β-chain		D11676	Théry et al., 1999 (14)		<i>c</i> .		NaCl	49 59/7 1	\$33520	Southean
2722	SCO1998	30S ribosoma	12	14-3-3 protein η	MS/MS (4)	P11576	28	21	68		NaCl	43.04/6.1	P51110	Lycopersicon
4407	SCO5113	Oligopeptide	12	14-3-3 protein γ/8	MS MS/MS (2)	P35215	28	20	63		NaCl			esculentum
4509	SCO2390	Beta-ketoacvl	12	14-3-3 protein γ Apolipoprotein A–I ^c	MS/MS (1) MS	3065929 ^a P15497	30	25	67		NaCl	38.79/6.2	P51110	Vitis vinifera
1803	SCO2181	2 Oxodutarat	H 14	CD9 Thioredoxin peroxidase II	MS	P35700	Théry et al., 1999 (14)	8	43		P1	27.54/8.8	BAB03428	Oryza sativa
2113	SCO4277	Hypothetical r	14	Bab 11	MS/MS (6)	D4//28	24	0	-0		P1	27.54/8.8	BAB03428	Oryza sativa
3101	SCO3899	Hypothetical r	14	каб II к-Casein ^c	MS/MS (1) MS/MS (2)	P02668	24 21				P1	24.36/8.6	BAA92870	Oryza sativa
4309	SCO1081	Putative elect	15	Rab-7	MS MS/MS (3)	P51150	24	2	26		P1	26.58/6.4	P09886	Pisum sativum
4512	SCO5212	3-Phosphoshi	16 16	Ferritin light chain ^c Rap1-B	MS MS	O46415 P09526	20 21	15 14	73 57		P1			
5514	SCO3629	Putative aden	17 18	Cofilin Histone H3	MS MS	P18760 Z85979*	19 15	10	50 45		P1			
			19	Histone H2B Histone H2A	MS	P10853 P20670	14	13	82			56.77/6.1	P55238	Hordeum
	+ SOD1		20	Histone H4	MS	90626 ^d	11	15	90			-		vulgare
			20	Hemoglobin γ-chain	MS	P10924 P02081	15	16	60 74					
			21	Hemoglobin a-chain ^e	MS	P01966	15	9	66					

A nuance: available data vs. accessible data

When data is only made available as arbitrarily formatted PDF tables, it carries important limitations

- Source data (e.g., mass spectra) are not made available
 - o No peer review validation possible (*the numbers game*)
 - Very little raw materials for testing innovative in silico techniques are available (*data hoarding*)
- Automated (re-)processing of the results (e.g., identifications) is impossible (*eliminating objective technique comparison*)
- Data producers do not actually feed their results and knowledge back to the community (*evading responsability for the results*)

Accessibility requires proper infrastructure

- Community supported, standardized data formats Necessary to allow efficient access to the data
- Controlled vocabularies (CV's) and ontologies
 To provide unambiguous context and metadata to the actual data, as well as enabling powerful queries to be performed on the data
- Minimal reporting requirements for specific data types Ensures the presence of certain bits of information without which interpretation is ambiguous, hampered or impossible
- Publicly available, online repositories

Bioinformatics grew up along side the internet, and this is reflected in the successful online data sharing mechanims already in place in the life sciences. The repositories should implement the standards, use the CV's and ontologies, and adhere to the minimal requirements.

Community standards for proteomics

The Human Proteome Organisation (HUPO) Proteomics Standards Initiative (PSI)

http://www.psidev.info

- Creates standard formats, CV's and ontologies, and minimal requirements
- Composed of several workgroups

PSI-MI format v2.5 Molecular Interactions **(MI)** (**MS**) Mass Spectrometry mzData, mzML format Sample Processing **(SP)** alpha stage (Gel) GeIML format Gel Electrophoresis **(PI)** analysisXML format **Proteomics Informatics** (Mod) **PSI-MOD** ontology **Protein Modifications**

Furthermore, superstructures must be built

Often, multiple repositories will emerge more or less simultaneously in a particular field. By exchanging data, and by collaborating on data acquisition an increase in coverage as well as a more comprehensive dataset is obtained by each individual resource.

Such superstructures do require additional infrastructure, however.

The final goal: cross-domain integration

Current situation

(requires user expertise in querying all the different repositories)

BioMart as a common interface layer

Enfin/Encore as a cross-domain aggregator

How do we make this all happen?

• Journal guidelines

Journal guidelines heavily influence the decisions taken by authors; by first requesting and subsequently mandating data submission to established repositories, they provide an important stick.

• Funder support and guidelines

Funders contribute both sticks and carrots. The sticks lie in the grant application guidelines; they can require a plan for data management and dissemination. The carrot is in providing specific funding for this aspect of science.

• Data repositories

The availability of reliable, freely available repositories is key; submission thresholds should be kept low and added value needs to be provided. Furthermore, feedback loops need to be established in order to ensure that accumulated data flows back to the user community. Repositories thus provide mostly carrots.

An example of a proteomics feedback loop

Funding example: EC FP6 ProDaC grant

- Coordination Action grant in the 6th Framework Programme of the European Commission
- Good example of a coordination between: (i) funder, (ii) data producers, (iii) repository providers, (iv) standards organization, and (v) journals
- Workpackages

WP1: standards for data representation
WP2: Standards implementation
WP3: Data integration tools
WP4: Proteomics repository adaptation
WP5: Data flow management
WP6: Proteomics data exploitation
(WP7: project management

PSI standards development
provide compatible software
enabling data submission
ensuring repository compliance
overall data gathering and submission
establishing data feedback loops
overall project management)

EMBL-EE