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* Definition of privacy in statistical databases
» Imposes restrictions on algorithm A generating output

* |If A satisfies restrictions, then output provides privacy
no matter what user/intruder knows ahead of time

* Question: how useful are algorithms that satisfy differential
privacy?



This talk: Useful Statistical Inference

* Two situations where differential privacy compatible

with statistical methodology

* In both cases: construct differentially private algorithm

with same asymptotic error as best non-private

algorithm

» Parametric: for any™ parametric model, there exists a

private, efficient estimator (i.e. minimal variance)

» Nonparametric: for any* distribution on [0, 1], there is a

private histogram estimator with same convergence rate as

best (non-private) fixed-width estimator



Main ldea for both cases

* Add noise to carefully modified estimator

» Several ways to design differentially private algorithms

» Adding noise is the simplest

* Prove that required noise is less than inherent variability

due to sampling

perturbed
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original

. estimate
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I ] >
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Bigger Goal

* Understanding how rigorous notions of privacy relate to

statistical inference

» (Also: crossing disciplinary boundaries requires understanding,

and working with, other communities’ language)

* First step: basic asymptotic theory

» Cornerstone of statistical techniques

» Qualitative statements

* asymptotic regime allows for clean statements

* highlights where techniques breakdown

> Intuition for messier real settings



Reminder: differential Erivacz

* |ntuition:

» Changes to my data not noticeable by users

» Output is “independent” of my data



Defining Privacy [DiNi,DwNi,BDMN,DMNS]
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* Dataset x = (x1,...,x,) € D"
» Domain D can be numbers, categories, tax forms
» Think of x as fixed (not random)
* A = randomized procedure run by the agency

» A(x) is a random variable distributed over possible outputs

Randomness might come from adding noise, resampling, etc.
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Defining Privacy [DiNi,DwNi,BDMN,DMNS]
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Definition: A is e-differentially private if,
for all neighbors x, X,
for all subsets S of outputs

Pr(A(x) € S) <e°-Pr(A(X) € S)

Neighboring databases
induce close distributions
on outputs




Defining Privacy [DiNi,DwNi,BDMN,DMNS]
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* € cannot be too small (think {5, not 5z7)

* This is a condition on the algorithm (process) A

» Saying “this output is safe” doesn’t take into account how it
was computed

* Meaningful semantics no matter what user knows ahead of time

Neighboring databases
induce close distributions
on outputs

Definition: A is e-differentially private if,
for all neighbors x, X,
for all subsets S of outputs

Pr(A(x) € S) <e°-Pr(A(X) € S)




Examele: Perturbing the Average

p—u

g — T2 )[ A A(x) = X 4 noise

: >
Ln 4
i local random

coins

T; € {O, 1}

10



Examele: Perturbing the Average

- L1

£ :vz t[ A A(x) = X + noise
n )

>
5
i local random

coins

* Data points are binary responses I; & {O, 1}

7 — 1 .
* Server wants to release sample mean T = = » . x;

10



Examele: Perturbing the Average

- L1

g — T2 t[ A A(x) = T + noise
: .

>
ENn
i local random

coins

* Data points are binary responses I; & {O, 1}

7 — 1 .
* Server wants to release sample mean T = = » . x;

. [Claim: If noise ~ Lap(=-) then A is e-differentially private )

1
en

10



Example: Perturbing the Average

If x is a random sample
from an underlying

population, then get
1

sampling noise ~ — .
n

f—a
g — T2 t[ A A(x) = T + noise
: .

ENn
i local random

coins

* Data points are binary responses I; & {O, 1}

7 — 1 .
* Server wants to release sample mean T = = » . x;

. [Claim: If noise ~ Lap(—=) then A is €-differentially private )

10



Example: Perturbing the Average

If x is a random sample
from an underlying

population, then get
1

sampling noise ~ — .
n

f—a
g — T2 t[ A A(x) = T + noise
: .

ENn
i local random

coins

* Data points are binary responses I; & {O, 1}

7 — 1 .
* Server wants to release sample mean T = = » . x;

. [Claim: If noise ~ Lap(—=) then A is €-differentially private )

> Laplace distribution Lap(\) has density h(y) o e~ 1Ul/A

> Sliding property: h?y(i)(;) < /A h(y)

10



Example: Perturbing the Average

If x is a random sample
from an underlying

population, then get
1

sampling noise ~ — .
n

f—a
g — T2 t[ A A(x) = T + noise
: .

ENn
i local random

coins

* Data points are binary responses I; & {O, 1}

7 — 1 .
* Server wants to release sample mean T = = » . x;

. [Claim: If noise ~ Lap(—=) then A is €-differentially private )

> Laplace distribution Lap(\) has density h(y) o e~ 1Ul/A

. . _h(y) 0/ A
» Sliding property: h(yi(;) <e / h(y+9) P (y)

10



Example: Perturbing the Average
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What can we compute Erivatelz?

* “Privacy” = change in one input leads to small change in

output distribution

What computational tasks can we achieve privately?

e Research so far

» Function approximation [DN, DN,BDMN,DMNS,NRS,BCDKMT,BLR]
» Mechanism Design [MN' ______ NP T

» Statistical estimation [S]

-
-
- ~ - S
D - -

: T “Tell me f(x)”
g Learnmg [BDMN’KLNRS] ll‘\ x“:))[T mise User
;R <

» Synthetic Data [MKAGV]
» Distributed protocols [DKMMN,BNO]
» Impossibility results / lower bounds [DiNi,DMNS,DMT]
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When Does Noise Not Matter?
* Average: A(x) = Z + Lap(=-)

» Suppose X, X, X3, ...,Xn are i.i.d. random variables

> X is a random variable, and vn - (X — N)LNormal
>[ AX)-X p

- 1
Sibevx) 0 TE> TR

» No “cost” to privacy:

« A(X) is “as good as” X for statistical inference*
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When Does Noise Not Matter!?
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When Does Noise Not Matter?

Mean example generalizes to other statistics

"Theorem: For any* exponential family, can release
“approximately sufficient” statistics

» Suff. stats T(X) are sums, add noise 4 for dimension d
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* (Theorem: For any* exponential family, can release
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» Suff. stats T(X) are sums, add noise % for dimension d
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| StdDev(T(X)) )

* Asymptotic result: Indicates that useful analysis possible

» Requires more sophisticated processing for small n
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When Does Noise Not Matter?

* Mean example generalizes to other statistics

* (Theorem: For any* exponential family, can release
“approximately sufficient” statistics

» Suff. stats T(X) are sums, add noise % for dimension d
» AX)-TX) p
| StdDev(T(X)) )

* Asymptotic result: Indicates that useful analysis possible

» Requires more sophisticated processing for small n
* Noise degrades with dimension (can get noise ~ \/d)
» More information = less privacy

» Research question: Is this necessary?
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Two More Exameles

can construct a private efficient estimator A, if ev/n — oo
\> A(X) converges to MLE

a ; ; A
Theorem: For any well-behaved parametric family, one

For any smooth density 4, if X; i.i.d. ~ h,

noisy histogram converges to / —

\> Expected L, error O(%) if € >

1
In

\/

0 1/d 1
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@stogram Density Estimatiog

» Calibrating noise to sensitivity

e Maximum Likelihood Estimator

» Sub-sample and aggregate

15



Outeut Perturbation, more generallz
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* May be interactive
» Non-interactive: release pre-defined summary stats + noise

> Interactive: respond to user requests
* May be repeated many times
» Composition: q releases are jointly ge-differentially private

* How much noise is enough? (How much is too much?)
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Global Sensitivity [DMNS06]
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* Intuition: f(X) can be released accurately when f is insensitive

to individual entries 1, %2, ..., %,
+ Global Sensitivity: [GS s=  max | f(2) - f@@)l )
neighbors x,x’

*  Example: GSaverage — %
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Individuals Server/agency
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* Intuition: f(X) can be released accurately when f is insensitive

to individual entries 1, %2, ..., %,
+ Global Sensitivity: [GS s = max  ||f(z) - f)| )
neighbors x,x’

*  Example: GSaverage — %

[ Theorem: If A(x) = f(x) + Lap (%) then A is e-differentially private.)
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Examele: Histograms

f(x) = (n1,ne,...,,nq) where n; = #{i : ; in j-th interval}
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Examele: Histograms

* Say xi,x2,....Xn in [0, ]
» Partition [0,1] into d intervals of equal size
> f(z) = (n1,n2,...,,nq) where n; = #{i : =; in j-th interval}
> GSp =2
» Sufficient to add noise Lap(1/¢) to each count

* Independent of the dimension
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Examele: Histograms

* Say xi,x2,....Xn in [0, ]
» Partition [0,1] into d intervals of equal size
> f(z) = (n1,n2,...,,nq) where n; = #{i : =; in j-th interval}
> GSp =2
» Sufficient to add noise Lap(1/¢) to each count

* Independent of the dimension

» (For any smooth density /4, if X| i.i.d. ~ h,

noisy histogram converges to / —

. > Expected L, error O(é/iﬁ) if € > é/iﬁ

» Same as non-private estimator 0 1/d 1

v
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Examele: Histograms

* Say xi,X2,....Xn in $87HF arbitrary domain D

» Partition{0-H-inte-d-intervals-ef-equalsize- into d disjoint “bins”
> f(x) = (n1,n2,...,,nq) where n; = #{i : z; in j-th +rtervat} bin
> GSp =2

» Sufficient to add noise Lap(1/¢) to each count

* Independent of the dimension
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More detail

* This actually shows that for any given bin width, can find

noisy estimator that is close to non-noisy estimator

* Does not address how to choose bin width

» Subject to extensive research

» Common “bandwidth selection” criteria

can be approximated privately

» Two-stage process

19



* Histogram Density Estimation

» Calibrating noise to sensitivity

(_Maximum Likelihood Estimator
» Sub-sample and aggregate
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High Global Sensitivity: Median

Ezample 1: median of x1,...,x, € [0,1]
r=0---001---1 r=0---011---1
—— = —— =
Sl s ul
median(x) = 0 median(z’) = 1
GSmedian: 1

e Noise magnitude: % Too much noise!

e But for most neighbor databases x, 2,

imedian(x) — median(x’)| is small.

e Can we add less noise on "good” instances?
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What about MLE?

e Sometimes MLE is well-behaved,

» e.g. observed proportion for binomial

* Sometimes we have no idea

» e.g.no closed form expression for mildly complex loglinear

models
» Can have arbitrarily bad sensitivity

» NB: Similar problems faced by robust statistics

22



Getting Around Global Sensitivitz

* Local sensitivity measures variability in neighborhood of
specific data set [Nissim-Raskhodnikova-S, STOC 2007]

» Connections to robust statistics

* Bounded influence function implies expected local sensitivity is small

» Local sensitivity needs to be smoothed

* Interesting algorithmic/geometric problems

» Not this talk

* Instead: Generic framework for smoothing functions so

they have low sensitivity

> No need to “understand’ structure of function
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Samele-and-Aggregate Methodologz

Intuition: Replace f with a less sensitive function f.

f(a:) = g(f(sampley), f(samples), ..., f(sampley))

Lijqyeeey Ljigeeeyd Lhqpyeoos Lk,

aggregation functlon
noise calibrated

e —(—+—)— output
to sensitivity of g
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Examele: Efficient Point Estimates

* Given a parametric | - |
model {fy:0 € O} / / \

» MLE = argmax,(fs(x))

* Converges to Normal
» Bias(MLE) = O(1/n)

ise calibrated
» Can be corrected so that nomse SaLbTate é_> output
. to sensitivity of g
bias(§ ) = O(n?)

Theorem: If model is well-behaved, then sample-
aggregate using 0 gives efficient estimator if en'/* — o

aggregation function

* Question:What is the best private estimator?

» Error bounds degrade with dimension... )5



Conclusions

* Define privacy in terms of my effect on output
» Meaningful despite arbitrary external information

> | should participate if | get benefit

* What can we compute privately!?

» This talk: statistical estimators that are “as good” as optimal
non-private estimators

» New aspect to “curse” of dimensionality

* Data privacy is now (even) more challenging than in past
» Data vastly more varied and valuable
» External information more available

» How can we reason rigorously about data privacy?
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