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Differential Privacy

• Definition of privacy in statistical databases

 Imposes restrictions on algorithm A generating output

• If A satisfies restrictions, then output provides privacy 
no matter what user/intruder knows ahead of time

• Question: how useful are algorithms that satisfy differential 
privacy? 
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This talk: Useful Statistical Inference
• Two situations where differential privacy compatible 

with statistical methodology

• In both cases: construct differentially private algorithm 

with same asymptotic error as best non-private 

algorithm

Parametric: for any* parametric model, there exists a 

private, efficient estimator (i.e. minimal variance)

Nonparametric: for any* distribution on [0,1], there is a 

private histogram estimator with same convergence rate as 

best (non-private) fixed-width estimator
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Main Idea for both cases
• Add noise to carefully modified estimator

 Several ways to design differentially private algorithms

Adding noise is the simplest

• Prove that required noise is less than inherent variability 

due to sampling
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Bigger Goal
• Understanding how rigorous notions of privacy relate to 

statistical inference

 (Also: crossing disciplinary boundaries requires understanding, 

and working with, other communities’ language)

• First step: basic asymptotic theory

Cornerstone of statistical techniques

Qualitative statements 

• asymptotic regime allows for clean statements

• highlights where techniques breakdown

 Intuition for messier real settings
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Reminder: differential privacy

• Intuition:

Changes to my data not noticeable by users

Output is “independent” of my data
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Defining Privacy [DiNi,DwNi,BDMN,DMNS]
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• Data set  x 

Domain D can be numbers, categories, tax forms

Think of x as fixed (not random)

• A = randomized procedure run by the agency

A(x) is a random variable distributed over possible outputs

Randomness might come from adding noise, resampling, etc.
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Defining Privacy [DiNi,DwNi,BDMN,DMNS]

8

x1

xn

...
x′

2

local random 
coins

A A(x’)

x’ is a neighbor of x 
if they differ in one data point

x1

xn

...

local random 
coins

A A(x)x2
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Defining Privacy [DiNi,DwNi,BDMN,DMNS]
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Pr(A(x) ∈ S) ≤ eε · Pr(A(x′) ∈ S)



Defining Privacy [DiNi,DwNi,BDMN,DMNS]

• ε cannot be too small (think     , not      )
• This is a condition on the algorithm (process) A

 Saying “this output is safe” doesn’t take into account how it 
was computed

• Meaningful semantics no matter what user knows ahead of time

9

Definition:  A is ε-differentially private if, 
for all neighbors x, x’, 
for all subsets S of outputs

Neighboring databases 
induce close distributions 
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Pr(A(x) ∈ S) ≤ eε · Pr(A(x′) ∈ S)



Example: Perturbing the Average
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Example: Perturbing the Average

• Data points are binary responses

• Server wants to release sample mean
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Example: Perturbing the Average

• Data points are binary responses

• Server wants to release sample mean

• Claim:  If noise                  then A is ε-differentially private 
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Example: Perturbing the Average

• Data points are binary responses

• Server wants to release sample mean

• Claim:  If noise                  then A is ε-differentially private 

Laplace distribution             has density

 Sliding property:
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Example: Perturbing the Average

• Data points are binary responses

• Server wants to release sample mean

• Claim:  If noise                  then A is ε-differentially private 

Laplace distribution             has density

 Sliding property:

A(x) = blue curve,   A(x’) = red curve


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What can we compute privately?
• “Privacy” = change in one input leads to small change in 

output distribution

What computational tasks can we achieve privately?

• Research so far

 Function approximation [DN, DN,BDMN,DMNS,NRS,BCDKMT,BLR]

Mechanism Design [MT]

Learning [BDMN,KLNRS]

 Statistical estimation [S]

 Synthetic Data [MKAGV] 

Distributed protocols [DKMMN,BNO]

 Impossibility results / lower bounds [DiNi,DMNS,DMT]
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• Average:  

 Suppose X1, X2, X3, ...,Xn are i.i.d. random variables

     is a random variable, and 

                               if 

No “cost” to privacy: 

• A(X) is “as good as”     for statistical inference*
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When Does Noise Not Matter?
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When Does Noise Not Matter?
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When Does Noise Not Matter?
• Mean example generalizes to other statistics 

• Theorem: For any* exponential family, can release 
“approximately sufficient” statistics

 Suff. stats T(X) are sums, add noise        for dimension d 

  
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When Does Noise Not Matter?
• Mean example generalizes to other statistics 

• Theorem: For any* exponential family, can release 
“approximately sufficient” statistics

 Suff. stats T(X) are sums, add noise        for dimension d 

  

• Asymptotic result: Indicates that useful analysis possible
Requires more sophisticated processing for small n
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When Does Noise Not Matter?
• Mean example generalizes to other statistics 

• Theorem: For any* exponential family, can release 
“approximately sufficient” statistics

 Suff. stats T(X) are sums, add noise        for dimension d 

  

• Asymptotic result: Indicates that useful analysis possible
Requires more sophisticated processing for small n

• Noise degrades with dimension (can get noise ~      )

More information ⇒ less privacy

Research question: Is this necessary?
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Two More Examples
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ε 4
√

n→∞
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O( 1
3√n

) ε ≥ 1
3√n

• Theorem: For any well-behaved parametric family, one 
can construct a private efficient estimator A, if 

A(X) converges to MLE

• For any smooth density h, if Xi i.i.d. ~ h, 
noisy histogram converges to h
Expected L2 error              if  
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• Histogram Density Estimation

Calibrating noise to sensitivity

• Maximum Likelihood Estimator

 Sub-sample and aggregate 



Output Perturbation, more generally

• May be interactive

Non-interactive: release pre-defined summary stats + noise

 Interactive: respond to user requests

• May be repeated many times

Composition: q releases are jointly qε-differentially private

• How much noise is enough? (How much is too much?)
16

Server/agencyIndividuals
x1

x2

xn

...

local random 
coins

A
“Tell me f(x)”

f(x) + noise User



Global Sensitivity [DMNS06]

• Intuition:  f(x) can be released accurately when f is insensitive 

	 	 to individual entries

• Global Sensitivity: 

• Example:  
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Global Sensitivity [DMNS06]

• Intuition:  f(x) can be released accurately when f is insensitive 

	 	 to individual entries

• Global Sensitivity: 

• Example:  
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Example: Histograms
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Example: Histograms
• Say x1,x2,...,xn in [0,1]

Partition [0,1] into d intervals of equal size

  

GSf = 2

 Sufficient to add noise                to each count

• Independent of the dimension

18

f(x) = (n1, n2, ..., , nd) where nj = #{i : xi in j-th interval}

Lap(1/ε)

1/d0 1



Example: Histograms
• Say x1,x2,...,xn in [0,1]

Partition [0,1] into d intervals of equal size

  

GSf = 2

 Sufficient to add noise                to each count

• Independent of the dimension

• For any smooth density h, if Xi i.i.d. ~ h, 
noisy histogram converges to h
Expected L2 error              if  

 Same as non-private estimator
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Example: Histograms
• Say x1,x2,...,xn in [0,1]

Partition [0,1] into d intervals of equal size

  

GSf = 2

 Sufficient to add noise                to each count

• Independent of the dimension

• For any smooth density h, if Xi i.i.d. ~ h, 
noisy histogram converges to h
Expected L2 error              if  

 Same as non-private estimator
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More detail
• This actually shows that for any given bin width, can find 

noisy estimator that is close to non-noisy estimator

• Does not address how to choose bin width

 Subject to extensive research

Common “bandwidth selection” criteria 

can be approximated privately

Two-stage process
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• Histogram Density Estimation

Calibrating noise to sensitivity

• Maximum Likelihood Estimator

 Sub-sample and aggregate 



High Global Sensitivity: Median

21

High global sensitivity: example 1

Example 1: median of x1, . . . , xn ∈ [0, 1]

x = 0 · · · 0︸ ︷︷ ︸
n−1

2

0 1 · · · 1︸ ︷︷ ︸
n−1

2

x′ = 0 · · · 0︸ ︷︷ ︸
n−1

2

1 1 · · · 1︸ ︷︷ ︸
n−1

2

median(x) = 0 median(x′) = 1

GSmedian = 1

• Noise magnitude: 1
ε . Too much noise!

• But for most neighbor databases x, x′,

|median(x) − median(x′)| is small.

• Can we add less noise on ”good” instances?
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What about MLE?
• Sometimes MLE is well-behaved, 

e.g. observed proportion for binomial

• Sometimes we have no idea

e.g. no closed form expression for mildly complex loglinear 

models

Can have arbitrarily bad sensitivity

NB: Similar problems faced by robust statistics
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Getting Around Global Sensitivity
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• Local sensitivity measures variability in neighborhood of 

specific data set [Nissim-Raskhodnikova-S, STOC 2007]

Connections to robust statistics 

• Bounded influence function implies expected local sensitivity is small 

Local sensitivity needs to be smoothed

• Interesting algorithmic/geometric problems

Not this talk

• Instead: Generic framework for smoothing functions so 

they have low sensitivity

No need to “understand” structure of function



Sample-and-Aggregate Methodology
Sample-and-Aggregate

Intuition: Replace f with a less sensitive function f̃ .

f̃(x) = g(f(sample1), f(sample2), . . . , f(samples))
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Example: Efficient Point Estimates
• Given a parametric 

model

• MLE 

• Converges to Normal
Bias(MLE) = O(1/n)

Can be corrected so that
bias(   ) = O(n-2)

• Theorem: If model is well-behaved, then sample-
aggregate using    gives efficient estimator if 

• Question: What is the best private estimator?
Error bounds degrade with dimension... 25

For example, if we are estimating a single (one-dimensional) parameter, and we use the mean as

our aggregation function, then

T ∗(x)
def
=

(
1

k

k∑

i=1

θ̂
(
x(i−1)t+1, ..., xit

)
)

+ Lap

(
Λ

kε

)
(1)

where Λ is the diameter of the parameter’s range, and Lap(λ) is a random variable drawn according to
the Laplacian distribution with parameter (standard deviation) λ.
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Figure 1: Sample-and-aggregate

For concreteness, we first analyze the one-dimensional estimator described in (1).

Lemma 2.2 ([1, 2]). For any choice of the number of blocks k, the estimator T ∗ is ε-indistinguishable.

Proof. Fix a particular value of x, and consider the effect of changing a single entry xi to obtain a

database x′ (for any particular index i). At most one of the numbers zj can change, depending on

the block which contains xi. The number zj that changes can go up or down by at most Λ, since the
parameter takes values in [0, Λ]. This means that the mean g(z1, ..., zk) can change by at most Λ/k.

The random variables T ∗(x) and T ∗(x′) are thus Laplacian random variables with identical standard
deviations and means differing by at most Λ/k. By the reasoning in [1], for any measurable set S ⊆ R
with non-zero measure, the ratio Pr(T ∗(x) ∈ S)/ Pr(T ∗(x′) ∈ S) is between e−ε and eε. This is exactly

the requirement of differential privacy.

Theorem 2.3. If the MLE is asymptotically normal and efficient, and ε = ω( 1√
n), then the estimator

T ∗ with θ̂ = θ̂MLE is asymptotically unbiased, normal and efficient, i.e.

√
n · T ∗(X)

P−→ N(θ, If (θ)) if X = X1, ..., Xn ∼ f(·, θ) are i.i.d.

Proof. We will select k as a function of n and ε. For now, assume that t = n
k goes to infinity with n.

Then by Lemma 1.1, each Zi = θ̂MLE
(
X(i−1)t+1, ..., Xit

)
is close to normal, and so the average of the

Zi’s also converges to normal. Specifically:
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θ̂

θ̂ εn1/4 →∞

{fθ : θ ∈ Θ}
= argmaxθ(fθ(x))



Conclusions
• Define privacy in terms of my effect on output

Meaningful despite arbitrary external information

 I should participate if I get benefit

• What can we compute privately?

This talk: statistical estimators that are “as good” as optimal 
non-private estimators

New aspect to “curse” of dimensionality

• Data privacy is now (even) more challenging than in past
Data vastly more varied and valuable

 External information more available

How can we reason rigorously about data privacy?
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