Tabular Data: Releases of Conditionals and Marginals

Aleksandra Slavkovic-Gross

Department of Statistics
Carnegie Mellon University
Data Confidentiality Day, The BLS, November 20, 2003

Goal of Statistical Disclosure Limitation

- Preserving confidentiality
- Providing access to useful statistical data, not just few numbers
- Inferences should be the same as if we had original complete data
- Requires ability to reverse disclosure protection mechanism, not for individual identification, but for inferences about parameters in statistical models (e.g, likelihood function for disclosure procedure)
- Sufficient variables to allow for proper multivariate analyses
- Ability to assess goodness of fit of models
- Need most summary information, residuals, etc

Goal of Statistical Disclosure Limitation

- Strike a balance between data utility and disclosure risk
- Utility tied to usefulness of marginal totals \& log-linear models
- Risk measure is ability to identify small cell counts

Wealth (W)		Weak		Strong	
Location (L)		Center	Outskirts	Center	Outskirts
Gender (G)	Male	$\mathbf{8}$	$\mathbf{6}$	$\mathbf{2}$	$\mathbf{9}$
	Female	$\mathbf{0}$	$\mathbf{3}$	$\mathbf{5}$	$\mathbf{1}$

- Risk-Utility (R-U) confidentiality maps (Duncan et al. (2001))
- Bayesian framework (Trottini (2001), Trottini \& Fienberg (2002))

NISS DG \& Statistical Disclosure Methods

- Partial data releases for tabular data
- Release of marginals
- Maintains existing statistical correlations
- Determine safe releases via bounds and distributions
- Linear/Integer programming
- Roehrig et al. (1999), Dobra (2001)
- Decomposable and graphical log-linear models
- Dobra \& Fienberg $(2000,2002)$
- Shuttle Algorithm
- Dobra (2002)
- Gröbner (\& Markov) bases to enumerate or sample
- Diaconis \& Sturmfels (1998), Dobra \& Fienberg (2000, 2002), Dobra et al. (2003)
- Release of conditionals (A. Slavkovic)
- Release of regressions (Jerry Reiter)

Delinquent Children by County \& Education Level

	Education Level of Head of Household				
County	Low	Medium	High	Very High	Total
Alpha	15		3	1	20
Beta	20	10	10	15	55
Gamma	3	10	10	2	25
Delta	1	14	7	2	35
Total	50	35	30	20	135

18,272,363,056 tables have our margins (De Loera \& Sturmfels).

NCHS: National Health Interview Survey, 2000

Page 64 Series 10, No. 214

Table 21. Percent cilstributions (with standard errors) of any perloci without health Insurance coverage during the past 12 months and percents (with stanclard errors) of persons who were without coverage ror 6 months or less or $7-12$ months, armong curreatly insured percents culth stanclard errors) of persons who were without coverage ror 6 , 6 years. by selected characteristics: United states, 2000

NCES: Parent Survey of NHES Program

Data access" http://nces.ed.gov/pubsearch/pubsinfo.asp?pubid=2000079

Table 3.- Distribution of all students, homeschooled students, and nonhomeschooled students ages 5-17, with a grade equivalent of kindergarten to grade 12, by selected characteristics: 1999

Characteristic	$\begin{gathered} \text { Number of } \\ \text { students } \end{gathered}$	All students		Homeschoolers ${ }^{1}$		Nonhomeschoolers	
		Percent	s.e.	Percent	s.e.	Percent	s.e.
Total	50,188,000	100.0		100.0		100.0	
Grade equivalent ${ }^{2}$							
K-5	24,428,000	48.7	0.07	50.4	3.75	48.7	0.09
Kindergarten	3,790,000	7.6	0.04	10.8	2.31	7.5	0.05
Grades 1-3	12,692,000	25.3	0.04	23.5	3.61	25.3	0.07
Grades 4-5	7,946,000	15.8	0.02	16.0	2.34	15.8	0.05
Grades 6-8	11,788,000	23.5	0.04	21.9	2.83	23.5	0.06
Grades 9-12	13,954,000	27.8	0.10	27.7	3.21	27.8	0.11
Race/ethnicity							
White, non-Hispanic	32,474,000	64.7	0.32	75.3	3.36	64.5	0.33
Black, non-Hispanic	8,047,000	16.0	0.20	9.9	2.80	16.1	0.21
Hispanic	7,043,000	14.0	0.17	9.1	2.06	14.1	0.17
Other	2,623,000	5.2	0.23	5.8	2.01	5.2	0.23
Sex							
Female	24,673,000	49.2	0.47	51.0	3.27	49.1	0.47
Male	25,515,000	50.8	0.47	49.0	3.27	50.9	0.47
Number of children in the household							
One child	8,226,000	16.4	0.30	14.1	2.53	16.4	0.30
Two children	19,883,000	39.6	0.42	24.4	3.06	39.9	0.42
Three or more children	22,078,000	44.0	0.48	61.6	3.97	43.7	0.49

Source: "Homeschooling in the U.S.: 1999". July 2001

U.S. Census Bureau: Pennsylvania: 2000 Census

Table 1. Place of Birth, Residence in 1995, and Language: 2000
[Data based on a sample (excespt Tables 65-68). For information on confidentiality protection, coverage, sampling error, and nonsampling error, see Appendix G. For beation of definitions, see "How to Use This Census Report"]

State County County Subdivision Place	Total population	Native populationPercent born in state of residence	Foreign-born population			Population 5 years and over		Speak a language other than English at home			
								$\begin{array}{r} \text { Popu } \\ 5 \text { to } 17 \end{array}$		Popu 18 years	d over
			Number	Percent of total population	Percent naturalized citizens	Number	Percent living in different house in 1995	Number	Percent who spask English lass than 'very well'	Number	Percent who speak English less than "very well"
The State	12281054	81.1	508291	4.1	50.6	11555538	36.5	189885	33.5	782599	38.9
Adams County	91292	71.2	3130	3.4	35.6	85917	39.6	1034	41.8	3649	50.0
Abbottstown borough	884	76.5	20	2.3	55.0	813	50.9	12	-	36	36.1
Arendtsvils borough	849	80.0	94	11.1	-	775	46.5	45	15.6	82	69.5
Bendersville borough	577	90.2	58	10.1	77	529	34.2	10	5.	24	58.3
Berwick towrship	1817	78.7	53	2.9	47.2	1721	35.6	22	50.0	49	44.9
Biglerville borough	1096	75.5	84	7.7	21.4	1039	44.3	22	18.2	64	40.6
Bonneauvills borough	1378	72.0	49	3.6	6.1	1257	39.4	9	77.8	42	69.0
Butler township	2683	73.3	91	3.4	19.8	2551	33.2	24	4.2	95	54.7
Carroll Vallsy borough	3287	44.5	87	2.6	78.2	3023	46.6	6	33.3	80	35.0
Conewago township	5628	80.7	62	1.1	27.4	5236	36.4	56	41.1	107	49.5
Midway CDP	2362	82.6	30	1.3	33.3	2197	32.8	13	-	56	60.7
Cumberland township	5812	67.1	361	6.2	47.9	5624	37.6	58	39.7	384	33.3
East Berlin borough	1365	82.0	34	2.5	70.6	1256	43.4	7	71.4	37	59.5
Fairfiekl borough	485	72.2	-	-	(X)	466	37.1	1	-	-	(X)
Franklin township	4589	74.9	106	2.3	49.1	4364	37.4	83	24.1	129	58.9

BLS: Data from 2002 CPS supplement

Selected characteristics	White			Black			Hispanic		
	Total	Men	Women	Total	Men	Women	Total	Men	Women
Age									
Total, 16 years and over	29.4	25.1	33.4	19.2	16.7	21.1	15.7	12.9	18.4
16 to 19 years	28.6	24.3	33.0	18.8	16.3	21.1	18.1	15.3	20.9
20 to 24 years ..	19.3	15.7	22.9	13.1	9.9	15.8	9.4	7.6	11.3
25 to 34 years ...	26.8	20.8	32.7	20.2	15.6	24.0	16.9	12.9	21.0
35 to 44 years ...	37.1	30.8	43.4	22.4	19.1	25.2	20.6	15.7	25.4
45 to 54 years ..	33.5	29.4	37.6	20.4	19.3	21.2	16.1	15.1	17.1
55 to 64 years	28.8	26.1	31.4	20.6	19.1	21.7	13.2	12.0	14.2
65 years and over	23.9	22.2	25.2	13.9	14.9	13.3	6.9	6.2	7.4
Employment status among persons aged 16 years and over									
Employed	31.4	27.1	36.6	21.9	18.9	24.6	17.0	14.0	21.1
Unemployed	26.5	21.3	32.6	21.5	18.2	24.6	17.9	12.3	25.5
Not in the labor force	25.6	20.1	28.9	14.1	12.1	15.5	12.6	9.0	14.4
School enrollment status among persons aged 16 to 24 years									
Enrolled in high school.	32.3	26.0	39.5	18.2	17.0	19.4	19.6	15.6	23.9
Enrolled in college.	28.3	25.2	31.1	23.9	19.7	26.4	19.6	19.4	19.7
Not enrolled in school	16.0	13.0	19.1	10.5	8.4	12.7	8.6	7.2	10.3
Educational attainment among persons aged 25 years and over									
Less than a high school diploma	10.5	9.0	11.8	9.2	8.6	9.6	8.4	5.8	11.0
High school graduate, no college ${ }^{1}$..........................	22.8	18.2	26.8	14.1	12.7	15.4	16.3	13.4	19.2
Less than a bachelor's degree ${ }^{2}$.............................	34.5	28.9	39.4	26.1	23.2	28.0	25.2	22.9	27.2
College graduate ..	46.0	40.9	51.4	36.6	33.4	39.1	31.9	27.2	36.4

${ }^{1}$ Includes high school diploma or equivalent.
${ }^{2}$ Includes the categories of some college, no degree; and associate's degree.

Note: Data on volunteers relate to persons who performed unpaid
volunteer activities for an organization at any point from September 1, 2001, through the survey week in September 2002. Details for the above race and Hispanic-origin groups will not sum to totals because data for the "other races ${ }^{\circ}$ group are not presented and Hispanics are included in both the white and black population groups.

Why conditionals? - Causal Inference

Wealth (W)		Weak		Strong				
Location (L)		Center	Out	Center	Out			
Gender (G)	Male	8 [24,0] [20,0] [8,5]	6 [12,0] [10,0] [9,6]	$\begin{array}{r} 2[6,0] \\ {[5,0]} \\ {[5,2]} \end{array}$	$\begin{gathered} 9[18,0] \\ {[15,0]} \\ {[9,6]} \end{gathered}$			
	Female	$\begin{array}{r} 0[0,0] \\ {[0,0]} \\ {[3,0]} \\ \hline \end{array}$	$\begin{gathered} 3[24,0] \\ {[6,0]} \\ {[3,0]} \\ \hline \end{gathered}$	5 [34,0] [9,1] [5,2]	11			
Survey of self-employed shop-owners Source: Willenborg \& deWaal, adapted example				$\frac{f(w \\|, g)}{v \\|, g), f(g)}$				

- Assess causal distribution: $\mathrm{P}(\mathrm{W}=\mathrm{w} \mid \mathrm{L}:=\mathrm{l})=\sum_{g} \mathrm{P}(\mathrm{w} \mid \mathrm{l}, \mathrm{g}) \mathrm{P}(\mathrm{g})$
- Assess treatment effect: $P(W=1 \mid L=1, G=1)-P(W=1 \mid L=0, G=0)$
- Release $\mathrm{f}(\mathrm{w}, \mathrm{l}, \mathrm{g})$ vs. $\mathrm{f}(\mathrm{w} \| \mathrm{l}, \mathrm{g}), \mathrm{f}(\mathrm{g})$

New research question

- Determine safe releases in terms of arbitrary sets of marginal and conditionals
- Assume data reported without error
- Assume compatible margins and conditionals
- Assume unweighted counts
- Investigate conditions under which sets of marginals and conditionals give:
- unique specifications
- upper/lower bounds on cell entries
- distributions over the cell entries
- Determine/compute the bounds and distributions

Uniqueness: Complete specification of the joint

- Full disclosure
- Ability to completely reconstruct the original table
- Uniqueness Theorem for k-way tables
- Gelman \& Speed 1993, Arnold et al. 1999
- Example: Two-way table
- $P(x), P(y \mid x)$
- $P(x \mid y), P(y \mid x)$
- Arnold et al. 1999
- Sometimes: $P(y), P(y \mid x)$
- Define the missing marginal
- Vardi \& Lee (1993) algorithm

	Education Level			
County	Low	Medium	High	Very High
Alpha	$15 / 20$	$1 / 20$	$3 / 20$	$1 / 20$
Beta	$20 / 55$	$10 / 55$	$10 / 55$	$15 / 55$
Gamma	$3 / 25$	$10 / 25$	$10 / 25$	$2 / 25$
Delta	$12 / 35$	$14 / 35$	$7 / 35$	$2 / 35$
Total	50	35	30	20

Uniqueness: Complete specification of the joint

- Prop: Given $P(x \mid y)$ and $P(x)$, unique solution exists for $I x J$, if matrix with values $P(x \mid y)$ has full rank and $I \geq J$
- Prop: Unique solution for I x 2

$$
p_{i j}=a_{i j} \frac{p_{i+}-a_{i\{\backslash \backslash j\}}}{a_{i j}-a_{i\{\mathbf{J} \backslash j\}}}, i \in \mathbf{I}, j \in \mathbf{J}, \quad \mathbf{J}=\{1,2\}
$$

- 2×2 table, release $P(x \mid y), P(x)$

$X \mid Y$	1	1
	a_{11}	a_{12}
	a_{21}	a_{22}

	Y		
X	p_{11}	p_{12}	p_{1+}
	p_{21}	p_{22}	p_{2+}

$$
p_{11}=a_{11} \frac{p_{1+}-a_{12}}{a_{11}-a_{12}}
$$

I x J Tables Summary

Queries	Assume	Unique	Assume	Bounds
$P(x \mid y), P(y)$		V		
$P(x \mid y), P(y \mid x)$		$\sqrt{ }$		
$P(x), P(y)$	$X \Perp Y$	$\sqrt{2}$	X not $\Perp Y$	$\max \left\{0, x_{i}+y_{j}-n\right\} \leq x_{i j} \leq \min \left\{x_{i}, y_{j}\right\}$
$P(x \mid y), P(x)$	$I \geq J$	V	$I<J$	
$P(x)$				$0 \leq x_{i j} \leq x_{i}$
$P(x \mid y)$				$0 \leq p_{i j} \leq p_{i j}$

Understanding 2-way tables is important for solving k-way tables

LP/IP: Bounds given $P(x \mid y)=\left\{a_{i j}\right\}$ or $P(y \mid x)=\left\{b_{i j}\right\}$

- Conditionals maintain odds-ratio which makes this problem different from marginals:

$$
\alpha=\frac{p_{11} p_{22}}{p_{12} p_{21}}=\frac{n_{11} n_{22}}{n_{12} n_{21}}=\frac{b_{11} b_{22}}{b_{12} b_{21}}=\frac{a_{11} a_{22}}{a_{12} a_{21}}
$$

- N unknown
- LP bounds: $0 \leq p_{i j} \leq a_{i j}$ or $0 \leq p_{i j} \leq b_{i j}$
- Not sharp for integer tables
- Closed form solutions for $2 \times \mathrm{J}$ tables
- N known
- IP gives sharp bounds when feasible
- May not be computationally feasible for k-way tables
- LP relaxation gives fractional bounds

LP = Linear Programming
$I P=$ Integer Programming

LP: Bounds given $P(y \mid x)$

Gender (X)	Yewnload (Y)	No
Male	$15 \quad(0.3)$	$10(0.1)$
Female	$5 \quad(0.2)$	$20(0.4)$

Bounds, unknown N

X, Y		
	$[0,0.6]$	$[0,0.4]$
	$[0,0.2]$	$[0,0.8]$

- Release $P(y \mid x)$

$Y \mid X$		
1	0.6	0.4
1	0.2	0.8

Bounds, known N

X, Y		
	$[0,30]$	$[0,20]$
	$[0,10]$	$[0,40]$

- Problems:
- $\quad \alpha=6$
- None of the conditional values are zero
\Rightarrow Cell in the original table CANNOT be zero.
\Rightarrow These are NOT the sharp bounds for integer tables

Fictitious example: survey of 50 students about illegally downloading MP3s

IP: Bounds given $P($ gender \mid download), known $N=50$

- Explicitly forcing the lower bound to be 1

Max n_{11}
Subject to $n_{11}+n_{12}+n_{21}+n_{22}=50$

$$
\begin{aligned}
& 0.4 n_{11}-0.6 n_{12}=0, \\
& 0.8 n_{21}-0.2 n_{22}=0, \\
& n_{i j} \geq 1, i=1,2, j=1,2
\end{aligned}
$$

\(\left.\begin{array}{|l|ll|l|}\hline X, Y \& \& \&

\hline \& 15 \& {[3,27]} \& 10\end{array} \mathbf{[2 , 1 8]}\right]\)| | 5 | $[1,9]$ |
| :--- | :--- | :--- |

- LP Relaxation

X, Y			
	15	$[3,27]$	$10[2,18]$
	5	$[1,9]$	$20[4,36]$

IP: Bounds given $P($ download \mid gender $)$, known $N=50$

- Release:

$X \mid Y$	1	1
	0.75	0.33
	0.25	0.67

- IP: no feasible solution
- LP Relaxation

X, Y		
	15 [3, 35.25]	10 [1, 15.33]
	5 [1, 11.74]	20 [2, 30.67]

- These are not tight bounds!

Delinquent Children by County \& Education Level

- Release observed conditional frequencies

$$
P(\text { Education } \mid \text { County })=\left(\begin{array}{cccc}
0.750 & 0.050 & 0.150 & 0.050 \\
0.364 & 0.182 & 0.182 & 0.273 \\
0.120 & 0.400 & 0.400 & 0.080 \\
0.343 & 0.400 & 0.200 & 0.057
\end{array}\right)
$$

- IP: no feasible solution
- LP relaxation bounds:

County	Low		Medium		High		Very High	
Alpha		[15, 74.6]		[1, 4.97]	3	[3, 14.9]		[1, 4.97]
Beta		[1.99, 30.8]		$[1,15.5]$	10	[1, 15.5]	15	[1.5, 23.2]
Gamma	3	[1.5, 11.0]		[5, 36.8]		[5, 36.8]	2	[1, 7.36]
Delta		[6.02, 33.27]		[7.02, 38.8]	\%	[$5.51,19.4]$		[1, 5.53]

- Is it safe to release this conditional?
[0, 20]

LP: Bounds given $\mathrm{P}(\mathrm{x} \mid \mathrm{y}), \mathrm{P}(\mathrm{x})$, if $\mathrm{I}<\mathrm{J}$

- Example 2×3 table, bounds on p_{11}
$U B=\underbrace{}_{\frac{a_{11} \frac{p_{1+}-\max \left\{a_{12}, a_{13}\right\}}{a_{11}-\max \left\{a_{12}, a_{13}\right\}}}{a_{11} \frac{p_{1+}-\min \left\{a_{12}, a_{13}\right\}}{a_{11}-\min \left\{a_{12}, a_{13}\right\}}} \text { if } p_{1+} \geq a_{11}}$ if $p_{1+}<a_{11}$

p_{11}	p_{12}	p_{13}				
p_{21}	p_{22}	p_{23}		a_{11}	a_{12}	a_{13}
:---	:---	:---				
a_{21}	a_{22}	a_{23}				

$L B=\left\{\begin{array}{lll}\max \{0, L & \text { s.t. } L \leq U B\} & \text { if } p_{1+} \geq a_{11} \\ \max \{0, U & \text { s.t. } U \leq U B\} & \text { if } p_{1+}<a_{11}\end{array}\right.$

- Generalizes to $2 \times \mathrm{J}$ tables

Multi-way Tables: $3 \times 3 \times 2$

$>$ Release full conditional Income | Gender, Race
> There are
2,083,240,054,713 tables
> Not safe to release!

Source: 1990 Census Public Use Microdata File (Fienberg, Markov, Steel (1998))

Bounds on multi-way tables using DAGs

- Query:
$P\left(x_{2}=\right.$ income $\left.x_{3}=r a c e\right), P\left(x_{3}=r a c e \mid x_{1}=\right.$ gender $), P\left(x_{1}=\right.$ gender $)$

- Prop: When G satisfies Wermuth condition, the bounds imposed by a set of conditionals and marginals reduce to the bounds imposed by a set of marginals associated with G^{u}
- Bounds: $\max \left\{0, p_{13}+p_{23}-p_{3}\right\} \leq p_{123} \leq \min \left\{p_{13}, p_{23}\right\}$

Bounds on three-way tables using DAGs

- Query:
$P\left(x_{3}=\right.$ income $\mid x_{2}=$ race,$x_{1}=$ gender $), P\left(x_{2}=r a c e\right), P\left(x_{1}=\right.$ gender $)$
- Wermuth fails, $G^{u} \neq G^{m}$:
- $G: X_{1}$

- If DAG implies $X_{1} \Perp X_{2}$
- Special case of Gelman \& Speed Uniqueness Theorem
- $P\left(x_{3} \mid x_{2}, x_{1}\right), P\left(x_{2}, x_{1}\right)$
- $P\left(x_{3}, x_{2} \mid x_{1}\right), P\left(x_{1}\right)$
- $P\left(x_{3}, x_{1} \mid x_{2}\right), P\left(x_{2}\right)$
- What if X_{i}, X_{j}, X_{k} are dependent?
- $2 \times 2 \times 2$ table: $f\left(x_{i}, x_{j} \mid x_{k}\right), f\left(x_{i} x_{j}\right)$ gives unique specification

Framework: Bounds on Multi-way Tables

In combination with optimization methods

Computational Commutative Algebra in Statistics

- Methods from computational commutative algebra to explore the space of all possible tables given the constraints
- Polynomial rings \& ideals give a way of representing tables of counts
- Markov bases are equivalent to a set of generators of an ideal (Diaconis \& Sturmfels)
- Bounds \& distributions given margins
- Gröbner (Markov) bases to enumerate or sample via MCMC
- Decomposable and reducible graphical models
- Diaconis \& Sturmfels (1998), Dobra \& Fienberg (2001, 2002), Dobra \& Sullivant (2002)

Markov Bases for contingency tables with fixed marginals

- Moves are tables with integer entries.
- A move leaves unchanged fixed marginals.
- Markov bases connect all tables having a set of fixed marginals.
- Markov bases do not depend on the actual value of the margins but just their functional form.

Delinquent Children by County \& Education Level

- Markov bases for fixed margins
- 36 primitive moves (e.g. $n_{41} n_{22}-n_{21} n_{42}$)

County	Low	Medium	High	Very High	Total		
Alpha	15	0	1	0	3	0	1
Beta	20	-1	10	1	10	0	15
Gamma	3	0	10	0	10	0	2
	0	25					
Delta	12	1	14	-1	7	0	2
Total	50	35	30	0	35		

$18,272,363,056$ possible tables given fixed row sums and column sums
Can calculate bounds and distributions

Markov bases: Delinquent Children by County \&

 Education Level- Markov bases for fixed conditional P(Education|County)
- 4 basic moves, but more complex

-45	-3	-9	-3
0	0	0	0
3	10	10	2
12	14	7	2

$$
n_{31}^{3} n_{32}^{10} n_{33}^{10} n_{34}^{2} n_{41}^{12} n_{42}^{14} n_{43}^{7} n_{44}^{2}-n_{11}^{45} n_{12}^{3} n_{13}^{9} n_{14}^{3}
$$

-15	-1	-3	-1
20	10	10	15
0	0	0	0
-12	-14	-7	-2

-15	-1	-3	-1
0	0	0	0
-6	-20	-20	-4
24	28	14	4

-30	-2	-6	-2
0	0	0	0
9	30	30	6
-12	-14	-7	-2

Enumeration: Delinquent Children by County \& Education Level

- Only 1 possible integer table given the fixed conditional ! - Higher disclosure risk than in the case of LP/IP bounds
- Compare to $18,272,363,056$ possible tables given fixed row sums and column sums

County	Low		Medium		High		Very High	
Alpha	15	[15, 74.6]		[1, 4.97]	3	[3, 14.9]	1	[1, 4.97]
Beta	20	[1.99, 30.8]		[1, 15.5]		[1, 15.5]	15	[1.5, 23.2]
Gamma	3	[1.5, 11.0]	10	[5, 36.8]		[5, 36.8]	2	[1, 7.36]
Delta		[6.02, 33.27]		[7.02, 38.8]		[3.51, 19.4]		[1, 5.53]

Markov bases: Fixed P (download \mid gender $)$

- 4 possible tables

X, Y	8	42
20	6	14
30	2	28

X, Y	20	30
35	15	10
30	5	20

X, Y	32	18
30	24	6
20	8	12

X, Y	44	6
35	33	2
15	11	4

\square| +9 | -4 |
| :--- | :--- |
| +3 | -8 |

- Issue: What's the initial table?
- Tighter bounds!

| X, Y | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | $15 \quad[3,35.25]$ | $[6,33]$ | $10[1,15.33]$ | $[2,14]$ |
| | 5 | $[1,11.74] \quad[2,11]$ | $20[2,30.67]$ | $[4,28]$ |

Markov moves: Fixed $P(y \mid x) \&$ Rounding Issues

- $2 x 2$ table $[4,10,2,20]=[0.3,0.2,0.1,0.4], N=36, \alpha=4$
- 3 decimals: fixed $P(y \mid x)=[0.286,0.714,0.091,0.909]$
- 2 decimals: fixed $P(y \mid x)=[0.27,0.71,0.09,0.91]$
- 1 decimals: fixed $P(y \mid x)=[0.3,0.7,0.1,0.9]$

X, Y		
	+286	+714
	-91	-909

X, Y		
	+29	+71
	-9	-91

X, Y		
	+3	+7
	-1	-9

- Issue 1 :
- Need integer values from floating point approximations
- Margins may be revealed!

X, Y		
	7	17
	1	11

$\alpha=4.53$

X, Y		
	1	3
	3	29

$\alpha=3.22$

- Issue 2 :
- Do we have a unique solution?
- Do we accept approximation?

Markov bases for fixed conditionals \& confidentiality

- The moves must maintain odds ratio, α, but do not need sample size N
- Space of tables is determined by knowing the bases and sample size N
- Depend on the value of the conditional distribution
- Rounding to different decimal place gives different moves
- Margins may be revealed as the denominators, and often give the unique solution for two-way tables!
- Size of the move determines uniqueness
- Not feasible to release conditionals in two-way tables
- Space of tables too small
- Margins may be revealed

Example: 3x3x2 1990 Census Data

- Release all three 2-way margins:
- Race x Income, Race x Gender, Gender x Income
- Release, instead, three conditionals:
- Income|Race, Race|Gender, Income|Gender
- There are 441 tables and the bounds are the same

Bounds Given All Two-Way Margins or Corresponding Conditionals

				Gender		Gender		
		Male		Female	Male	Female		
Race	White		Income Level	\leq \$10K	96	186	[85,107]	[175,197]
		$\begin{aligned} & \$ 10 \mathrm{~K} \text { and } \\ & \leq \$ 25 \mathrm{~K} \end{aligned}$		72	127	[64,79]	[120,135]	
		> \$25K		161	51	[158,168]	[44,54]	
	Black	Income Level	\leq \$10K	10	11	[0,21]	[0,21]	
			$\begin{aligned} & >\$ 10 \mathrm{~K} \text { and } \\ & \leq \$ 25 \mathrm{~K} \end{aligned}$	7	7	[0,14]	[0,14]	
			> \$25K	6	3	[0,9]	[0,9]	
	Chinese	Income Level	\leq \$10K	1	0	[0,1]	[0,1]	
			$\begin{aligned} & >10 \mathrm{~K} \text { and } \\ & \leq \$ 25 \mathrm{~K} \end{aligned}$	1	1	[1,2]	[0,1]	
			> \$25K	2	0	[1,2]	[0,1]	

Czech Autoworkers example

- Risk factors for heart disease
- 2^{6} table
- population data
- "0" cell
- population unique, " 1 "
- 2 cells with " 2 "
- Suppose we release margins: [ADE][ABCE][BF]
- Decomposable graph.

F	E	D	C	B	no		yes	
					no	yes	no	yes
neg	< 3	< 140	no		44	40	112	67
			yes		129	145	12	23
		≥ 140	no		35	12	80	33
			yes		109	67	7	9
	≥ 3	< 140	no		23	32	70	66
			yes		50	80	7	13
		≥ 140	no		24	25	73	57
			yes		51	63	7	16
pos	<3	< 140	no		5	7	21	9
			yes		9	17	1	4
		≥ 140	no		4	3	11	8
			yes		14	17	5	2
	≥ 3	< 140	no		7	3	14	14
			yes		9	16	2	3
		≥ 140	no		4	0	13	11
			yes		5	14	4	4

Bounds Given Margins

				B	no		yes	
F	E	D	C	A	no	yes	no	
neg	<3	<140	no	$[0,88]$	$[0,62]$	$[0,224]$	$[0,117]$	
			yes	$[0,261]$	$[0,246]$	$[0,25]$	$[0,38]$	
		≥ 140	no	$[0,88]$	$[0,62]$	$[0,224]$	$[0,117]$	
			yes	$[0,261]$	$[0,151]$	$[0,25]$	$[0,38]$	
	≥ 3	<140	no	$[0,58]$	$[0,60]$	$[0,170]$	$[0,148]$	
			yes	$[0,115]$	$[0,173]$	$[0,20]$	$[0,36]$	
		≥ 140	no	$[0,58]$	$[0,60]$	$[0,170]$	$[0,148]$	
pos	<3	<140	no	$[0,115]$	$[0,173]$	$[0,20]$	$[0,36]$	
			yes	$[0,88]$	$[0,62]$	$[0,126]$	$[0,117]$	
		≥ 140	no	$[0,88]$	$[0,134]$	$[0,25]$	$[0,38]$	
		yes	$[0,134]$	$[0,134]$	$[0,126]$	$[0,117]$		
	≥ 3	<140	no	$[0,58]$	$[0,60]$	$[0,126]$	$[0,38]$	
			yes	$[0,115]$	$[0,134]$	$[0,20]$	$[0,36]$	
		≥ 140	no	$[0,58]$	$[0,60]$	$[0,126]$	$[0,126]$	
		yes	$[0,115]$	$[0,134]$	$[0,20]$	$[0,36]$		

"Safe" to release these margins; low risk of disclosure.

Bounds given fixed conditionals $[\mathrm{E} \mid \mathrm{A}, \mathrm{D}],[\mathrm{B} \mid \mathrm{F}],[\mathrm{AD} \mid \mathrm{BC}]$

- LP relaxation bounds wider than for margins

Number(tables|conditional) \geq Number (tables|corresponding margin)
"Safe" to release these conditionals

Summary: Tabular data releases

- Agencies already release conditionals in 2-way and 3-way tables
- Conditionals reveal zero counts
- 2-way tables
- Do not release conditionals!
- K-way table
- Releasing full conditionals could be too risky
- Small conditionals may release less information (less disclosure) than corresponding marginals
- Graphical models useful for calculating bounds
- Algebraic geometry useful for exploring the space of tables
- Beginning to understand implications on rounding on disclosure limitation

Ongoing Research \& Open Questions

- Investigate combining compatible pieces of information (e.g. odds ratios, margins, conditionals, regressions, etc...)
- Implications on data usability, reconstructing data and disclosure risk
- Distribution functions over the space of tables
- Log-linear models for marginals
- No analogy theory model for conditionals
- Understand influence of weighted counts on disclosure
- Understand influence of rounding on disclosure

Public Access \& Unique identification

- Publicly available data
- American Fact Finder website (Source: U.S. Census Bureau: Block data)

RACE	All ages	18 years and over
	Number	Number
Total population	$\mathbf{8 3}$	$\mathbf{7 0}$
White	70	63
Black or African American	1	1
American Indian and Alaska Native	0	0
Asian	9	6
Native Hawaiian and Other Pacific Islander	0	0
Two or more races	3	0

Data measured with error \& reported after data swapping

- Uniqueness
- Sweeney(2000): Date of birth, gender, 5-digit ZIP
- Likely unique identification of $\mathbf{8 7 \%}$ U.S. population

Delinquent Children by County \& Education Level

- Bounds:
- Linear Programming/Integer Programming
- Two-Way Fréchet Bounds

$$
\min \left(n_{i+}, n_{+j}\right) \geq n_{i j} \geq \max \left(n_{i+}+n_{+j}-n, 0\right)
$$

- Enumeration via Markov Basis (e.g. moves) \& algebraic geometry
- Exact probability distribution for log-linear model given its MSS marginals:

$$
\sigma(\mathrm{n})=\frac{\prod_{i \in I} \frac{1}{n(i)!}}{\sum_{m \in S(c)}\left(\prod_{i \in I} \frac{1}{m(i)!}\right)}
$$

- MCMC using Markov basis (Diaconis-Sturmfels (1998), Fienberg, Makov, Meyer, Steele (2002)) \& computational algebra

Some General Principles for Developing DL Methods

- All data are informative for intruder, including non-release or suppression.
- Need to define and understand potential statistical uses of data in advance:
- Leads to useful reportable summaries (e.g., MSSs).
- Methods should allow for reversibility for inference purposes:
- Missing data should be "ignorable" for inferences.
- Assessing goodness of fit is important.

Expected Contributions

- Disclosure Limitation (DL):
- Extension of marginal query space by conditionals
- Enhancement of data usability
- Statistics:
- Integration of diverse results \& methods from
- Disclosure limitation
- Conditional specification of the joint distribution
- Graphical models
- Algebraic geometry
- New results on bounds and distributions on contingency tables
- New theoretical links between DL, Statistical Theory and Computational Algebraic Geometry

Framework

Can we do MCMC now for fixed conditionals?

- We can find the bounds
- We can enumerate
- We have irreducible Markov chain
- What is the family of distributions that has marginals AND conditionals as MSS?
- What's the stationary distribution?
- What is the distribution of tables for fixed conditionals?
- $\operatorname{Pr}(\boldsymbol{N}=\boldsymbol{n} \mid C)=\operatorname{Pr}(\boldsymbol{N}=\boldsymbol{n} \mid \boldsymbol{N} \in \mathcal{T})$

Perturbation for Protection

- Perturbation preserving marginals involves a parallel set of results to those for bounds:
- Markov basis elements for decomposable case requires only "simple" moves. (Dobra, 2002)
- Efficient generation of Markov basis for reducible case. (Dobra and Sullivent, 2002)
- Simplifications for 2^{k} tables ("binomials")??? (Aoki and Tachimura, 2003)
- Rooted in ideas from likelihood theory for log-linear models and computational algebra of toric ideals.

Definitions \& Notation

- Observed counts $n_{i j}$ with sample size N
- Joint probability distribution $P=\left(p_{i j}\right), p_{i j}=P\left(X=x_{i j}, Y=y_{j}\right)$
- Marginal probability distribution

$$
\begin{aligned}
& p_{i+}=P\left(X=x_{i}\right)=\sum_{j=1}^{J} p_{i j}=\frac{n_{i+}}{N}=\frac{\sum_{j=1}^{J} n_{i j}}{\sum_{i, j} n_{i j}} \\
& p_{+j}=P\left(Y=y_{j}\right)=\sum_{i=1}^{I} p_{i j}
\end{aligned}
$$

- Conditional probability distribution

$$
\begin{aligned}
& a_{i j}=P\left(X=x_{i} \mid Y=y_{j}\right)=\frac{p_{i j}}{p_{+j}}=\frac{n_{i j}}{n_{+j}}, \quad i=1, \ldots, I, \quad j=1, \ldots, J \\
& b_{i j}=P\left(Y=y_{j} \mid X=x_{i}\right)=\frac{p_{i j}}{p_{i+}}=\frac{n_{i j}}{n_{i+}}, \quad i=1, \ldots, I, \quad j=1, \ldots, J
\end{aligned}
$$

General structure 3x3 example

- Max(min) $x_{i j}$ subject to $\mathrm{Ax}=\mathrm{b}$ and $\mathrm{x} \in \mathrm{N}^{\mathrm{n}} \quad, n=I x J$

$$
\left(\begin{array}{ccccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1-b_{11} & -b_{11} & -b_{11} & 0 & 0 & 0 & 0 & 0 & 0 \\
-b_{12} & 1-b_{12} & -b_{12} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1-b_{21} & -b_{21} & -b_{21} & 0 & 0 & 0 \\
0 & 0 & 0 & -b_{22} & 1-b_{22} & -b_{22} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1-b_{31} & -b_{31} & -b_{31} \\
0 & 0 & 0 & 0 & 0 & 0 & -b_{32} & 1-b_{32} & -b_{32}
\end{array}\right)\left(\begin{array}{l}
x_{11} \\
x_{12} \\
x_{13} \\
x_{21} \\
x_{22} \\
x_{23} \\
x_{31} \\
x_{32} \\
x_{33}
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

Uniqueness: Complete specification of the joint

- Uniqueness Theorem for k-way tables
- Two-way table (Gelman \& Speed 1993, Arnold et al. 1999)
- $P(x), P(y \mid x)$
- $P(x \mid y), P(y \mid x)$
- Arnold et al. 1999
- Sometimes: $P(y), P(y \mid x)$
- Define the missing marginal
- Vardi \& Lee (1993) algorithm

Markov basis

- A set of generators of a toric ideal
- Ring::=Q $\left[n_{11}, n_{12}, n_{21}, n_{22}\right]=\mathrm{Q}[\chi]$
- $I_{A}=<\chi^{\mathrm{u}+}-\chi^{\mathrm{u}-} \mid \quad \forall \mathrm{u} \in \mathrm{Z}_{\geq 0}^{n}, A u=0>$
- Example
- 2×2 table $[15,10,5,20]=[0.3,0.2,0.1,0.4]$
- Fixed $f(y \mid x)=[0.6,0.4,0.2,0.8]=[3 / 5,2 / 5,1 / 5,4 / 5]$
$-A=\left|\begin{array}{llll}1 & 1 & 1 & 1 \\ 0.4 & -0.6 & 0 & 0 \\ 0 & 0 & 0.8 & -0.2\end{array}\right|=\left|\begin{array}{llll}1 & 1 & 1 & 1 \\ 2 & -3 & 0 & 0 \\ 0 & 0 & 4 & -1\end{array}\right|$
- $n_{11}{ }^{3} n_{12}{ }^{2}-n_{21}{ }^{1} n_{22}{ }^{4}$

X, Y		
	+3	+2
	-1	-4

Markov basis: reduction

- Step 1: given conditional frequencies as rationals

$$
\left(\begin{array}{ll}
\frac{3}{5} & \frac{2}{5} \\
\frac{1}{5} & \frac{4}{5}
\end{array}\right)
$$

- Step 2: vector of denominators or sum of numerators $r=(55)$
- Step 3: Markov basis for \boldsymbol{r}

$$
n_{1+}-n_{2+} \quad m=\left[\begin{array}{ll}
1 & -1
\end{array}\right]
$$

- Step 4: exponents for Markov basis for fixed conditionals
- $m_{i j}{ }^{*}\left(b_{j 1} b_{j 2} \ldots b_{j J}\right)$ 1*(3 2) and -1*(14)

One move: $\boldsymbol{n}_{11}{ }^{3} n_{12}{ }^{2}-\mathrm{n}_{21}{ }^{1} n_{22}{ }^{4}$

