
Bayesian Calibration of Microsimulation Models
Carolyn M. RUTTER, Diana L. MIGLIORETTI, and James E. SAVARINO

Microsimulation models that describe disease processes synthesize information from multiple sources and can be used to estimate the
effects of screening and treatment on cancer incidence and mortality at a population level. These models are characterized by simulation of
individual event histories for an idealized population of interest. Microsimulation models are complex and invariably include parameters that
are not well informed by existing data. Therefore, a key component of model development is the choice of parameter values. Microsimulation
model parameter values are selected to reproduce expected or known results though the process of model calibration. Calibration may be
done by perturbing model parameters one at a time or by using a search algorithm. As an alternative, we propose a Bayesian method to
calibrate microsimulation models that uses Markov chain Monte Carlo. We show that this approach converges to the target distribution
and use a simulation study to demonstrate its finite-sample performance. Although computationally intensive, this approach has several
advantages over previously proposed methods, including the use of statistical criteria to select parameter values, simultaneous calibration
of multiple parameters to multiple data sources, incorporation of information via prior distributions, description of parameter identifiability,
and the ability to obtain interval estimates of model parameters. We develop a microsimulation model for colorectal cancer and use our
proposed method to calibrate model parameters. The microsimulation model provides a good fit to the calibration data. We find evidence
that some parameters are identified primarily through prior distributions. Our results underscore the need to incorporate multiple sources of
variability (i.e., due to calibration data, unknown parameters, and estimated parameters and predicted values) when calibrating and applying
microsimulation models.
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1. INTRODUCTION

Microsimulation models (MSMs) provide a way to estimate
population-level effects of medical interventions on health out-
comes by integrating results from randomized controlled trials,
observational studies, and expert opinion. MSMs have been de-
veloped for a wide range of diseases, including prostate cancer
(Etzioni et al. 1999; Feuer et al. 2004), breast cancer (Berry
et al. 2005), and colorectal cancer (Loeve et al. 1999). MSMs,
which have the potential to influence policy making decisions,
have been used to estimate the impact of overdiagnosis due to
screening on breast cancer incidence (de Koning et al. 2006),
to compare the effect of risk factors and screening behaviors
on colorectal cancer (CRC) mortality rates (Vogelaar et al.
2006), to evaluate the cost-effectiveness of cervical cancer (van
den Akker-van Marle et al. 2002) and breast cancer screen-
ing (Shen and Parmigiani 2005), and to examine mortality and
reoperation rates after aortic valve replacement (Puvimanas-
inghe et al. 2004). The National Cancer Institute recognized
the value of microsimulation models when it formed the Can-
cer Intervention and Surveillance Modeling Network (CISNET;
cisnet.cancer.gov) (Croyle 2006).

MSMs are characterized by simulation of individual event
histories for an idealized population of interest. These individ-
ual event histories catalog landmarks in the disease process,
such as the development of an incident cancer or onset of my-
ocardial infarction. Simulation of event histories requires math-
ematical models for key components of the disease process. In
general, these processes are not directly observable, although
their outcomes may be. For example, the process of developing
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CRC cannot be observed, but the prevalence of both precancer-
ous lesions (adenomas) and preclinical CRC can be estimated
from screening trials.

MSM model calibration involves selecting parameter values
that are consistent with observed data and expected findings.
Once parameters are selected, MSMs can be used to make pre-
dictions about hypothetical interventions and/or future trends in
population disease outcomes. The simplest calibration method
involves perturbing parameters one at a time and subjectively
judging the goodness of fit to calibration data (Ramsey et al.
2000). More recently, chi-squared (Ness et al. 2000) and de-
viance (Loeve et al. 2004) statistics have been used to evaluate
how closely MSM estimates match calibration data at differ-
ent points in the parameter space. Statistical criteria for MSM
goodness of fit also have been combined with search algo-
rithms to determine the best parameters. Salomon et al. (2002)
used simulation-based estimates of likelihoods in combination
with a sequential search algorithm to determine the best-fitting
model parameters. Chia et al. (2004) demonstrated the use
of three maximum likelihood methods for estimating parame-
ters associated with a complex two-parameter model describ-
ing breast cancer tumor growth, including grid search using the
Nelder–Mead algorithm (Nelder and Mead 1965); the Kiefer–
Wolfowitz algorithm (Kiefer and Wolfowitz 1952), based on
likelihood differences estimated by simulating the likelihood;
and the Robbins–Monro algorithm (Robbins and Monro 1951),
based on directly simulating the likelihood gradient.

Here we propose a Bayesian method for calibrating MSM pa-
rameters that parallels Bayesian sampling-based estimation ap-
proaches. We place prior distributions on all parameters and use
Markov chain Monte Carlo (MCMC) to estimate parameters
using data from multiple sources. The Bayesian approach al-
lows us to describe an appropriately complex model for disease
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processes while incorporating information from both prior dis-
tributions and observed data. By using informative prior distri-
butions, we can include model parameters that otherwise might
not be identifiable based on available data. This approach ac-
knowledges uncertainty in parameters as opposed to fixing se-
lected parameters to obtain the identifiability of a potentially
inferior model (Gustafson 2005). We suggest using model di-
agnostics to examine parameter identifiability. Finally, our ap-
proach allows point and interval estimation of both model pa-
rameters and functions of these parameters, including posterior
predictive estimates that can be used to assess model fit.

In the next section we briefly describe our MSM for the nat-
ural history of CRC. In Section 3 we describe our calibration
approach, examine its relationship to Bayesian analysis, and
present its asymptotic characteristics. In Section 4 we describe
a simulation study used to examine the behavior of our MCMC
calibration with finite sample sizes. We provide calibration re-
sults for our CRC MSM in Section 5 and concluding remarks
in Section 6.

2. MICROSIMULATION MODEL FOR THE NATURAL
HISTORY OF COLORECTAL CANCER

CRC is the second leading cause of cancer death in the
United States (American Cancer Society 2008; Jemal et al.
2008). CRC mortality rates have declined since 1980 (Wingo et
al. 2003; Stewart et al. 2004; American Cancer Society 2008);
and CRC incidence declined between 1985 and 1995 and then
stabilized (Howe et al. 2001, 2006). The reasons behind these
trends are unclear. Clinical trials have shown that screening
for CRC by fecal occult blood tests can reduce CRC mor-
tality (Hardcastle et al. 1996; Kronborg et al. 1996; Towler
et al. 1998); however, a 1999 study found low rates of CRC
screening, with fewer than half of Americans over age 50 re-
porting ever being screened (CDC 2001). The possibility that
lifestyle changes have reduced the population’s risk for CRC
holds promise for primary prevention. The use of MSMs allows
estimation of the effects of screening and population risk on
changes in CRC incidence and mortality, offering new insights
into factors associated with observed trends. In this article, we
develop and calibrate an MSM for CRC.

Our MSM for the natural history of CRC is based on the
adenoma–carcinoma sequence (Muto, Bussey, and Morson
1975; Leslie et al. 2002) and assumes that all CRCs arise from
an adenoma. Four model components describe the natural his-
tory of CRC: adenoma risk, adenoma growth, transition from
adenoma to preclinical cancer, and transition from preclinical
to clinical cancer. Table 1 summarizes each component’s para-
meters and prior distributions.

2.1 Adenoma Risk Model

We modeled the occurrence of adenomas using a nonhomo-
geneous Poisson process with a piecewise age effect. The ith
individual’s instantaneous risk of an adenoma at time t is given
by

ψi(t) = exp

(
α0i + α1sexi +

4∑
k=1

δ(Ak < agei(t) ≤ Ak+1)

×
{

agei(t)α2k +
k∑

j=2

Aj(α2 j−1 − α2j)

})
, (2.1)

where α0i describes an individual’s baseline risk, α1 describes
the difference in risk for men (sexi = −1) versus women (sexi =
+1), α2k describes changes in risk with age (in years) in the kth
interval, and δ(·) is an indicator function with δ(x) = 1 when x
is true and δ(x) = 0 otherwise. We assumed that before age 20,
individuals are not at risk of developing adenomas and allowed
for the following age-risk intervals: A1 = 20, A2 = 50, A3 = 60,
A4 = 70, and A5 = 120.

The prior distributions for α0, α1, α2k, and α3k, k ∈ {1,2,3,

4}, were based on results from a Bayesian meta-analysis of au-
topsy data that modeled a log-linear age effect that remained
constant across age and sex groups (Rutter, Miglioretti, and Yu
2007). The meta-analysis did not provide information about σα ,
so we used a minimally informative uniform prior distribution
for this parameter.

Once adenomas were initiated, we assigned their location
(colon vs. rectum). We specified P(rectum) = 0.09 based on
analysis of data from 9 autopsy studies (Blatt 1961; Chap-
man 1963; Stemmermann and Yatani 1973; Eide and Stals-
berg 1978; Rickert et al. 1979; Williams, Balasooriya, and
Day 1982; Bombi 1988; Johannsen, Momsen, and Jacobsen
1989; Szczepanski, Urban, and Wierzchowski 1992a) and one
colonoscopy study (Szczepanski, Urban, and Wierzchowski
1992b).

2.2 Adenoma Growth Model

We modeled adenoma growth using an extension to the
Janoschek growth curve model (Janoschek 1957; Gille and Sa-
lomon 2000), dij(t) = d∞ − (d∞ − d0)e−λijt, where dij(t) is the
diameter of the jth adenoma in the ith individual at time t after
initiation, d∞ is the maximum possible adenoma diameter, d0 is
the minimum possible adenoma diameter, and λij is the growth
rate for the jth adenoma within the ith individual. This model is
asymmetric, with early exponential growth that slows to allow
an asymptote at d∞.

To improve our ability to obtain prior information from clin-
icians, we reparameterized the growth model in terms of the
time needed for the adenoma to grow to 10 mm in diameter,
t10 mm = − 1

λ
ln( d∞−10

d∞−d0
). We assumed that t10 mm has a type 2

extreme value distribution with cumulative distribution func-
tion given by

F(t) = exp

[
−

(
t

β1

)−β2
]

(2.2)

for t ≥ 0. Because the type 2 extreme value distribution has a
long right tail, with skewness that can persist as the mean moves
away from 0, increasing the proportion of slow-growing ade-
nomas does not also require increasing the proportion of fast-
growing adenomas. The parameter β1 roughly determines the
location of the distribution, and β2 corresponds to the scale.
We modeled separate growth distributions for colon and rectal
adenomas, with parameters (β1c, β2c) and (β1r , β2r), respec-
tively. We chose relatively uninformative prior distributions for
the β’s. Under these priors, the median time to 10 mm ranged
from 1.1 to 144.3 years.
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Table 1. Summary of CRC MSM components

Posterior estimatesPrior
distribution

Estimated
overlapComponent Mean 95% CI

Adenoma risk [eqn. (2.1)]
Baseline log-risk α0 ∼ N(−6.7,0.27) −6.6 (−7.5,−5.9) 0.79
Main sex effect α1 ∼ N(−0.3,0.04) −0.24 (−0.35,−0.14) 0.53
Standard deviation, baseline log-risk σα,∼ U(0.10,3.0) 1.1 (0.35,1.6) 0.46
Age effect, age ∈ [20,50) α20 ∼ TN0(0.03,0.003) 0.037 (0.024,0.049) 0.42
Age effect, age ∈ [50,60) α21 ∼ TN0(0.03,0.003) 0.031 (0.011,0.047) 0.51
Age effect, age ∈ [60,70) α22 ∼ TN0(0.03,0.003) 0.029 (0.011,0.047) 0.50
Age effect, age ≥ 70 α23 ∼ TN0(0.03,0.003) 0.030 (0.011,0.049) 0.51

Time to 10 mm [eqn. (2.2)]
Colon: Location β1c ∼ U(1,100) 28.6 (24.3,34.2) 0.14

Scale β2c ∼ U(1,4) 2.7 (1.1,3.9) 0.89

Rectum: Location β1r ∼ U(1,100) 10.3 (5.9,13.8) 0.11
Scale β2r ∼ U(1,4) 2.7 (1.4,3.9) 0.83

Transition to cancer [eqn. (2.3)]
Men

Colon, size γ1cm ∼ U(0.02,0.05) 0.045 (0.040,0.049) 0.37
Colon, age at initiation γ2cm ∼ U(0.0,0.02) 0.008 (0.002,0.016) 0.64
Rectum, size γ1rm ∼ U(0.02,0.05) 0.035 (0.021,0.049) 0.90
Rectum, age at initiation γ2rm ∼ U(0.0,0.02) 0.010 (0.001,0.019) 0.91

Women
Colon, size γ1cf ∼ U(0.02,0.05) 0.048 (0.044,0.050) 0.23
Colon, age at initiation γ2cf ∼ U(0.0,0.02) 0.005 (0.000,0.013) 0.58
Rectum, size γ1rf ∼ U(0.02,0.05) 0.043 (0.030,0.050) 0.57
Rectum, age at initiation γ2rf ∼ U(0.0,0.02) 0.015 (0.008,0.019) 0.56

Mean sojourn time [Lognormal(μ,τμ)]
Colon μc ∼ U(0.5,5.0) 1.9 (1.0,3.9) 0.55

τc ∼ U(0.1,1.5) 0.80 (0.15,1.4) 0.89
Rectum μr ∼ U(0.5,5.0) 2.7 (1.1,4.7) 0.80

τr ∼ U(0.1,1.5) 0.84 (0.15,1.4) 0.90

NOTE: Shown are calibrated parameters associated with the 4 components of the natural history model: including parameter notation, associated equations, prior distributions and
posterior estimates (mean and 95% credible interval). N(μ,σ ) denotes a Normal distribution with mean μ and standard deviation σ . TN0(μ, sigma) denotes a truncated Normal
distribution with mean μ and standard deviation sigma, based on a Normal distribution restricted to range over (0,∞). U(a,b) denotes a Uniform distribution over (a,b). The estimated
overlap statistic is based on

∫
min(g(θ),h(θ |y))dθ (Garret and Zeger 2000).

2.3 Model for Transition From Adenoma to
Preclinical Invasive Cancer

Our adenoma transition model and priors for associated pa-
rameters are informed by an analysis of colorectal polyp reg-
istry data reported by Nusko et al. (1997) and a recent study of
follow-up colonoscopy that provides evidence suggesting that
the probability of transition depends on an individual’s age at
the time of adenoma onset (Yamaji et al. 2006). We use a log-
normal cumulative distribution function to describe the cumu-
lative transition probability as a function of sex, size, and age at
adenoma onset. For an adenoma initiated at age a in the colon
of a man, the probability of transition to preclinical cancer at or
before size s is given by the lognormal cumulative distribution,

ξc(s,a) = �
({ln(γ1cms) + γ2cm(a − 50)}/γ3

)
, (2.3)

where �(·) is the standard Normal cumulative distribution
function.

Cumulative transition probabilities for adenomas in the male
rectum have the same form and are parameterized by γ1rm,
γ2rm, and γ3. Similarly, the probability of adenoma transition in

women is based on eq. (2.3), parameterized by γ1cf , γ2cf , and
γ3 for adenomas in the colon and γ1r , γ2rf , and γ3 for adenomas
in the rectum. The γ1 parameters rescale adenoma size and are
associated with the magnitude of the survival function. The γ2

parameters allow the probability of transition to increase with
age at adenoma onset. The γ3 parameter is associated with the
standard deviation of the lognormal distribution and determines
the shape of the cumulative probability curve (i.e., how rapidly
the probability of transition increases with size) and is closely
associated with the probability of transition in small (≤10 mm)
adenomas.

Because we lacked sufficient calibration data to estimate γ3,
we set γ3 = 0.5 to restrict the transition probability for small
(≤10 mm) adenomas, based on expert opinion that such small
adenomas are unlikely to undergo malignant transition. Priors
on the remaining transition parameters impose clinically rea-
sonable restrictions on the range of cumulative transition prob-
abilities; for example, cumulative transition probabilities of a
10-mm adenoma can range from 0.0006 to 0.08 for a 50-year-
old and up to 0.28 for a 70-year-old with the maximum age ef-
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fect. Cumulative transition probabilities for a 20-mm adenoma
can range from 0.03 to 0.50 at age 50 up to 0.79 at age 70.

2.4 Model for Time From Preclinical to Clinical
Cancer (Sojourn Time)

We define sojourn time as the time from the onset of pre-
clincal cancer to clinical detection. For individuals with multi-
ple cancers, each sojourn time is assumed to be independent,
and cancer survival is dependent on the earliest clinically de-
tected cancer. Sojourn time is modeled with a lognormal dis-
tribution that depends on whether an adenoma is located in
the colon or in the rectum. Let t represent sojourn time. For
adenomas in the colon, log(t) ∼ Normal(ξc, νc), where ξc and
νc denote the mean and standard deviation of log(t), and t ∼
lognormal with mean μc and standard deviation τcμc, where
μc = exp(ξc + 1

2ν2
c ) and τc = √

exp(ν2
c ) − 1. Sojourn time for

adenomas in the rectum is modeled by a lognormal distribution
with mean μr and standard deviation τrμr . Prior distributions
for mean sojourn time are based on data from the TAMACS
study Chen et al. (1999), which reported an estimated mean so-
journ time of 2.85 years with a 95% confidence interval (CI) of
2.15–4.30. Under our prior distributions for sojourn time para-
meters (μc, τc, μr , τr), sojourn time has a median ranging from
0.3 to 5.0 years, a 5th percentile ranging from 0 to 4.2 years,
and a 95th percentile ranging from 0.6 to 16.5 years.

Once a cancer becomes clinically detectable, we simulate
size and stage at clinical detection and survival. We specify an
overall (unconditional) distribution for tumor size at clinical de-
tection and a conditional distribution of stage given size, using
observed SEER data describing size at detection in 1975–1979
(Surveillance, Epidemiology, and End Results (SEER) Program
(www.seer.cancer.gov) 2004). Little or no CRC screening was
done during this time period. We simulate survival time based
on a Cox proportional hazards model for relative survival. Us-
ing SEER data on cancer survival for cases diagnosed in 1975–
1979, we estimate multiple proportional hazard models us-

ing the CANSURV program (http:// srab.cancer.gov/cansurv/ ).
These proportional hazards models are stratified by location
(colon or rectum) and AJCC stage, with age and sex included as
covariates. Finally, we model other-cause mortality using sur-
vival probabilities based on product-limit estimates for age and
birth year cohorts from the National Center for Health Statistics
Databases (US Life Tables 2000).

2.5 Calibration Data

Table 2 presents calibration data from 4 studies based on
the evaluation of minimally screened asymptomatic individu-
als. These data include the prevalence of adenomas and preclin-
ical cancers in individuals undergoing screening colonoscopy
(Strul et al. 2006), the size of the largest adenoma found in vet-
erans participating in a study of screening colonoscopy (Lieber-
man et al. 2000), the number and size of adenomas found in in-
dividuals participating in a study comparing virtual and optical
colonoscopy (Pickhardt et al. 2003), and the prevalence of ade-
nomas found in individuals participating in a workplace study
of screening colonoscopy (Imperiale et al. 2000).

Data from 2 clinical series inform our adenoma transition
model (Table 3). These studies focused on adenomas and did
not include individual characteristics, such as age and sex. The
first series, reported by Church (2004), describes the pathology
of 5,722 adenomas removed between January 1995 and Sep-
tember 2002 in a single endoscopist’s practice. The second se-
ries, reported by Odom et al. (2005), describes the pathology of
3,225 adenomas removed between January 1999 and December
2003, excluding those obtained from bowel resection and CRC
not associated with a polyp. We calibrate to preclinical cancer
rates in adenomas ≥ 5 mm, because the rates of preclincal can-
cer are near 0 in smaller adenomas (0.05% in the Church data
and 0.03% in the Odom data), which causes problems with em-
bedded simulations (as described in the next section).

Table 2. Calibration data from studies reporting individual-level outcomes

Prevalence of adenomas and preclinical cancers (Strul et al. 2006) (m = 50,000)
Age range Mean age (SD) % male Sample size Prevalence

40–49 49.2 (3.0) 49.2% 183 0.10
50–75 61.2 (7.6) 47.5% 917 0.22
76–80 77.7 (1.4) 37.7% 77 0.29

Size of largest adenoma given at least 1 adenoma (Lieberman et al. 2000) (m = 10,000) Proportion of 1,411
adenomas ≥ 10 mmAge range Mean age (SD) % male Sample size

50–75 61.2 (7.3) 96.8% 3121 0.23

Overall number and size distribution of adenomas (Pickhardt et al. 2003) (m = 10,000)
Age range Mean age (SD) % male Sample size Size distribution of 554 adenomas

40–79 57.8 59% 1233 < 6 mm: 0.620
[6,10) mm: 0.287

≥ 10 mm: 0.092

Number of preclinical cancers (Imperiale et al. 2000) (m = 50,000)
Age range Mean age (SD) % male Sample size Prevalence

50+ 59.8 (8.3) 59% 1994 0.0035

NOTE: Age is given in years. m indicates the number of embedded simulations used to estimate the data parameters for each Metropolis–Hastings step.

http://www.seer.cancer.gov
http://srab.cancer.gov/cansurv/
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Table 3. Calibration studies reporting adenoma transition to preclinical disease

Source Sample size Preclinical cancer rate by adenoma size

Church (2004) 6–10 mm >10 mm
1,341 1/666 (0.15%) 21/675 (3.1%)

Odom et al. (2005) 6–10 mm 11–20 mm >20 mm
374 1/152 (0.65%) 3/191 (1.6%) 6/31 (19.4%)

NOTE: Data parameters associated with multinomial distributions are based on m = 200,000 embedded simulations.

SEER colon and rectal cancer incidence rates in 1975–1979
are a key calibration component (Table 7, Section 5.2). The in-
cidence rates reported are per 100,000 individuals. These rates
are based on the first observed invasive colon or rectal cancer
during 1975–1979, the last period before the dissemination of
CRC screening tests.

3. BAYESIAN MICROSIMULATION MODEL
CALIBRATION

We propose a MCMC calibration (MCMCC) approach that
is similar to MCMC estimation methods for Bayesian analysis
(Gelman et al. 1995). Parametric data analysis has two basic
components: data, y, and a data distribution that is conditional
on some unknown parameter vector, f (Y|θ). Bayesian models
add a third component, the prior distribution of the unknown
parameters, θ ∼ π(θ).

In the context of MSM calibration, θ represents MSM para-
meters, and prior distributions are specified for these θ . But the
distribution of the calibration data, y ∼ f (Y|g(θ)), is parameter-
ized by an unknown function of MSM parameters, g(θ).

3.1 Markov Chain Monte Carlo Calibration

Let M(θ) denote a MSM parameterized by the vector θ . We
assume that the MSM is composed of K separate components
and that the corresponding parameter vectors are distinct and
a priori mutually independent. Let Mi(θi) denote the ith model
component and let πi(θi) denote the prior distribution associ-
ated with θi, where θ ′ = (θ ′

1, θ
′
2, . . . , θ

′
K).

Let Y = {y1, . . . , yN} denote the full set of calibration data
from N independent sources. We assume that each yj has a
known distributional form, yj|θ ∼ fj(gj(θ)). In general, calibra-
tion data are statistics from published studies that can be de-
scribed using distributions for count and categorical data, such
as the binomial, multinomial, and Poisson distributions.

We calibrate θ by simulating draws from the posterior dis-
tribution of θ given Y , h(θ |Y), using MCMC with Metropolis–
Hastings (MH) steps within Gibbs iterations. Gibbs iterations
are based on the distinct parameter sets associated with each of
the K model components. One complete iteration of the algo-
rithm involves sequentially drawing candidate values (θ∗

i ) and
accepting or rejecting these candidates for each of the K compo-
nents (Smith and Roberts 1993). We use a random-permutation
sweep approach to improve the mixing of the sampler (Roberts
and Sahu 1997). Within Gibbs steps, we use a random-walk
MH algorithm to approximately sample from the full condi-
tional distributions, h(θi|θ(−i),Y) (Tierney 1994), where θ(−i)

denotes the parameter vector excluding the ith component.

For a symmetric jumping distribution, such as the Normal
centered at the current value, the MH algorithm accepts θ∗

i
based on the transition probability α(θi, θ

∗
i ), where

α(θi, θ
∗
i ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
min(ri(θi, θ

∗
i ),1) if πi(θi)

N∏
j=1

fj(yj|θ) > 0

1 if πi(θi)

N∏
j=1

fj(yj|θ) = 0

and

ri(θi, θ
∗
i ) = h(θ∗

i , θ(−i)|Y)

h(θ |Y)
= πi(θ

∗
i )

∏N
j=1 fj(yj|θ∗

i , θ(−i))

πi(θi)
∏N

j=1 fj(yj|θi)
.

In most data analyses, calculating ri(θi, θ
∗
i ) is straightfor-

ward, because both the priors, π(θ), and the data distribu-
tions, f (y|θ), are known and have closed form. In the case of
MSM calibration, ri(θi, θ

∗
i ) cannot be calculated directly, be-

cause gj(θ) are unknown functions of θ . For example, when
calibrating to observed cancer incidence, the associated proba-
bility of incident clinical cancer contains information about the
full disease process, described by multiple MSM parameters,
from the risk of an adenoma through the transition to clinically
detected cancer, and the exact functional form of this relation-
ship is unknown.

We propose an approximate MH algorithm that includes an
embedded simulation to estimate g(θ). We assume that the
MSM, M(θ), and data distributions, f (y|g(θ)), are specified
correctly and use M(θ) to simulate m draws from fj(yj|gj(θ)):
{ỹj1, . . . , ỹjm}. Using the simulated sample, we calculate the
maximum likelihood estimate of gj(θ), denoted by ĝj(θ); for
example, for Poisson and binomial distributions, we estimate
ĝj(θ) = 1

m

∑
ỹji. To simulate draws from h(θ |Y), we use the

Metropolis-within-Gibbs steps described earlier, substituting
fj(yj|ĝj(θ)) for fj(yj|gj(θ)). The resulting transition probability
function, α̂(θ, θ∗), is based on r̂(θi, θ

∗
i ), where

r̂i(θi, θ
∗
i ) = πi(θ

∗
i )

∏N
j=1 fj(yj|ĝj(θ

∗
i , θ(−i)))

πi(θi)
∏N

j=1 fj(yj|ĝj(θi))
.

To maintain ergodicity of the chain, we obtain indepen-
dent estimates of ĝ(θ), with a new embedded simulation for
both candidate and current parameter values at each itera-
tion. Heuristically, this repeated simulation is required because
f (y|ĝ(θ)) may be large by chance. The MH algorithm tends to
accept candidate values associated with large estimated like-
lihoods, including both those with large true likelihoods and
those with small true likelihoods that by chance are estimated
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to be large. Without repeated simulation of g(θ) at both candi-
date and current values of θ , the sampler can get stuck where the
true likelihood is small but an estimated likelihood is large. In
the Appendix we show that this approach, based on an approxi-
mate jumping rule, converges to the target posterior distribution
as m increases.

4. SIMULATION STUDY

We performed a simulation study to explore the characteris-
tics of MSM parameter estimates based on MCMCC with finite
m and fixed chain length, focusing on the effects of the num-
ber of embedded simulations (m) and the number of estimated
MSM parameters on bias and credible interval length and cover-
age. Our simulation study was based on a relatively simple hy-
pothetical MSM describing transitions among 4 disease states
with 6 potentially unknown parameters.

4.1 Hypothetical Microstimulation Model

Under the hypothetical MSM, individuals begin in a disease-
free state (S0) and may progressively transition through 3
disease-related states (S1, S2, and S3), with transition to a
death state (Sd) possible from any of these 4 states. We se-
lect true parameter values so that the hypothetical model pro-
duces prevalence patterns that are similar to those seen for can-
cers, with a precursor state (S1) that is relatively common and
preclinical and clinical cancer outcomes (S2 and S3) that are
rare. Let tk indicate the transition time from Sk−1 to Sk, and
let td indicate the transition time from S0 to Sd . We assume
that t1 ∼ exponential(λ1), where log(λ1) ∼ N(�1, σ1). Given
a transition to S1, individuals have the potential to transition
to S2 with probability p2. For individuals with this potential,
we assume t2 ∼ exponential(λ2) and t3 ∼ lognormal with mean
μ3 and standard deviation τ3μ3. Finally, td ∼ Gumbel(λd, σd).
Although the time scale is arbitrary, we refer to units of time
as years and to a simulated individual’s time since initiation
as his or her age. True values for model parameters are set
to �1 = 4, σ1 = 0.5, p2 = 0.05, λ2 = 10, μ3 = 3, σ3 = 0.5,
λd = 65, and σd = 15. Associated population characteristics
based on this hypothetical MSM, calculated for 10 million sim-
ulated individuals, are shown in Table 4. Under the hypothetical
true MSM, membership in S1 is relatively common and preva-
lence increases with age, but membership in S2 and transition
into S3 are rare. In this sense, the hypothetical MSM is similar
to CRC, in which adenomas are relatively common and preva-
lence increases with age, but preclinical cancer and transition
to clinically detectable cancer are rare.

Table 4. Estimated population characteristics for the hypothetical
3-state MSM, based on 10,000,000 simulated individuals

Time, T P(∈ S1) P(∈ S2) P(
∑3

i=1 ti ∈ [T,T + 10)) P(tD > T)

10 0.18 0.0014 0.059 1.00
20 0.31 0.0018 0.064 1.00
30 0.42 0.0016 0.057 0.99
40 0.51 0.0014 0.049 0.99
50 0.57 0.0011 0.043 0.93
60 0.63 0.0010 0.038 0.75
70 0.68 0.0008 0.033 0.51
80 0.71 0.0006 0.029 0.31

NOTE: For i ∈ (1,2,3), ti is time from Si−1 to Si , and tD is the time to SD , the death
state.

4.2 Simulated Calibration Data

For each run of our simulation study, we used the hypotheti-
cal MSM model with the true MSM parameter values to gener-
ate 3 calibration data sets. Calibration set 1 describes the num-
ber of individuals in S1 at age 10, 20, 30, 40, and 50 years,
with 250 individuals at each age. Calibration set 2 describes the
number of individuals in S2 at age 10, 20, and 50 years, based
on 5,000 individuals at each age. Calibration set 3 describes
the proportion of individuals (per life year) who transition to
S3 within 20-year age intervals, [0,20), [20,40), [40,60), and
[60,80), based on a cohort of 10,000 individuals.

A subset of simulations examines the effect of additional data
on parameter estimates by adding a fourth calibration data set.
Calibration set 4 provides the categorical distributions of t2 and
t3 across 5 intervals (t2: [0,2), [2,5), [5,10), [10,15), and ≥15;
t3: [0,1), [1,2), [2,3), [3,4), and ≥4) for 500 individuals tran-
sitioning from S1 to S2 and from S2 to S3, respectively.

4.3 Simulation Study Design

We examined 4 estimation scenarios that vary in terms of the
number of MSM parameters estimated and the calibration sets
used for estimation. Scenarios 1, 2, and 3 all use calibration sets
1, 2, and 3, differing only in terms of the number of MSM pa-
rameters estimated. Scenario 1 examines estimation of �1 and
σ1. Scenario 2 examines estimation of �1, σ1, p2, and σ2. Sce-
nario 3 examines estimation of all 6 model parameters. Scenario
4 is identical to scenario 3, but with the addition of calibration
data set 4.

We used different embedded simulation sizes to estimate the
data parameters associated with each calibration data set. For
calibration set 1, we simulated m1 individuals who are distrib-
uted equally across the 5 corresponding calibration ages. For
calibration set 2, we simulated m2 individuals who are distrib-
uted equally across the 3 corresponding calibration ages. For
calibration set 3, we simulated a cohort of m3 individuals. For
calibration set 4, we fixed the embedded simulation size, sim-
ulating 5,000 individuals undergoing each transition (S1 to S2
and S2 to S3). We examined 3 combinations of embedded simu-
lation sizes: small (m1 = 6,250, m2 = 75,000, m3 = 50,000),
medium (m1 = 12,500, m2 = 150,000, m3 = 100,000), and
large (m1 = 25,000, m2 = 300,000, m3 = 200,000).

We simulated MCMCC estimation for scenario 1 (estimation
of S1 parameters) using all 3 embedded simulation sizes, for
scenarios 2 and 3 using medium and large embedded simulation
sizes, and for scenario 4 using medium embedded simulation
sizes.

4.4 Implementation of Markov Chain Monte
Carlo Calibration

In this simulation study, the MSM was correctly specified,
and we set unestimated MSM parameters to their true values.
We specified uniform priors for all estimated parameters. We
chose the prior mean to be twice the true value, so that (prior
mean − true mean)/true mean equals 1 for all parameters and
100% bias corresponds to an average estimate of posterior mean
that is equal to the prior mean. We selected starting values to
be 3 times the true value, so that true value < prior mean <

starting value for all parameters. Table 5 gives the true values
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Table 5. Hypothetical MSM parameters: true values, starting values
used for MCMC calibration, and the mean and range of

associated prior distributions

True Prior Starting
valueParameter value mean Prior range

�1 4 8 12 [0.1,16.1]
σ1 0.5 1 1.5 [0.0001,2.0001]
p2 0.05 0.1 0.15 [0.0001,0.2001]
λ2 10 20 30 [0.1,40.1]
μ3 3 6 9 [1,13]
τ3 0.5 1 1.5 [0.001,2.001]

of hypothetical MSM parameters, their prior ranges and means,
and starting values used for MCMC calibration.

The parameter estimates were based on a single chain with
32,500 iterations: 5,000 iterations for burn-in, the next 2,500
iterations to estimate the between-parameter covariance (based
on every fifth iteration), and every fifth iteration from the last
25,000 to estimate parameters. We took the same approach
when calibrating our MSM for CRC, using initial Gibbs steps
to estimate the correlation matrix of estimated parameters and
subsequent steps based on sampling the full parameter vector
using this correlation matrix to direct the random-walk steps.
The parameters were estimated by the mean across simulated
posterior draws, and the 95% CIs were estimated based on the
upper and lower 2.5th percentiles across draws.

4.5 Simulation Results

For each combination of scenario and embedded sample size,
we simulated 1,000 runs. For each run, we simulated calibration
data and used MCMCC to estimate the parameters. Using these
1,000 estimates, we calculated the percent bias (i.e., bias as a
percentage of the true parameter value), the length of the 95%
CI, and the coverage of the 95% CI. We assessed the identifi-
ability of model parameters by comparing prior and posterior
distributions using an estimated overlap measure proposed by
Garrett and Zeger (2000),

∫
min(π(θ),h(θ |y))dθ . This mea-

sure of overlap ranges from 0 to 1, with values closer to 1 cor-
responding to greater similarity between the specified prior and
estimated posterior distributions.

Table 6 gives results from the simulation study. Increasing
embedded simulation sizes (m) reduced the percent bias and de-
creased the length of the 95% CIs, although the changes tended
to be small. Under scenario 1, decreases in percent bias were
greatest for the initial increase from small to medium m; an-
other doubling of m (from medium to large) resulted in only
minor changes in percent bias. An estimated increase in ab-
solute percent bias of σ̂1 was small (0.04 times the standard
deviation of the difference, SDdiff ), reflecting the variability of
σ̂1, which did not change with increasing m. Under scenarios 2
and 3, increasing m from medium to large resulted in slight de-
creases in percent bias, ranging from 0.02 times SDdiff for μ̂3
estimated under scenario 3 to 0.12 times SDdiff for p̂2 estimated
under either scenario 2 or scenario 3.

Across scenarios 1, 2, and 3, increasing m was associated
with modest reductions in 95% CI length. Under scenario 1,
increasing m from small to medium also decreased the variabil-
ity of the 95% CI length. In most cases (30/32), the 95% CIs
included the true values for at least 94% of the runs.

The overlap statistics of Garret and Zeger (GZ) were gener-
ally largest for parameters with largest percent bias and smallest
for those with small bias. For example, under scenario 3, τ̂3 had
a percent bias > 130% and a GZ statistic > 0.80, indicating
little difference between the prior and posterior distributions.
When additional data were used for estimation (scenario 4), the
percent bias of τ̂3 dropped to 1.9%, and the mean GZ statis-
tic was 0.11, indicating identifiability of τ3 under this scenario.
Similar patterns were seen for μ3, λ2, and, to a lesser extent,
p2. In all cases, �1 appeared to be well informed by calibration
data, whereas σ1 appeared to be less well informed by the data
and hence more reliant on the prior distribution. Simulated cal-
ibration data describes summaries across individuals and thus
contain little information about the between-individual variabil-
ity that σ1 models. GZ statistics were most sensitive to the data
used for calibration and were insensitive to the embedded sim-
ulation size, m. In this simulation study, the GZ statistics were
not affected by the number of parameters estimated.

These simulations indicate that our proposed MCMCC ap-
proach can provide unbiased estimates of informed parameters
with a finite number of draws and embedded simulations. They
also demonstrate that GZ statistics are a useful measure of pa-
rameter identifiability.

5. APPLICATION OF MARKOV CHAIN MONTE CARLO
CALIBRATION TO OUR COLORECTAL CANCER

MICROSIMULATION MODEL

Parameters associated with our MSM for CRC are grouped
into 4 categories corresponding to our 4 model components:
adenoma risk, adenoma growth, cancer transition, and cancer
detection (Table 1). Initially, each Gibbs iteration updated the 4
parameter vectors in random order, updating the adenoma risk
and transition parameter vectors twice in each pass. This un-
equal sampling approach improved the mixing of the sampler,
because the relatively high dimension of the adenoma risk pa-
rameter vector resulted in lower acceptance rates of the associ-
ated MH steps. After several thousand iterations, we switched
to a single draw of all parameters using a covariance matrix for
the random walk based on earlier Gibbs steps. This approach
saved a significant number of computational steps required to
estimate the data parameters, g(θ).

We ran 2 MCMC chains, beginning at different locations
in the parameter space. We evaluated convergence using trace
plots and the corrected potential scale-reduction factor based
on the ratio of within- and between-chain variability (Brooks
and Gelman 1998). Once estimation was complete, we assessed
the identifiability of model parameters by comparing prior and
posterior distributions visually and using the Garrett and Zeger
(2000) overlap statistic, described in Section 4.5.

5.1 Data Likelihoods

We assumed that data from different sources and differ-
ent individuals within sources are independent. We modeled
prevalence data using a binomial distribution (Imperiale et al.
2000, 2002; Lieberman et al. 2000; Surveillance, Epidemiol-
ogy, and End Results (SEER) Program (www.seer.cancer.gov)
2004; Strul et al. 2006). For the SEER data, we assumed that the
number of clinical CRC cases in each age–sex–location group
follow independent binomial distributions. For the Pickhardt

http://www.seer.cancer.gov
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Table 6. Percent bias, length, and coverage of 95% CIs and Garrett and Zeger (2000) “overlap” statistics associated with MSM parameter
estimates derived using MCMCC

95% CIEmbedded
simulation size Percent bias Length Coverage Overlap statistic

Scenario 1: 2 parameters estimated
�1 Small 2.2 (17.7) 0.41 (0.97) 0.99 0.04 (0.08)

Medium 0.1 (1.2) 0.26 (0.02) 0.99 0.03 (0.003)
Large 0.1 (1.1) 0.23 (0.02) 0.99 0.03 (0.003)

σ1 Small 3.7 (29.8) 0.93 (0.16) 0.99 0.51 (0.07)
Medium −1.1 (28.2) 0.84 (0.10) 0.99 0.47 (0.05)
Large −2.8 (28.1) 0.80 (0.09) 0.99 0.45 (0.05)

Scenario 2: 4 parameters estimated
�1 Medium 1.2 (1.8) 0.37 (0.06) 0.97 0.04 (0.01)

Large 1.1 (1.6) 0.33 (0.05) 0.98 0.04 (0.01)

σ1 Medium 45.2 (47.9) 1.3 (0.23) 0.97 0.65 (0.09)
Large 38.2 (48.3) 1.2 (0.22) 0.96 0.62 (0.09)

p2 Medium 7.9 (7.6) 0.02 (0.005) 0.98 0.16 (0.03)
Large 6.7 (7.3) 0.02 (0.004) 0.98 0.14 (0.02)

λ2 Medium 33.2 (33.5) 16.67 (4.62) 0.94 0.45 (0.09)
Large 28.6 (33.9) 14.85 (4.17) 0.93 0.42 (0.09)

Scenario 3: 6 parameters estimated
�1 Medium 1.1 (1.8) 0.36 (0.06) 0.97 0.04 (0.01)

Large 1.0 (1.7) 0.32 (0.06) 0.96 0.04 (0.01)

σ1 Medium 44.9 (49.1) 1.30 (0.24) 0.97 0.65 (0.10)
Large 36.8 (51.0) 1.19 (0.23) 0.95 0.61 (0.10)

p2 Medium 7.5 (7.7) 0.02 (0.005) 0.97 0.16 (0.03)
Large 6.2 (7.4) 0.02 (0.004) 0.97 0.14 (0.02)

λ2 Medium 27.8 (34.1) 16.0 (4.44) 0.95 0.45 (0.09)
Large 23.7 (34.0) 14.2 (4.09) 0.94 0.41 (0.09)

μ3 Medium 65.9 (30.4) 7.2 (0.97) 0.94 0.62 (0.07)
Large 65.1 (32.8) 6.8 (1.02) 0.91 0.60 (0.08)

τ3 Medium 134.9 (24.1) 1.8 (0.09) 0.99 0.84 (0.06)
Large 133.7 (26.9) 1.8 (0.09) 0.99 0.83 (0.06)

Scenario 4: 6 parameters estimated with additional data
�1 Medium 0.8 (5.7) 0.33 (0.19) 0.98 0.04 (0.01)
σ1 Medium 10.7 (32.2) 0.95 (0.14) 0.99 0.51 (0.06)
p2 Medium 2.6 (8.6) 0.02 (0.004) 0.99 0.11 (0.02)
λ2 Medium 3.2 (10.2) 3.7 (0.94) 0.99 0.13 (0.03)
μ3 Medium 1.6 (6.5) 0.61 (0.27) 0.99 0.08 (0.03)
τ3 Medium 1.9 (5.8) 0.15 (0.03) 0.99 0.11 (0.01)

NOTE: Results are based on 1,000 runs per combination of scenario and embedded simulation sizes. Means are shown with standard deviations in parentheses. The true values used to
simulate data are �1 = 12, σ1 = 1.5, p2 = 0.15, λ2 = 30, μ3 = 9, and τ3 = 1.5. Further details are provided in Section 4.

et al. (2003) data, we modeled the total number of adenomas
across all screened individuals using a Poisson distribution, and
modeled the distribution of adenoma size given the total num-
ber of adenomas using a multinomial distribution. We modeled
the number of preclinical cancers among adenomas grouped by
size (Church 2004; Odom et al. 2005) using a multinomial dis-
tribution. Tables 2 and 3 note the number of embedded simula-
tions, m, used to estimate data-likelihood parameters. We sim-
ulated 2,000,000 individuals to estimate SEER rates. Each em-
bedded simulation corresponds to 1 simulated life history (i.e.,
1 pseudoindividual). We chose the number of embedded simu-
lations based on 3 criteria: observed rates, with larger m for rare

events; our desire to obtain both point and interval estimates;
and limitations on computation time.

When calibrating to colonoscopy data (Imperiale et al. 2000,
2002; Lieberman et al. 2000; Strul et al. 2006), we incorpo-
rated the accuracy of colonoscopy into the embedded simula-
tions. We assumed a simple quadratic model for miss rates:
P(miss|size = s < 20 mm) = 0.34 − 0.035s + 0.0009s2 and
P(miss|size = s ≥ 20 mm) = 0, producing miss rates consis-
tent with observed findings (Hixson et al. 1990; Rex et al.
1997). For the study comparing virtual and optical colonoscopy
(Pickhardt et al. 2003), we assumed that all adenomas were
found, because individuals underwent both procedures and cal-
ibration data include adenomas found by either modality.
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The parameters associated with data likelihoods, π(θ),
depend on both MSM parameters and the age- and sex-
distribution of the data modeled. For SEER data [Surveillance,
Epidemiology, and End Results (SEER) Program (www.seer.
cancer.gov) 2004], embedded simulations used the U.S. age and
sex distribution in 1978. For other published data, we made as-
sumptions about the age and sex distribution of study subjects.
In general, studies described their samples by reporting the per-
centage of men and women, their average age, and the standard
deviation of age. Unless information by sex was provided, we
assumed the same age distribution for men and women. We
modeled age distributions (used for embedded simulations) us-
ing a truncated Normal distribution based on the reported mean,
standard deviation, and age range. We used a grid search to se-
lect a truncated Normal distribution with a mean and standard
deviation closest to the observed values, based on a simple dis-
tance measure. For the adenoma case series data (Church 2004;
Odom et al. 2005), no information on either age or sex was pro-
vided; for these 2 studies, we assumed an equal probability of
being male and female, restricted individuals to be under age
90 years, and specified a truncated Normal distribution on age
with a mean of 65 and standard deviation of 5.

5.2 Calibration Results

We began our MCMCC algorithm with 2 chains initiated
at different locations in the parameter space. We ran these for
14,500 iterations with block sampling of parameters, followed
by 75,000 additional iterations based on draws of the full para-
meter vector. Drawing the full parameter vector reduces com-
putation due to the embedded simulation, but it requires a rea-
sonable estimate of the posterior covariance matrix for MSM
parameters, because this guides the direction of multidimen-
sional random-walk steps. We evaluated convergence using vi-
sual assessment of trace plots and Gelman and Rubin statis-
tics for multiple chains (Gelman and Rubin 1992). The chain
was slowly mixing but appeared to converge, with Gelman and
Rubin statistics ranging from 1.00 to 1.05 for all parameters.
We based the estimation on 6,000 iterations resulting from sys-
tematically selecting every 25th iteration from the last 75,000
iterations from each chain. Because calculation of prediction
intervals is computationally intensive, we based the predictive
values on 3,000 iterations resulting from systematically select-
ing every 50th iteration.

Table 1 gives estimated posterior means, 95% CIs, and over-
lap statistics for all MSM parameters. The estimated poste-
rior distribution of baseline adenoma risk was similar to our
prior distribution. Posterior distributions for all other adenoma
risk parameters were shifted from prior distributions. Adenoma
growth means differed from the wide priors that we specifiedl
however, posterior distributions for scale parameters were simi-
lar to the uniform distributions specified, indicating that the data
provide little information about variation in adenoma growth.
Posterior distributions for adenoma transition parameters were
shifted from specified priors, except for posterior distributions
associated with the transition of rectal adenomas in men. This
highly parameterized transition component, with different para-
meters by sex and location, was required to obtain adequate fit
to SEER cancer incidence data. Overlap statistics indicate that

information about sojourn time came largely from the prior dis-
tributions, with the exception of mean sojourn time associated
with colon cancers.

Table 7 gives estimated posterior means together with 95%
predictive intervals (PIs) for the MSM model parameters. In
general, the MSM demonstrated good prediction of calibra-
tion data, particularly for SEER cancer incidence rates. For the
SEER cancer rates, estimates are similar to observed data, and
PIs cover the observed values, except for rectal cancer rates in
men age 20–49 (observed, 2.28 per 100,000; estimated, 3.23
per 100,000; 95% PI = 2.33–4.37). The predicted adenoma
prevalence was somewhat high compared with that found by
Strul et al. (2006), although predicted adenoma counts across
individuals were similar to those reported by Pickhardt et al.
(2003), suggesting that model fit might be improved by incor-
porating additional data describing the number of adenomas
within individuals. Predicted adenoma sizes were close to ob-
served data, but with more large adenomas than found by ei-
ther Lieberman et al. (2000) or Pickhardt et al. (2003). Wide
PIs demonstrate uncertainty in predicted transition probabili-
ties. The model accurately predicted preclinical cancer rates in
individuals, but predicted too many cancers in small adenomas
and too few in large adenomas.

6. DISCUSSION

We have proposed an MCMCC method based on a random-
walk MH algorithm that uses an estimated transition rule. Our
proposed approach is similar to an approximate MCMC method
proposed by Christen and Fox (2005), who based their tran-
sition rule on an approximation to the data likelihood. In the
scenario that those authors examined, computation of the like-
lihood was possible but expensive. When calibrating a com-
plex MSM, the likelihood could not be calculated exactly, be-
cause the associated data parameters were unknown functions
of MSM parameters. Our MCMCC method uses simulation to
approximate these data parameters. Although MCMCC is com-
putationally intensive, the price of computation is offset the ad-
vantages of MCMCC over previously proposed MSM calibra-
tion methods.

MCMCC provides 2 distinct avenues for incorporating infor-
mation into the MSM: via prior distributions for MSM parame-
ters and via calibration data. Specification of prior distributions
formalizes the process of incorporating expert information into
MSMs. Uniform priors can be used when little prior knowl-
edge is available. Priors are updated using calibration data to
obtain posterior estimates. Care must be taken when choosing
priors for parameters that are not informed by calibration data,
because there is little or no updating of the prior information.
Overlap statistics, used to compare prior and posterior distribu-
tions, provide information on how resulting posterior distribu-
tions differ from prior beliefs. These overlap statistics also pro-
vide insight into parameter identifiability. This information is
invaluable, because it can serve to temper findings from MSM
studies, indicating areas in which variability in model parame-
ters is especially important to consider. Results describing pa-
rameter identifiability also point out areas requiring further re-
search to inform the disease processes.

Simultaneous calibration to multiple data sources via
MCMCC is straightforward, and the algorithm implicitly

http://www.seer.cancer.gov
http://www.seer.cancer.gov
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Table 7. Model fit to calibration data

Observed Estimated 95% predictive interval

Adenoma prevalence
Among individuals 40–49 years old1 0.10 0.14 (0.09, 0.21)
Among individuals 50–75 years old1 0.22 0.27 (0.21, 0.33)
Among individuals 76–80 years old1 0.29 0.38 (0.25, 0.52)
Number of adenomas found in 1,233 individuals2 554 575 (450, 747)

Adenoma size
Percent of individuals with an

adenoma ≥10 mm, given ≥1 adenoma3 0.23 0.28 (0.22, 0.35)
Percent of adenomas <6 mm2 0.62 0.61 (0.53, 0.68)
Percent of adenomas [6,10) mm2 0.29 0.22 (0.16, 0.28)
Percent of adenomas ≥10 mm2 0.09 0.17 (0.12, 0.22)

Preclinical cancers
Among employed individuals ≥504 0.004 0.003 (0.001, 0.006)
Among adenomas 6–10 mm5 0.002 0.008 (0.000, 0.028)
Among adenomas >10 mm5 0.030 0.048 (0.000, 0.109)
Among adenomas 6–10 mm6 0.0065 0.008 (0.000, 0.049)
Among adenomas 11–20 mm6 0.0160 0.036 (0.000, 0.133)
Among adenomas >20 mm6 0.19 0.14 (0.00, 0.667)

Clinical cancers in 1975–1979, per 100,0007

Colon cancer in women
20–49 y.o. 4.8 4.4 (3.1, 5.8)
50–59 y.o. 43.3 45.5 (37.9, 53.1)
60–69 y.o. 100.7 99.3 (88.1, 111.9)
70–84 y.o. 216.7 207.3 (181.5, 240.7)

Rectal cancer in women
20–49 y.o. 1.87 2.0 (1.4, 2.8)
50–59 y.o. 20.4 18.6 (14.6, 22.6)
60–69 y.o. 42.5 39.7 (32.8, 46.7)
70–84 y.o. 73.9 82.1 (66.8, 97.2)

Colon cancer in men
20–49 y.o. 4.51 4.2 (2.9, 5.6)
50–59 y.o. 45.9 50.6 (41.4, 60.1)
60–69 y.o. 121.4 120.0 (106.2, 136.8)
70–84 y.o. 268.4 263.4 (224.9, 306.4)

Rectal cancer in men
20–49 y.o. 2.3 3.2 (2.3, 4.4)
50–59 y.o. 30.0 29.8 (24.1, 35.5)
60–69 y.o. 71.4 63.2 (53.5, 72.4)
70–84 y.o. 128.0 123.8 (101.5, 145.9)

NOTE: 1. Strul et al. (2006); 2. Pickhardt et al. (2003); 3. Lieberman et al. (2000); 4. Imperiale et al. (2000); 5. Church (2004); 6. Odom et al. (2005); 7. Surveillance, Epidemiology,
and End Results (SEER) Program (www.seer.cancer.gov) (2004).

weights calibration data based on sampling variability.
MCMCC provides both point and interval estimates of model
parameters, as well as functions of parameters, offering flexi-
bility in the presentation of results. Calibration methods based
on a grid search to obtain the best fit to data do not provide
interval estimates. When applying frequentist maximum likeli-
hood approaches, lack of model identifiability can hamper the
ability to obtain interval estimates.

We have not discussed estimation based on direct Monte
Carlo simulation of the likelihood, which could be imple-
mented using embedded simulation to obtain estimates of data-
likelihood parameters used in calculating likelihoods. Such a
Monte Carlo approach could provide maximum likelihood es-

timates of MSM parameters. But because the functional form
of the likelihood is not readily available, the information matrix
also is not readily available, and thus Monte Carlo estimates
cannot directly provide measures of precision. In any case, as-
ymptotic precision likely is not relevant for MSM estimation
when only limited calibration data are available.

The accuracy of MSM models depends on appropriate mod-
eling of disease processes. Between-model comparisons (Berry
et al. 2005) offer one approach to model assessment. Model
checking based on both calibration and validation data also pro-
vides information on model adequacy. How closely the model
should calibrate to observed data is unclear, especially when
calibration data are variable and may provide conflicting infor-

http://www.seer.cancer.gov
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mation. Prediction intervals from our MSM cover 15 of the 16
SEER cancer rates considered to be key calibration points, as
well as 12 of 14 other calibration data points. Is this enough?
It depends on how modelers trade-off concerns about possibly
overparameterizing and overfitting calibration data relative to
the importance of exactly replicating observed or expected re-
sults. We lean toward model parsimony. For complex disease
processes, even a relatively parsimonious model may require
the inclusion of parameters that are not well informed by avail-
able data.

The data available to inform MSMs often span decades, in
this case ranging from SEER cancer incidence data from 1975–
1979 to colonoscopy data collected in 2002–2003. Much of
the information needed to calibrate the model parameters be-
came available only after the advent of colonoscopy. We used
all available data and assumed no secular trends in MSM para-
meters. Other assumptions are possible; for example, we could
make stronger prior assumptions about model parameters and
restrict our calibration data to specific date ranges, or could
make assumptions about secular trends in adenoma parameters
and use all available data.

Once MSM parameters are calibrated to reproduce known
or expected results, MSMs may be used to examine the im-
pact of potential interventions, including the cost-effectiveness
of interventions (Ness et al. 2000; Will et al. 2001; Vogelaar
et al. 2006). These results may in turn influence public policy
decisions. Because of their potential policy impact, MSM as-
sumptions and calibration methods should be clearly described
to allow for their critical evaluation. Ideally, point estimates of
effects should be accompanied by measures of precision so that
policy makers can assess the strength of evidence models pro-
vide.

APPENDIX: CONVERGENCE OF THE APPROXIMATE
MARKOV CHAIN MONTE CARLO

Here we show that our proposed MCMCC approach converges to
the target distribution, h(θ |y), by showing that the detailed balance
condition holds asymptotically, as m → ∞, when ĝ(θ) is a maxi-
mum likelihood estimator. The detailed balance condition is given by
h(θ |y)α(θ, θ∗) = h(θ∗|y)α(θ∗, θ). Detailed balance of a Markov chain
is a sufficient, but not necessary, condition for reversibility and con-
vergence to h(θ |y) (Casella and Robert 1999). Detailed balance for the
MH algorithm is easy to confirm when g(θ) is known.

When r is estimated, the probability of transition from θ to θ∗, un-
conditional on r̂, equals P(r̂ > 1) + E(r̂|r̂ ≤ 1)P(r̂ ≤ 1), where the ex-
pectation results from integration over the distribution of r̂. Note that
E(α̂|r̂ > 1) = 1 and E(α̂|r̂ ≤ 1) = E(r̂|r̂ ≤ 1). When r is estimated, the
asymptotic behavior of the MCMC depends on the distribution of the
estimators, r̂ and 1/r̂. Next, we show that r̂ and 1/r̂ are asymptotically
Normally distributed.

Let G = (g(θ),g(θ∗)) and Ĝm = (ĝm(θ), ĝm(θ∗)). Assume that
θ and θ∗ are fixed but arbitrary, and given θ and θ∗, ĝm(θ) and
ĝm(θ∗) are independent. As m → ∞,

√
m, Ĝm converges in law

to Normal(G,V), where V is a diagonal 2 × 2 matrix with di-
agonal terms v11 = var(y|g(θ)) and v22 = var(y|g(θ∗)). If ṙ(G) =
(∂r/∂gi(θ), ∂r/∂gi(θ

∗)) is continuous in a neighborhood of G then,
given ĝm(θ) and ĝm(θ∗), the sequence

√
m r(Ĝm) converges in law to

a Normal distribution centered at r(G), with variance

r2
[(

∂f (y|g(θ))/∂g(θ)

f (y|g(θ))

)2
var(y|g(θ))

+
(

∂f (y|g(θ∗))/∂g(θ∗)

f (y|g(θ∗))

)2
var(y|g(θ∗))

]
(Ferguson 1996). Similarly, for large m, 1/r(Ĝm) is approximately
Normally distributed with mean 1/r(G).

Given the asymptotic Normality of r̂ and 1/r̂, we can show that
detailed balance holds for MCMCC. Suppose that r ≤ 1; then

h(θ |y)E(α̂(θ, θ∗)|r ≤ 1)

= h(θ |y)[P(r̂ > 1|r ≤ 1) + P(r̂ ≤ 1|r ≤ 1)E(r̂|r ≤ 1 & r̂ ≤ 1)].
As m → ∞, E(r̂|r ≤ 1 & r̂ ≤ 1) → r. Using h(θ |y) = 1

r h(θ∗|y), it is
easy to show that

h(θ |y)E(α̂(θ, θ∗)|r ≤ 1) = h(θ∗|y)
[

1 +
(

1

r
− 1

)
P(r̂ > 1|r ≤ 1)

]
.

For fixed r such that 0 < r + ε < 1 for some ε > 0,

lim
m→∞

(
1

r
− 1

)
P(r̂ > 1|r ≤ 1) = 0.

At the upper boundary,

lim
r→1

(
1

r
− 1

)
P(r̂ > 1|r ≤ 1) = 0,

because limr→1( 1
r − 1) → 0 and limr→1 P(r̂ > 1|r ≤ 1) → 0.5. At

the lower boundary,

lim
r→0

(
1

r
− 1

)
P(r̂ > 1|r ≤ 1) = 0,

by l’Hôpital’s rule. Thus, for m → ∞, h(θ |y)E(α̂(θ, θ∗)|r ≤ 1) →
h(θ∗|y) for 0 ≤ r ≤ 1.

Similarly,

h(θ∗|y)E(α̂(θ∗, θ)|r ≤ 1)

= h(θ∗|y)
[

P

(
1

r̂
≥ 1

∣∣∣1

r
≥ 1

)
+ P

(
1

r̂
< 1

∣∣∣1

r
≥ 1

)
E

(
1

r̂

∣∣∣1

r̂
< 1 &

1

r
≥ 1

)]
.

As m → ∞, E( 1
r̂ | 1

r̂ < 1 & 1
r ≥ 1) → 1, so that

lim
m→∞ E(α̂(θ∗, θ)|r ≤ 1)

= lim
m→∞[P(r̂−1 ≥ 1|r−1 ≥ 1) + P(r̂−1 < 1|r−1 ≥ 1)] = 1

and limm→∞ E(α̂(θ∗, θ)|r ≤ 1) = h(θ∗|y). Thus, when r ≤ 1, as m →
∞, h(θ |y)E(α̂(θ, θ∗)|r ≤ 1) = h(θ∗|y)E(α̂(θ∗, θ)|r ≤ 1) and detailed
balance holds. Similar arguments show that detailed balance holds
when r ≥ 1.

[Received September 2008. Revised October 2008.]
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