Integrating Differential Privacy with Statistical Theory

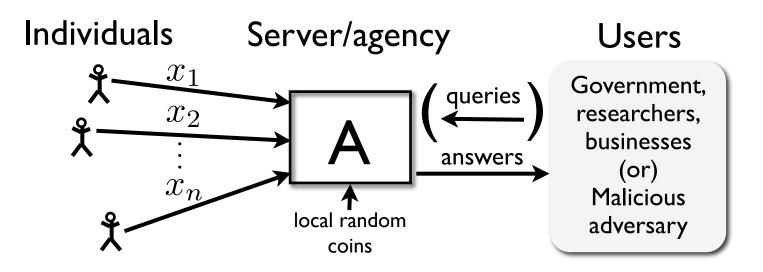
Adam Smith

Computer Science & Engineering Department Penn State

NCHS/CDC Workshop on Data Confidentiality May 1, 2008

1

Differential Privacy



- Definition of privacy in statistical databases
 > Imposes restrictions on algorithm A generating output
- If A satisfies restrictions, then output provides privacy no matter what user/intruder knows ahead of time
- Question: how useful are algorithms that satisfy differential privacy?

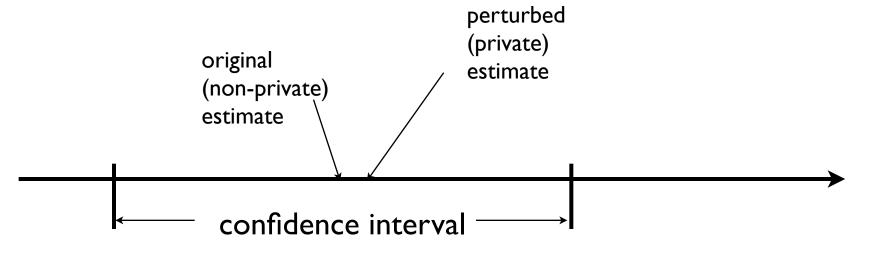
This talk: Useful Statistical Inference

- Two situations where differential privacy compatible with statistical methodology
- In both cases: construct differentially private algorithm with same asymptotic error as best non-private algorithm
 - Parametric: for any* parametric model, there exists a private, efficient estimator (i.e. minimal variance)
 - Nonparametric: for any* distribution on [0,1], there is a private histogram estimator with same convergence rate as best (non-private) fixed-width estimator

Main Idea for both cases

- Add noise to carefully modified estimator
 - > Several ways to design differentially private algorithms
 - > Adding noise is the simplest

 Prove that required noise is less than inherent variability due to sampling



Bigger Goal

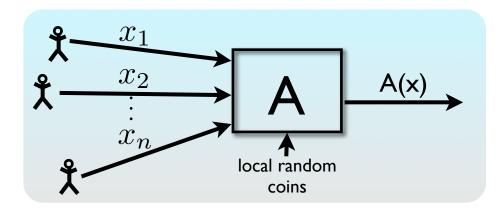
- Understanding how rigorous notions of privacy relate to statistical inference
 - (Also: crossing disciplinary boundaries requires understanding, and working with, other communities' language)
- First step: basic asymptotic theory
 - Cornerstone of statistical techniques
 - > Qualitative statements
 - asymptotic regime allows for clean statements
 - highlights where techniques breakdown
 - > Intuition for messier real settings

Reminder: differential privacy

• Intuition:

Changes to my data not noticeable by users

> Output is "independent" of my data



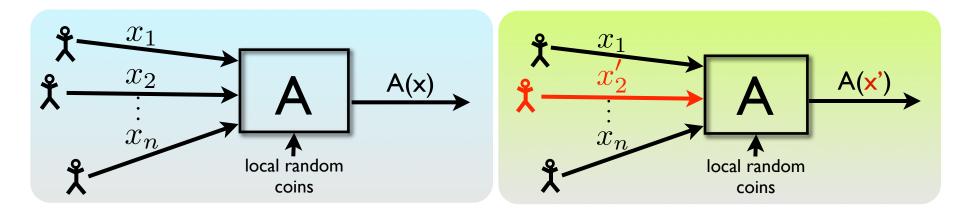
• Data set $\mathbf{x} = (x_1, ..., x_n) \in D^n$

Domain D can be numbers, categories, tax forms

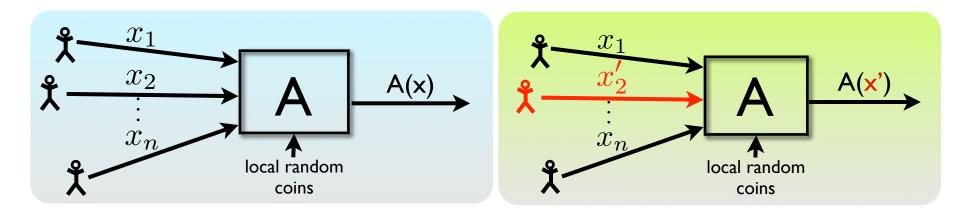
Think of x as **fixed** (not random)

• A = **randomized** procedure run by the agency

> A(x) is a random variable distributed over possible outputs Randomness might come from adding noise, resampling, etc.

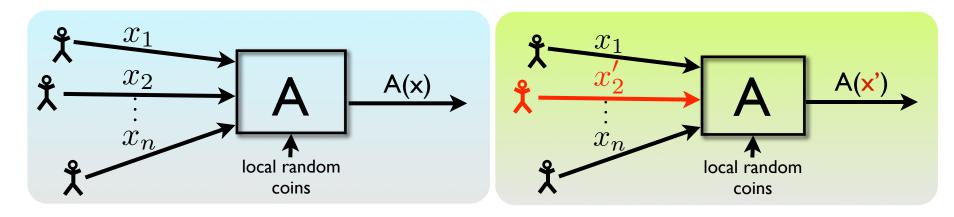


x' is a neighbor of x if they differ in one data point



x' is a neighbor of x if they differ in one data point

Neighboring databases induce **close** distributions on outputs



x' is a neighbor of x if they differ in one data point

Definition: A is ϵ -differentially private if,

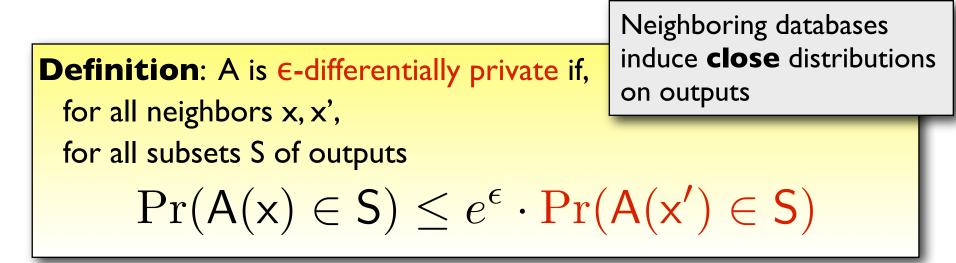
Neighboring databases induce **close** distributions on outputs

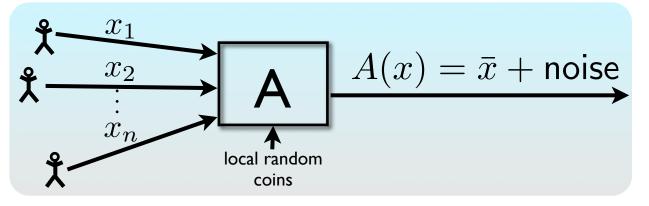
for all neighbors x, x',

for all subsets S of outputs

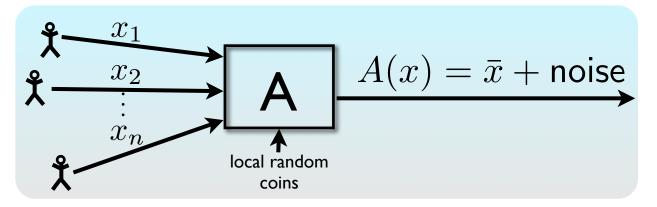
 $\Pr(\mathsf{A}(\mathsf{x}) \in \mathsf{S}) \le e^{\epsilon} \cdot \Pr(\mathsf{A}(\mathsf{x}') \in \mathsf{S})$

- E cannot be too small (think $\frac{1}{10}$, not $\frac{1}{2^{50}}$)
- This is a condition on the **algorithm** (process) A
 - Saying "this output is safe" doesn't take into account how it was computed
- Meaningful semantics no matter what user knows ahead of time

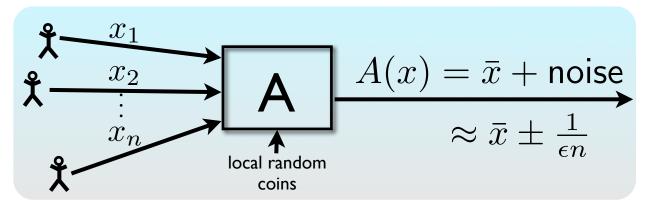




 $x_i \in \{0, 1\}$ $\bar{x} = \frac{1}{n} \sum_i x_i$

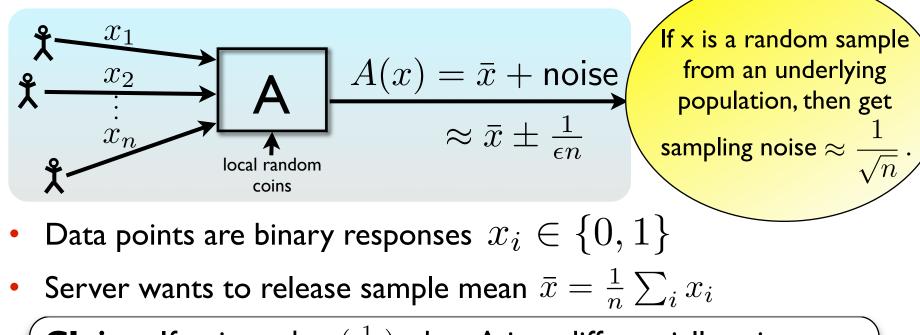


- Data points are binary responses $\,x_i\in\{0,1\}$
- Server wants to release sample mean $\bar{x} = \frac{1}{n} \sum_{i} x_{i}$

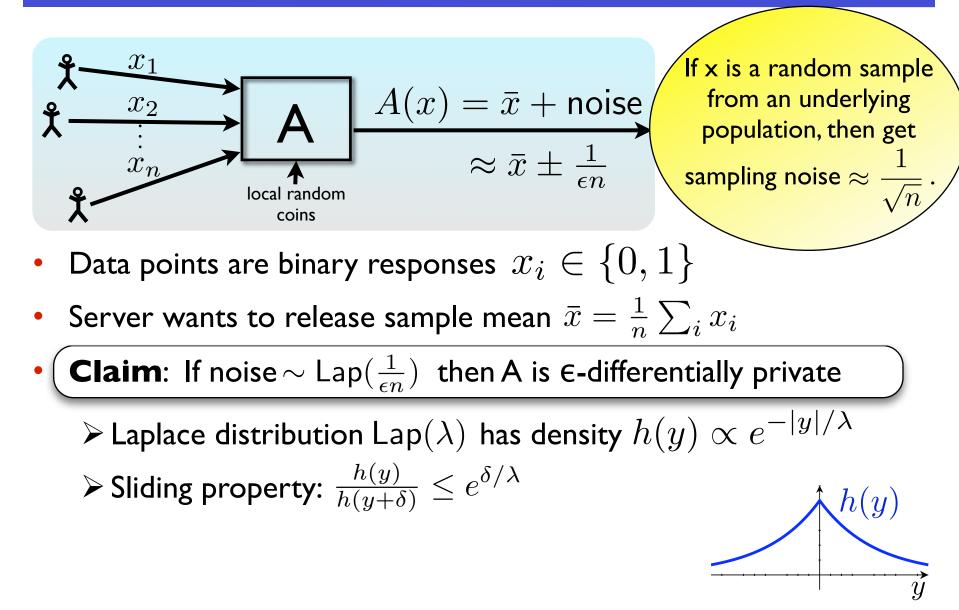


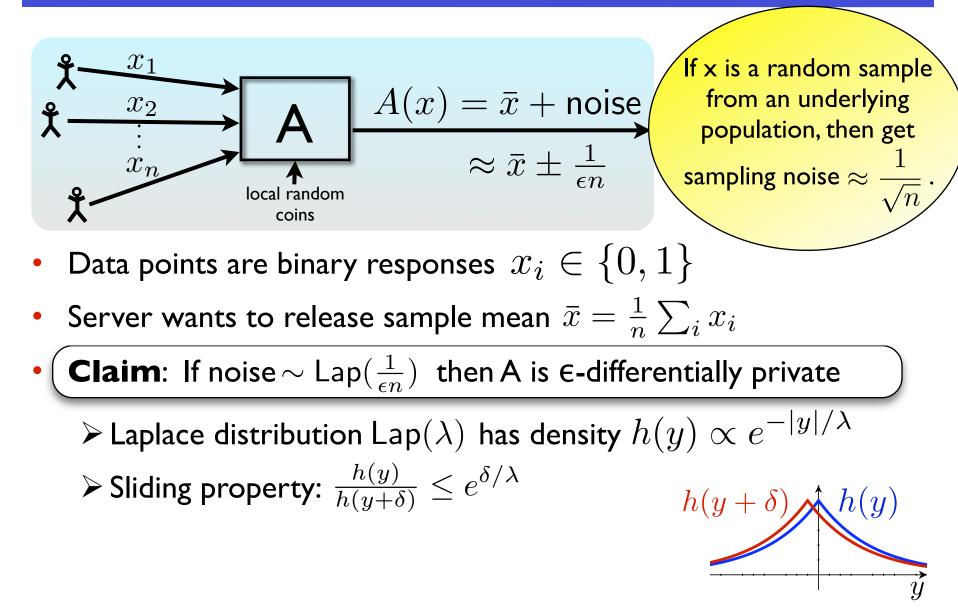
- Data points are binary responses $\, x_i \in \{0,1\} \,$
- Server wants to release sample mean $ar{x} = rac{1}{n} \sum_i x_i$

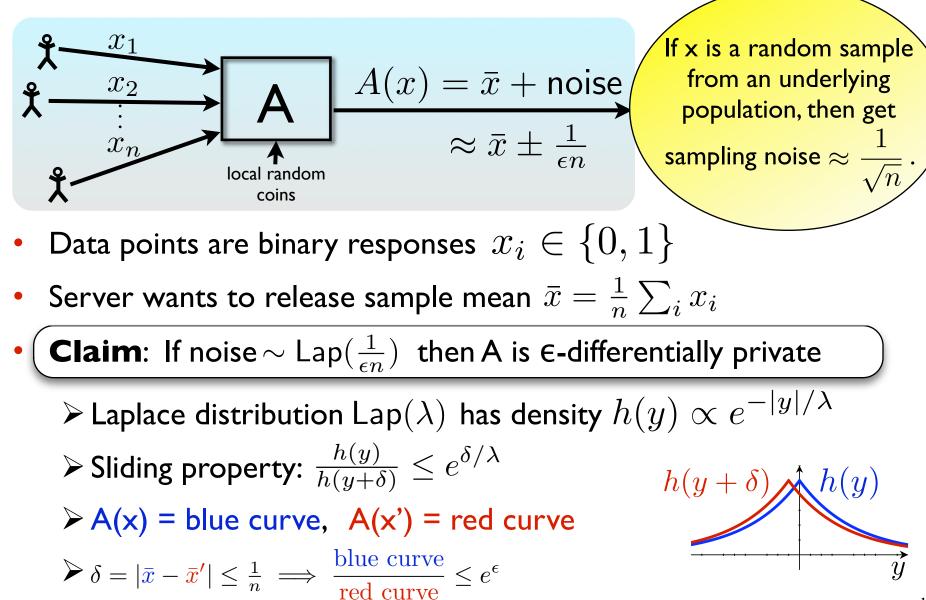
• (**Claim**: If noise $\sim Lap(\frac{1}{\epsilon n})$ then A is ϵ -differentially private



 $P\left(\text{Claim: If noise} \sim Lap(\frac{1}{\epsilon n}) \text{ then A is } \epsilon \text{-differentially private} \right)$





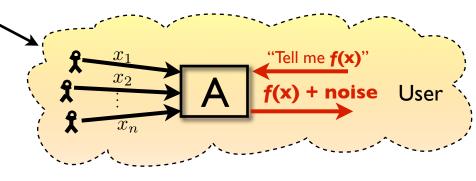


What can we compute privately?

 "Privacy" = change in one input leads to small change in output distribution

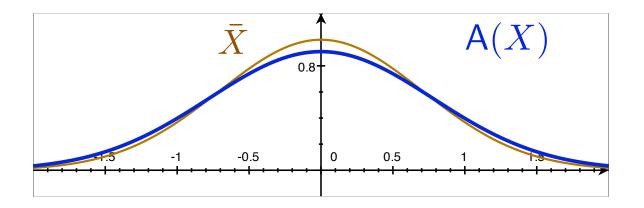
What computational tasks can we achieve privately?

- Research so far
 - Function approximation [DN, DN, BDMN, DMNS, NRS, BCDKMT, BLR]
 - Mechanism Design [MT]
 - Learning [BDMN,KLNRS]
 - Statistical estimation [S]
 - Synthetic Data [MKAGV]
 - Distributed protocols [DKMMN,BNO]
 - Impossibility results / lower bounds [DiNi,DMNS,DMT]



> No "cost" to privacy:

- A(X) is "as good as" \bar{X} for statistical inference*



 \sqrt{d}

- Mean example generalizes to other statistics
- Theorem: For any* exponential family, can release "approximately sufficient" statistics
 > Suff. stats T(X) are sums, add noise d/(∈n) for dimension d
 > A(X) T(X) / P → 0

- Mean example generalizes to other statistics
- Theorem: For any* exponential family, can release "approximately sufficient" statistics
 > Suff. stats T(X) are sums, add noise d/(εn) for dimension d
 > A(X) T(X) P/(StdDev(T(X)) → 0
- Asymptotic result: Indicates that useful analysis possible

Requires more sophisticated processing for small n

- Mean example generalizes to other statistics
- Theorem: For any* exponential family, can release "approximately sufficient" statistics
 > Suff. stats T(X) are sums, add noise d/(εn) for dimension d
 > A(X) T(X) P/(StdDev(T(X)) → 0
- Asymptotic result: Indicates that useful analysis possible

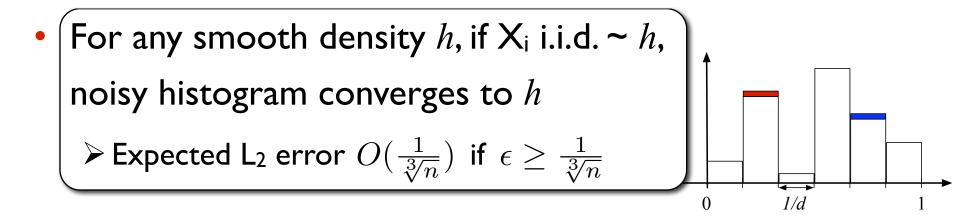
Requires more sophisticated processing for small n

Noise degrades with dimension (can get noise ~ √d)
 More information ⇒ less privacy

> Research question: Is this necessary?

Two More Examples

• **Theorem:** For any well-behaved parametric family, one can construct a private efficient estimator A, if $\epsilon \sqrt[4]{n} \to \infty$ > A(X) converges to MLE



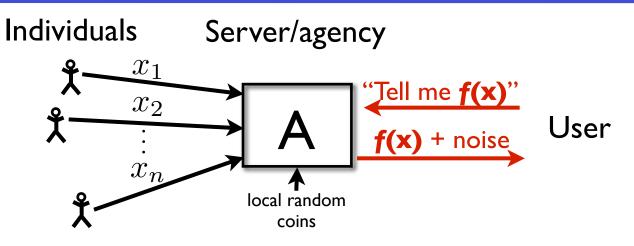
Histogram Density Estimation

Calibrating noise to sensitivity

Maximum Likelihood Estimator

Sub-sample and aggregate

Output Perturbation, more generally



• May be interactive

> Non-interactive: release pre-defined summary stats + noise

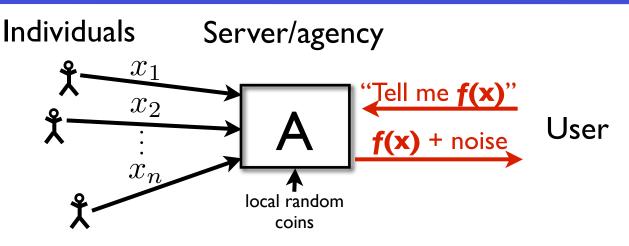
Interactive: respond to user requests

• May be repeated many times

 \succ Composition: q releases are jointly qe-differentially private

How much noise is enough? (How much is too much?)

Global Sensitivity [DMNS06]



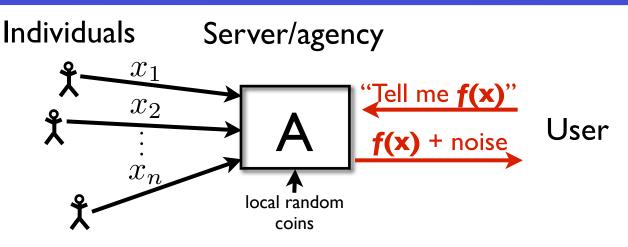
- Intuition: $f(\mathbf{x})$ can be released accurately when f is insensitive to individual entries x_1, x_2, \ldots, x_n
- Global Sensitivity:

$$\mathsf{GS}_{f} = \max_{\text{neighbors } x, x'} \|f(x) - f(x')\|_{1}$$

• Example: $GS_{average} = \frac{1}{n}$

Global Sensitivity [DMNS06]

 GS_{f}



- Intuition: $f(\mathbf{x})$ can be released accurately when f is insensitive to individual entries x_1, x_2, \ldots, x_n
- Global Sensitivity:

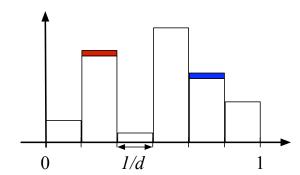
$$= \max_{\text{neighbors } x, x'} \|f(x) - f(x')\|_1$$

• Example: $GS_{average} = \frac{1}{n}$

Theorem: If $A(x) = f(x) + Lap\left(\frac{GS_f}{\epsilon}\right)$, then A is ϵ -differentially private.

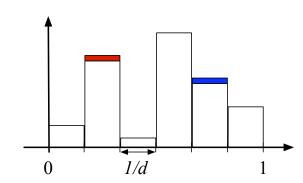
$f(x) = (n_1, n_2, ..., n_d)$ where $n_j = \#\{i : x_i \text{ in } j\text{-th interval}\}$

$Lap(1/\epsilon)$



Example: Histograms

- Say x₁,x₂,...,x_n in [0,1]
 - \succ Partition [0,1] into d intervals of equal size
 - $\succ f(x) = (n_1, n_2, ..., n_d)$ where $n_j = #{i : x_i \text{ in } j\text{-th interval}}$ $\succ GS_f = 2$
 - $\blacktriangleright \mbox{ Sufficient to add noise } \mbox{ Lap}(1/\epsilon)$ to each count
 - Independent of the dimension



Example: Histograms

• Say x₁,x₂,...,x_n in [0,1]

 \geq Partition [0,1] into d intervals of equal size

 $\succ f(x) = (n_1, n_2, ..., n_d)$ where $n_j = #{i : x_i \text{ in } j\text{-th interval}}$ $\succ GS_f = 2$

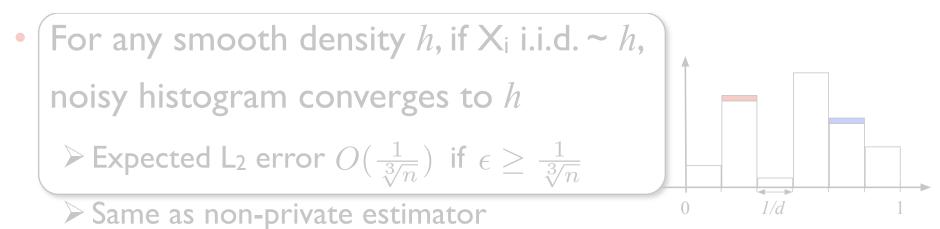
 \blacktriangleright Sufficient to add noise Lap $(1/\epsilon)$ to each count

• Independent of the dimension

For any smooth density h, if X_i i.i.d. ~ h, noisy histogram converges to h
▷ Expected L₂ error O(1/(3/n)) if ε ≥ 1/(3/n)
▷ Same as non-private estimator

Example: Histograms

- Say $x_1, x_2, ..., x_n$ in $\{0, 1\}$ arbitrary domain D
 - ➢ Partition [0,1] into d intervals of equal size into d disjoint "bins" $F(x) = (n_1, n_2, ..., n_d)$ where $n_j = \#\{i : x_i \text{ in } j\text{-th } interval\}$ bin $GS_f = 2$
 - $\blacktriangleright \mbox{ Sufficient to add noise } \mbox{ Lap}(1/\epsilon)$ to each count
 - Independent of the dimension



More detail

• This actually shows that for any given bin width, can find noisy estimator that is close to non-noisy estimator

- Does not address how to choose bin width
 - \succ Subject to extensive research
 - Common "bandwidth selection" criteria can be approximated privately
 - Two-stage process

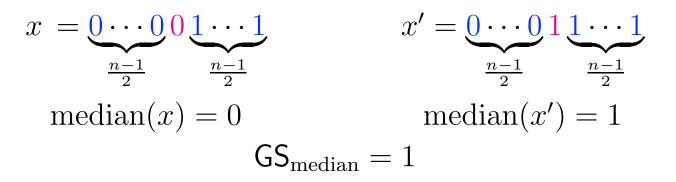
Histogram Density Estimation
 Calibrating noise to sensitivity

Maximum Likelihood Estimator

Sub-sample and aggregate

High Global Sensitivity: Median

Example 1: median of $x_1, \ldots, x_n \in [0, 1]$



- Noise magnitude: $\frac{1}{\varepsilon}$. Too much noise!
- But for most neighbor databases x, x', |median(x) - median(x')| is small.
- Can we add less noise on "good" instances?

What about MLE?

- Sometimes MLE is well-behaved,
 - \succ e.g. observed proportion for binomial
- Sometimes we have no idea
 - e.g. no closed form expression for mildly complex loglinear models
 - Can have arbitrarily bad sensitivity
 - > NB: Similar problems faced by robust statistics

Getting Around Global Sensitivity

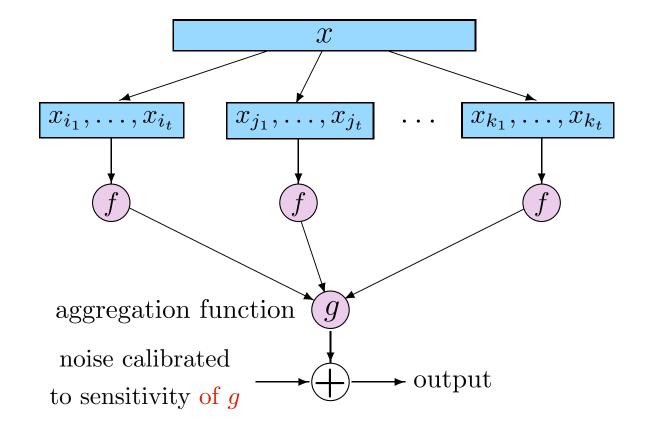
- Local sensitivity measures variability in neighborhood of specific data set [Nissim-Raskhodnikova-S, STOC 2007]
 - Connections to robust statistics
 - Bounded influence function implies expected local sensitivity is small
 - > Local sensitivity needs to be smoothed
 - Interesting algorithmic/geometric problems
 - \succ Not this talk
- Instead: Generic framework for smoothing functions so they have low sensitivity

> No need to "understand" structure of function

Sample-and-Aggregate Methodology

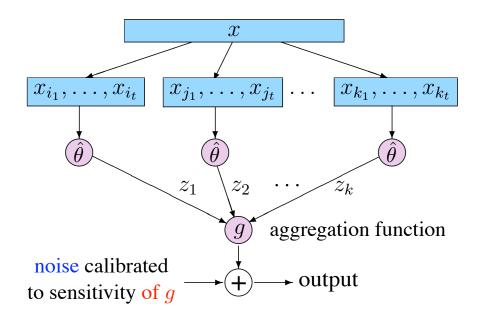
Intuition: Replace f with a less sensitive function \tilde{f} .

 $\tilde{f}(x) = g(f(sample_1), f(sample_2), \dots, f(sample_s))$



Example: Efficient Point Estimates

- Given a parametric model $\{f_{\theta}: \theta \in \Theta\}$
- $\mathsf{MLE} = \operatorname{argmax}_{\theta}(f_{\theta}(x))$
- Converges to Normal
 > Bias(MLE) = O(1/n)
 - ➤ Can be corrected so that
 bias($\hat{\theta}$) = O(n⁻²)



 $f\left(\mathbf{Theorem}: \text{If model is well-behaved, then sample-}
ight)$ aggregate using $\hat{ heta}$ gives efficient estimator if $\epsilon n^{1/4} \to \infty$

• Question: What is the best private estimator?

> Error bounds degrade with dimension...

Conclusions

- Define privacy in terms of my effect on output
 - > Meaningful despite arbitrary external information
 - I should participate if I get benefit
- What can we compute privately?
 - This talk: statistical estimators that are "as good" as optimal non-private estimators
 - > New aspect to "curse" of dimensionality
- Data privacy is now (even) more challenging than in past
 - Data vastly more varied and valuable
 - External information more available
 - > How can we reason rigorously about data privacy?