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Summary

Close-packings of uniformly-sized spheres with centres on various lattices are de-

scribed, with volume fractions equal or close to the maximum possible �=
p
18 (this value

has long been `known' via Kepler's conjecture, and has been proved). Regular packings

with two or three sized spheres can push this volume fraction to beyond 80%. The bulk

of the paper studies irregular `packings' of a large sphere by spheres of varying sizes, and

attempts to evaluate the inuence of factors in the algorithm specifying how the random

packing is constructed, in determining the volume fraction of the resultant random set

(meaning, the union of all the spheres).

Extrapolation and edge-correction techniques for determining the volume fraction

of an in�nite array of such balls in an in�nitely large sphere are indicated. The paper

also investigates questions of inaccessibility of part of the space except to spheres of

in�nitesimal size. Various questions and problems are recorded also.

The study began from the observation that the volume fraction of aggregate in con-

crete has a volume fraction in the range 60% to 70%. It is known how to locate spheres

on a perturbed lattice and, depending on the perturbation, obtain a volume fraction arbi-

trarily close to �
p
18. If cubes of irregular size but common orientation are used instead

of spheres, then the volume fraction can be made arbitrarily close to 1.0 by choosing

su�ciently small perturbations (Daley, 2000).

* Work supported in part by the National Institute of Statistical Sciences Grant No. DMS-9313013.
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1. Introduction

This paper investigates the volume fraction of various germ{grain models in which every grain

touches at least one other grain. Such touching reects in part a feature of the particles that

constitute `aggregate' in concrete, namely, that such particles tend to touch each other in such a

way that, even without the cured cement that acts as a paste between them, they are largely held

in position so as to have virtually no room for movement. We therefore start by discussing the

volume fractions of some regular close-packed arrays of spheres (see Section 2), and also `sparsely

packed' arrays (see Section 3), these being indicative of the range for the volume fraction attainable

by randomly scattered but packed arrays of similarly sized spheres.

In Section 4 we describe a sequential method of simulating an array of irregularly sized spheres

that has the touching property noted above, and in subsequent sections we look at ways of esti-

mating the volume fraction attained by in�nitely large such arrays. In a subsequent paper we show

how volume fractions arbitrarily close to those attainable by regular arrays of regular spheres or

cubes can be attained by a variant of the lilypond growth protocol (see H�aggstr�om and Meester

(1996); Daley, Stoyan and Stoyan (1999)).

2. Volume fractions of regular packings and related sets

First we describe two close packings of unit spheres in 3-dimensional euclidean space (3-D),

where unit sphere signi�es a sphere of unit diameter, and by `close packing' we mean that any given

sphere touches at least four other spheres that constrain the given sphere from any movement. For

both packings the volume fraction Vf , meaning the fraction of space that is covered by spheres,

equals �=
p
18 = 0:740480, which is the maximal volume fraction attainable by arrays of similarly-

sized spheres (see e.g. Mackenzie (1998) for discussion of Hales' (1997) proof of this fact, referred

to for long as Kepler's conjecture).

Example 1. Close-packed layers of unit spheres centred on a square lattice. Locate unit spheres

at each of the square lattice points f(n;m; 0) : n;m = 0;�1; : : :g in the (x; y) plane: call this a

`square-lattice layer' of unit spheres. Place on top of this layer another square-lattice layer, but

with its centres at the points (n;m; 0)+ (12 ;
1
2 ;

1
2

p
2 ). Observe that each sphere in this added layer

`nestles' on the four spheres with centres at the corners of the square above whose centre the upper-

layer sphere is located. Then, when the spheres in the lower layer are �xed in position, so too are

the spheres in the upper layer with regard to any rigid motion in the plane of their centres. Now

add a third layer on top of the second, with centres at (n;m;
p
2 ). The spheres in this third layer

nestle amongst the spheres in the second layer in much the same way as the second layer spheres

nestle on the �rst layer spheres. Continue the process ad in�nitum. Then a close packing of spheres

ensues, with centres at the points (n;m; `
p
2 ) and (n+ 1

2 ; m+ 1
2 ; `

p
2+ 1

2

p
2 ) (n;m; `= 0;�1; : : :),

and since there is a one{one correspondence between the unit spheres and right-parallelipipeds

with side lengths 1, 1 and 1
2

p
2, it follows that the volume fraction of the spheres in IR3 equals

4
3�(

1
2)

3
��

1
2

p
2
�
= 1

3�
�p

2 = �=
p
18, as asserted earlier.
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In this close-packing it is immediately recognizable that the points (n;m; 1
2

p
2 ) for example

are not covered by a sphere, and indeed that we can locate spheres with centres at these points,

of common diameter
p
2 � 1, which touch all six spheres closest to this point (e.g. for the point

(0; 0; 1
2

p
2 ), these six spheres have their centres at (0; 0; 0), (0; 0;

p
2 ), and (�1

2
;�1

2
; 1
2

p
2 ) ). Then,

the e�ect of adding such smaller spheres with centres at these particular interstitial points, which

in fact constitute another lattice whose points are in one{one correspondence with those of the

original lattice, is to increase Vf by the amount

4
3
�(1

2
)3(
p
2� 1)3

1
2

p
2

=
�p
18

�
5
p
2� 7

�
=

�

3(10 + 7
p
2 )

; (2:1)

hence,

Vf =
�p
18

�
5
p
2� 6

�
= 0:793104: (2:2)

Continuing, we see that the points (n;m; 0)+ (12 ; 0;
1
4

p
2 ) and (n;m; 0)+ (0; 12 ;

1
4

p
2) are not

covered by either a unit sphere or a sphere of diameter
p
2 � 1, being equidistant from four unit

spheres, namely a distance 1
2

�q
3
2
� 1

�
. Inspection shows that to each unit sphere in the close-

packing there are two such interstitial points where spheres of diameter
q

3
2 � 1 can be placed

touching but without overlapping any other spheres. Adding them increases Vf by the amount

�p
18

�
2
hq

3
2
� 1

i3�
=

�p
18

�
9
q

3
2
� 11

�
= 0:016812 to 0:809916: (2:3)

The same volume fractions come from the face-centred cubic lattice, as we now describe.

Example 2. Close-packed layers of unit spheres centred on a triangular lattice. Start with a

unit sphere with centre at the origin. Then a line of centres at (n; 0; 0) (n = 0;�1; : : :), produces
a `line' of unit spheres, close-packed in 1-D so far as their centres are concerned. By placing

similar lines with centres at the points (n + 1
2m;

1
2m

p
3; 0) (n;m = 0;�1; : : :), we close-pack unit

spheres in 2-D so far as their centres are concerned, thereby forming a close-packed `triangular-

lattice layer' of spheres. Now stack such layers one on top of the other, but with centres o�set

relative to the layer immediately underneath such that a sphere in the upper layer nestles touching

three spheres in the lower layer, such as is achieved by having layers with centres at the points�
n+ 1

2m+ 1
2`;

1
2m

p
3 + 1

2`
q

1
3 ; `
q

2
3

�
.

It is convenient to describe the centre at�
n+ 1

2m+ 1
2`;

1
2m

p
3 + 1

2 `
q

1
3 ; `
q

2
3

�
= n

�
1; 0; 0

�
+m

�
1
2 ;

1
2

p
3; 0

�
+ `
�
1
2 ;

1
2

q
1
3 ;
q

2
3

�
(2:4)

by its lattice-coordinates or index hn;m; `i. In this notation, the centres of the twelve nearest

neighbours of the sphere whose centre has the index hn;m; `i, have indexes expressible as hn;m; `i+
ej (j = 1; : : : ; 12) where ej takes one of the twelve values as below, given as pairs for convenience:

h�1; 0; 0i; h0;�1; 0i; h0; 0;�1i; h�1;�1; 0i; h0;�1;�1i; h�1; 0;�1i: (2:5)

pack105.tex April, 19 May, 30 Oct 98; Jan, May/Jun, Aug 99: Jan{ , 00 Printed 3 January 2001



3

Note that the distance between the centres at h0; 0; 0i = (0; 0; 0) and hn;m; `i = �
n + 1

2
m + 1

2
`;

1
2
m
p
3 + 1

2
`
q

1
3
; `
q

2
3

�
equals

p
n2 +m2 + `2 + nm +m`+ `n =

q
1
2 [(n+m)2 + (m+ `)2 + (`+ n)2] : (2:6)

I assert that to each unit sphere with centre hn;m; `i, there is associated a triplet of interstices

into which smaller spheres, described shortly, can be �tted, and that with each such triplet there

is associated a well-de�ned unit sphere, i.e. the association between unit spheres and triplets is

one-to-one. The centres for these triplets are located in or closer to the dissecting plane midway

between adjacent layers of centres from which the close packing is constructed. Speci�cally, for the

centre at (0; 0; 0), one element of the triplet is at the point
�
0;
q

1
3
;
q

1
6

�
which is equidistant from

the six unit sphere centres denoted

h0; 0; 0i; h0; 1; 0i; h�1; 1; 0i; h0; 0; 1i; h�1; 0; 1i; h�1; 1; 1i; (2:7)

i.e. the point with index 1
2
h�1; 1; 1i, this being at a distance 1

2

p
2 from the origin and hence distant

1
2 (
p
2�1) from the unit sphere with centre at (0; 0; 0). Each of the other two members of the triplet

is the mid-point of a tetrahedron, these two tetrahedra for the unit sphere with centre (0; 0; 0) being

de�ned by the unit sphere centres with indexes

h0; 0; 0i; h1; 0; 0i; h0; 1; 0i; h0; 0; 1i; and h0; 0; 0i; h0; 0; 1i; h�1; 0; 1i; h0;�1; 1i: (2:8)

Thus, the centres of the tetrahedra have indexes h14 ; 14 ; 14 i and h�1
4 ;�1

4 ;
3
4i respectively, implying

that each of the centres of the tetrahedra is distant 1
2

q
3
2 from (0; 0; 0). At these three points

spheres of diameters
p
2� 1,

q
3
2
� 1 and

q
3
2
� 1 can be `close-packed' into the interstices we have

described. Adding them to the unit spheres increases the volume fraction to

�p
18

�
1 +

�p
2� 1

�3
+ 2

�q
3
2 � 1

�3�
= 0:809916;

indeed, adding only the largest of these interstitial spheres already increases the volume fraction

from �=
p
18 = 0:740480 to 0.793104. Inspection shows we have recovered the volume fractions at

(2.2) and (2.3).

We now describe two more close-packed families of spheres, again with centres at points of a

lattice, but they are not the densest such packings, and not all spheres are of the same size.

Example 3. Unit spheres on the cubic lattice. Start with unit spheres with centres at the

points f(n;m; `) : n;m; ` = 0;�1; : : :g of the cubic lattice. These spheres yield a volume fraction
4
3�(

1
2)

3 = 1
6� = 0:523599. At the centre of each unit cube of the lattice a sphere of diameter

p
3�1

can be located, touching each of the eight unit spheres centred at the closest vertices. Adding

such spheres increase the volume fraction by 4
3�
�
1
2 (
p
3 � 1)

�3
= 1

6�(6
p
3 � 10) � 0:205410, so
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the total volume fraction equals 1
2
�(2

p
3 � 3) = 0:729009, not too much smaller than 0.740480

as in Examples 1 and 2 using close-packed layers of unit spheres. Because these layers of spheres

of diameter
p
3 � 1 are locked in place by the adjacent layers of unit spheres, and because given

two adjacent layers of such smaller spheres the enclosed layer of unit spheres would be locked in

position, the con�guration at this stage is a packing that does not admit any movement of its

constituent spheres, in the same way as for the spheres in the close-packings of Examples 1 and 2.

It is tempting to think that we can now place a sphere at the centre of each face of the cube,

touching the four spheres centred on the vertices of the face, and therefore with diameter
p
2� 1,

but because
p
2 � 1 +

p
3 � 1 > 1, such a sphere would overlap the sphere of diameter

p
3 � 1

already located at the centre of the cube. Two possibilities based on accommodating such a sphere

ensue. For one, shrink the sphere at the centre of the cube to diameter 2 � p
2, so that the total

volume fraction is then

1
6�
�
1 + (2�

p
2)3 + 3(

p
2� 1)3

�
= 1

6�
�
1 + (2

p
2 + 3)(

p
2� 1)3

�
= 1

6�
p
2 =

�p
18
: (2:9)

For the other, locate the centre at (12�a; 0; 12) say, for some 0 < a < 1
2 so that it is equidistant from

the surfaces of the unit spheres with centres at (0; 0; 0) and (0; 0; 1) and the spheres of diameterp
3� 1 with centres at (12 ;

1
2 ;

1
2 ) and (12 ;�1

2 ;
1
2 ). The radius r of a sphere centred at such a point is

r =
q
(12 � a)2 + (12 )

2 � 1
2 =

q
a2 + (12)

2 � 1
2 (
p
3� 1); (2:10)

equivalently,

a = 1
2 �

q
(r + 1

2)
2 � (12 )

2 =

q�
1
2 (
p
3� 1) + r

�2 � (1
2 )

2;

hence (2�p3 )r + 1
2(
p
3� 1) =

p
(r+ 1)r, and thus 4

p
3 r2 + 6r� 1 = 0, so, �nally,

r =
�3 +

p
9 + 4

p
3

4
p
3

=
1

3 +
p
9 + 4

p
3
=

1

3 + (1 +
p
3)
q
3� 1

2

p
3
= 0:143041:

The increment in the volume fraction equals the volume of three such spheres, namely 0.036778,

and thus a total volume fraction 0.765787. Note that a = 0:095647 so the sphere with radius r does

indeed cover the centre (12 ; 0;
1
2 ) of the face.

Example 4. Aligned layers of unit spheres on a triangular lattice. Finally here is an analogue

of Example 3 but now via layers of unit spheres whose centres are at the vertices of a triangular

lattice as in Example 2. For this example place the layers one above the other, touching in the

direction of the z-axis so that the centres are located at (n + 1
2m;

1
2m

p
3; `) (n;m; ` = 0;�1; : : :).

The points (n+ 1
2m+ 1

2 ;
1
2m

p
3+ 1

6

p
3; `+ 1

2 ) are located centrally to six adjacent unit spheres, at

the same distance 1
2

q
7
3 from each of their centres. Placing spheres of common diameter

q
7
3 � 1 at

these points locks the array of spheres in position, and allows more spheres of the same diameter
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to be placed at the other lattice points (n + 1
2
m; 1

2
m
p
3 + 1

3

p
3; ` + 1

2
) because these two sets of

spheres do not overlap. These two sets of spheres of diameter
q

7
3 � 1 increase Vf from

4
3�(

1
2 )

3

1
2

p
3

=
�p
27

= 0:604600 to
�p
27

�
1 + 2

�q
7
3 � 1

�3�
=

�p
27

�
32
3

q
7
3 � 15

�
= 0:782111: (2:11)

3. Dense sparse-packings

This section, which seemingly digresses from the topic of `packing', is relevant in giving some

perspective on simulations of models that proceed by sequentially placing grains in space. The �rst

example is the antithesis of close-packing, and is best summarized in the following statement.

Conjecture 1. In IR3 , any rigid con�guration of unit spheres which precludes the insertion of any

more unit spheres without overlapping, has volume fraction � (Vf)min � 1
12� = 0:261799.

We call such an array a dense sparse-packing : we arrived at the conjectured lower bound as

follows.

Example 5. Refer back to the close-packed layers of `square' arrays of unit spheres in Example 1.

Recall that the largest spheres that can �t into the close-packing | call them interstitial spheres

for convenience | are of radius 1
2

�p
2�1

�
, and that such largest interstitial spheres are in one{one

correspondence with those of the packing. Then if we shrink the radii of the unit spheres of the

packing by an amount � say, the common radius of these largest interstitial spheres can increase to
1
2

�p
2� 1

�
+ �, and therefore, the in�mum of the volume fraction of the shrunken original spheres

that precludes the insertion of any spheres of the same radius, is that of an array with radius a0

say, for which

a0 =
1
2(
p
2� 1) + � = 1

2 � �; hence a0 =
1
2 � 1

4 (2�
p
2) =

1

2
p
2
;

and therefore

Vf � �p
18

�
1p
2

�3

=
�

12
: (3:1)

Example 6. Applying the same argument to the array of centres in Example 2 also leads to

Vf � 1
12�.

The fact that the arrays of centres in both Examples 5 and 6 are `dense' with respect to close-

packing, suggests to us that they are also `dense' with respect to the limit of `sparsely arranged'

spheres that do not allow any more spheres to be added, as implied in Conjecture 1.

For the purpose of the model described in Section 4 and evaluated by simulation, such dense

sparse-packings of spheres are too scattered: we are interested in arrays in which there is at least
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one, and maybe in�nitely many, `systems' of spheres each of which touches at least two other

spheres. Typically, for our purposes, it is convenient to refer back to Examples 1{4 which are built

up from a `line' of touching spheres, and ask how sparsely these lines may be located so as not to

allow any more spheres to be located between them.

Example 7. Taking our cue from the constructions leading to (Vf)min =
1
12�, we start with the

array of Example 1 and rescale the locations of the centres in the y- and z-directions by factors

b and c respectively, such that the largest interstitial spheres with centres at (n;mb; 1
2

p
2 c) for

example are of radius < 1
2
. Then the sparsest arrangement of spheres, still with their centres unit

distance apart in the x-direction, occurs when for example (0; 0; 1
2

p
2 c) is distance 1

2
from (0; 0; 0)

and (12 ;
1
2
b; 1

2

p
2 c). Then c =

p
2 = b, and the volume fraction of the `lines' of spheres when the

largest interstitial spheres are smaller than unit spheres, satis�es

inf(Vf) =
1
2

�
�=
p
18
�
= 0:370240: (3:2)

Example 8. To scale the locations of the centres of layered triangularly con�gured spheres of

Example 2, when the line of sphere centres f(n+ 1
2
; 1
2

p
3; 0)g is relocated to f(n+ 1

2
; 1
2

p
3 b; 0)g the

line of centres f(n+ 1
2 ;

1
6

p
3 b;

q
2
3 c)g is likewise at a distance 1

2

p
3 b from the line through f(n; 0; 0)g

when 1
12b

2 + 2
3c

2 = 3
4b

2, i.e. b = c. Then the interstitial sphere with centre
�
0;
q

1
3 b;

q
1
6 c
�
is of

radius < 1
2 when it is distant < 1 from the points (0; 0; 0), i.e. b = c <

p
2. Thus, we obtain the

same relation as at (3.2).

4. Concrete and a hard core model of touching spheres

Concrete is made by hydrating a mixture of aggregate, sand and cement: adding the water

brings about chemical change in the cement that `locks' into position whatever arrangement of

the aggregate particles (and sand, and �ne cement) is achieved prior to `setting'. For present

purposes we regard the cement as constituting a paste of in�nitesimal thickness, and the sand as

being indistinguishable from smaller aggregate. Aggregate often consists of pebbles from a river

bed and therefore smooth-surfaced and approximately spherical, but may also be crushed rock and

more jagged, though this can produce concrete of inferior strength. In practice the aggregate has

a volume fraction between 60% and 70%; its complement is largely void. To suggest, even with

spherical pebbles, that an approximately regular array is attained, is far from the truth: for one

thing a range of particle sizes is used, and for another, their relative arrangement is irregular.

One can regard the e�ect of mixing dry aggregate (and cement) as arranging the particles as

best can be done so as to attain an approximately homogeneous distribution, achieved in part from

both the jostling of the mixing process and the help of gravity as the whole is tumbled. Inherent in

particle size is an hierarchy: a much larger particle will tend to displace a smaller one a little so as

to accommodate itself better | certainly this tends to occur when the mixture is nudged a little.
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Therefore, to simulate the arrangement of particles in concrete, it is not unreasonable to allocate

`large' particles according to some partly random homogeneous mechanism, subject to their not

overlapping and insisting that every particle touches another; then when no more such particles

can be �tted into the space being `�lled', to �t as best one can particles of a slightly smaller size,

again until no more will �t; this process is continued as smaller and smaller particles are added to

the agglomerate. Throughout, every particle touches at least one other (and likely more, though

for simplicity's sake we do not pursue this idea here).

The procedure just sketched simulates a hard-core germ{grain model, i.e. one with non-

overlapping spherical grains, in which every grain touches at least one other grain, and there

is only one `cluster' of grains (for our purposes the cluster C to which a given grain G belongs,

consists of G and all the grains G0 that G touches, and all grains G00 that some G0 touches, and so

on). In the models that we study we are interested in

(a) the volume fraction, and

(b) the distribution of grain sizes,

in the set � formed by the union of all the grains G, G0, G00; : : : In particular, can we discern

(c) what factors a�ect the volume fraction, and how?

Sequential touching model. Sequentially place in a region, taken here to be a sphere S(1)
of unit radius, spherical grains of somewhat smaller radii, using �rst spheres of the same radius

R1 � 1
2 , then of radii r in the range R2 � r � R1, : : : , and �nally R� � r � R1, for some decreasing

sequence of bounds R1 > R2 > : : : > R� , ensuring for all spheres after the �rst that the sphere

being newly located in S(1) is contiguous with another. As many larger spheres are placed as is

reasonably practical to check for possible sites, before considering the placement of any smaller

spheres. Let S(x; r) denote a sphere of radius r with centre at x 2 IR3 . Since our simulation takes

place in a `large' sphere S(1), it is convenient to call the smaller spheres of radii � R1 balls.

Speci�cally,1 given a decreasing sequence fRjg, the balls have centres xi and radii ri that are

determined sequentially as follows.

1. Initially place two balls of radius R1 with their centres at the points (�R1; 0; 0) respectively

(assume R1 � 1
2).

Let np denote the number of balls placed at any stage, so after step 1 we have np = 2. Below, s

ranges over f1; : : : ; �g, and Nrpt denotes a `repetition counter'; initially, s = 1 and Nrpt = 0.

2s. Generate a point at random in S(1), at xtest say. Before locating a ball of radius r with

Rs � r � R1 `near' xtest (see step 3sa for detail), �rst check that various conditions are met:

2sa. First check that jxtestj+Rs � 1, so that a ball S(xtest; Rs) would lie wholly within S(1).
If so, continue at step 2sb; otherwise, repeat step 2s.

2sb. For each ball S(xi; ri) already placed in S(1), i.e. for i = 1; : : : ; np, check that jxtest�xij �
ri+Rs (i.e. S(xtest; Rs) would not overlap S(xi; ri)); if this fails for any such i, go to step

1 This model is a variant of one suggested by Alan Karr.
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3sb. If the check passes for all such i, identify the ball S(xi0 ; ri0) whose surface is closest
to xtest , and go to step 3sa.

3sa. Advance np to np+1 and place a ball of radius rnp = min
�
R1; jxtest�xi0 j�ri0

�
with its centre

at xtest if rnp < R1, or else at

xnp = �xtest + (1� �)xi0 where � =
R1 + ri0

jxtest � xi0 j : (4:1)

For section 5.2, record tnp = Nrpt. Then reset Nrpt = 0 and return to step 2s.

3sb. Reject xtest, advance Nrpt by 1, and provided Nrpt < Ns for this pre-determined limit Ns

on the number of repetitions when seeking to place balls of radius � Rs, repeat step 2s. If

Nrpt = Ns, then if s < �, advance s by 1, reset Nrpt = 0 and return to step 2s; else, s = �,

and go to step 4.

4. The volume fraction of the germ{grain realization fS(xi; ri) : i = 1; : : : ; npg equals
Pnp
i=1 r

d
i .

Variations of this procedure produce di�erent volume fractions: for example (cf. Table 5 below

for 3sa
0) we could replace step 3sa by either of

3sa
0. Advance np to np + 1 and place a ball of radius Rs at

x0np = �xtest + (1� �)xi0 where � =
Rs + ri0

jxtest � xi0 j : (4:10)

3sa00. Advance np to np + 1 and place a ball of radius Rs at xtest.

The volume fraction computed at step 4 is likewise dependent on the stopping rule for the

simulation at step 3sb; in practice we must also limit the number of balls placed (i.e. np � nmax

say), and apply this constraint if it happens before s = � and Nrpt = N� as in 3sb.

Table 1 shows some of the results of 20 replicate simulations using Rs+1 = 0:95Rs, Ns = 10,000

(all s) and a maximum of 10,000 balls placed (in all simulations it was this constraint that was

invoked rather than the limit on minimum radius size R�). The numbers of balls of maximum

radius R1 and of any radius placed after completion of steps 21 and 235 are shown, the volume

fraction attained at the end of step 235, and the volume fraction attained after placing 10,000 balls.

It is evident in Table 1 that the volume fraction attained by placing the largest balls of radius

R1, with mean 0.31545, is far smaller than the value of Vf after smaller balls are allowed (for the

record, R35=R1 = 0:9534 = 0:1840). It also apparent that the volume fraction seen at the conclusion

of the simulation, varies far less than the volume fraction seen after step 21, because balls with a

range of intermediate sizes �ll much of the space, until eventually no voids are larger than the order

of the smallest radius R35 (= 0.0184 in Table 1) used towards the end of the procedure. The range

in the observed Vf [s � 35], namely 0.004886, is larger than the range 0.003823 in the observed

Vf [10,000 placed]. This is understandable in that the stopping rule for switching minimum sizes

from Rs to Rs+1 induces variability over and above the variation in volume of some 1,000 balls of

radius R35 for example.
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Table 1

Some results from 20 simulations of the sequential touching model

(Rs+1 = 0:95Rs, R1 = 0:1, Ns = 10; 000)

Sim'n no. #(R1) #(s � 35) Vf [s � 35] Vf [10,000 placed]

1 320 8297 0:681586 0:690995
2 312 8704 0:682907 0:690081
3 318 9016 0:682689 0:688111
4 318 8610 0:681307 0:688760
5 320 8629 0:681986 0:689602

6 312 8165 0:679729 0:689530
7 314 8429 0:681391 0:689832
8 309 8408 0:679947 0:688858
9 312 8515 0:679977 0:688209
10 308 8015 0:678452 0:689534

11 308 8693 0:681139 0:687988
12 323 8258 0:680448 0:689789
13 315 8689 0:682785 0:689901
14 317 8185 0:681838 0:691811
15 315 8071 0:678021 0:688702

16 313 8527 0:681556 0:689626
17 304 8506 0:680871 0:688952
18 327 8076 0:678782 0:689239
19 314 8402 0:680984 0:689734
20 330 8649 0:682574 0:690056

5. Factors a�ecting the volume fraction in the sequential touching model

The aim of much of our simulation work has been to attain the largest possible volume frac-

tion by using about 5,000 or 10,000 balls. Doubtless some volume fraction higher than c: 70% is

attainable by some more complex sequential �lling strategy, because close packing yields a higher

fraction; we have been guided in part by studying a simple model of the type described. In this

model, we can easily identify certain factors that a�ect the volume fraction achieved in a simulation,

and also factors that limit the volume fraction attainable in any model that uses spherical grains

(and, in particular, in a model that starts from balls of the same size and requires every ball to

touch at least one other ball).

We list here some questions and factors which have arisen in the present context of placing

spheres of radii � R1 in S(1).
5.1. Edge e�ects in estimating the volume fraction of homogeneous spheres

It is reasonable to start by asking what inuence the largest balls or spheres, of radius R1,

may have on the volume fraction: it is trite to note that it is in the `channels' around these largest

balls that balls of smaller radii are located, thereby raising the volume fraction. To this end we

placed as many balls of radius 1
30 in a sphere S(1) of unit radius, noting the numbers of such balls

that had been placed when for the �rst time 1000n (n = 1; : : : ; 10) fruitless attempts at placing

another ball occurred as in step 3b. We then repeated the simulation, �rst with the same R1 =
1
30 ,
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and then with increasing sizes of R1, with the results as shown in Table 2 in which, for example,

for R1 = 0:05, (Vf)obs = 2634� (:05)3 = 2:634=8 = 0:32925.

Table 2

Numbers of uniform spheres placed at di�erent rejection-number passage times, and Vf attained

Rej.#: 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 (Vf )obs (Vf )adj (Vf )adj0
R1

0:0333 8063 8431 8627 8674 8674 8851 8851 8950 9037 9117 0:33767 0:35184 0:37370
0:0333 7947 8353 8537 8746 8844 8862 8862 8928 8995 9024 0:33422 0:34824 0:36989
0:0350 6847 7113 7364 7457 7627 7627 7697 7697 7815 7815 0:33507 0:34985 0:37286
0:0375 5556 5846 5902 6037 6037 6037 6215 6346 6346 6346 0:33465 0:35050 0:37531
0:0400 4632 4670 4892 4916 4916 5090 5090 5090 5170 5213 0:33363 0:35052 0:37710
0:0425 3803 3984 4099 4099 4188 4188 4310 4319 4319 4319 0:33155 0:34942 0:37769
0:0450 3244 3326 3485 3485 3594 3594 3594 3604 3604 3604 0:32841 0:34720 0:37706
0:0500 2333 2371 2537 2582 2593 2598 2598 2634 2634 2634 0:32925 0:35026 0:38402
0:0550 1764 1847 1847 1892 1892 1915 1977 1977 1981 1984 0:33009 0:35336 0:39114
0:0600 1361 1361 1456 1456 1456 1488 1488 1513 1513 1516 0:32746 0:35275 0:39425

Inspection of the ten columns of data entries in Table 2 together with the volume fraction

(Vf)obs attained when simulation stopped, shows two obvious features:

(a) The smaller the radius the larger the observed volume fraction. This increase is due to the

reduction in the volume subject to an `edge e�ect', and the rest of this subsection discusses

this factor.

(b) The larger the rejection number count causing simulation to cease, the larger the observed

volume fraction. See also subsection 5.2.

We remark in passing that, from a practical point of view, concrete is always found in a �nite

space, so the volume fraction observed in concrete will always include an `edge e�ect'. However, in

order to have any basis for general computation, we should �rst seek data that relate to no edge

e�ect, because of their generality, and then apply a correction for the edge e�ect appropriate to

the geometry of the particular con�guration concerned.

To estimate an edge-correction for data like those giving (Vf)obs as in Table 2, observe that

to a �rst order of approximation, when balls of radius R1 � 1 are placed in a sphere S(1), any
ball whose centre is at a distance between R1 and 3R1 of the surface of S(1), thereby excludes the

subsequent location of any ball within a certain larger or smaller portion of S(1). Consequently,

when no more balls can be placed in S(1), the average distance between the `surface' of the set

� and the surface of S(1), is about R1, say, for some positive constant  < 1, implying that

the `e�ective volume' into which the balls of radius R1 have been placed is not 4
3� but about

4
3�(1� R1)3 � 4

3�(1� 3R1), and thus

Vf � (Vf)obs
(1� R1)3

: (5:1)

pack1205.tex Jan{ 00 Printed 3 January 2001



11

For the simulations whose results are as noted in Table 2, the last column, (Vf)adj0 , shows the

corrected volume fractions using the value  = 1 which, both numerically and on further consider-

ation (see next paragraph), is certainly too large: this adjustment of the observed volume fractions

produces estimates that increase with increasing R1; indeed, applying equation (5.1) to the mean

observed volume fraction 0:31545 from balls of largest radius R1 = 0:1 in Table 1 gives (Vf)adj0 for

homogeneous spheres equal to 0.43272, which lies well outside the range 0.37 to 0.395 of Table 2).

In the limit where the radius R1 becomes a vanishingly small proportion of the radius 1 of

S(1), we can regard the surface of the latter big sphere as being like a plane relative to balls

located close to its surface. In the densest possible con�guration of balls near its surface we could

have three mutually touching balls with their centres located at a distance
�
1 +

q
2
3

�
R1 from the

surface, and be able to place a further ball inside the sphere so as to touch the surfaces of S(1) and
these three balls (cf. the packing in Example 2). This extreme con�guration justi�es seeking some

constant  < 1 in the edge-correction formula at (5.1). Indeed, because any other con�guration of

balls all at a distance at least
q

2
3
R1 from the surface of S(1) would allow such a further ball to

be placed closer to the surface of S(1), we can argue that we should regard the `surface' of � as

being at an average distance of about 1 � 1
2

q
2
3 R1 = 1 �

q
1
6 R1 from the centre of S(1). Then

S�1�q1
6 R1

�
would have the same volume as the `space' in which � is located, and (5.1) should

hold with  �
q

1
6 = 0:408248. The edge-corrected estimates (Vf)adj in Tables 2 and 3 come from

equation (5.1) with  =
q

1
6 .

Having thus argued that Vf � (Vf)obs
�
(1� R1)

3, it would follow that

3

p
(Vf)obs � 3

p
Vf �  3

p
Vf R1: (5:2)

Then a regression �t of the relation 3

p
(Vf)obs = a+ bR1, say, for �tted constants a and b, yields

Est(Vf) = a3 and Est() = �b=a: (5:3)

When applied to the ten points (R1; (Vf)obs) in Table 2, we obtained Est(Vf) = 0:34612 and

Est() = 0:31502.

The results in Table 2 suggest that stopping after 10,000 failed attempts to �nd a point xtest

at least R1 from any ball already placed in S(1), does not necessarily ensure that (almost) none

of the interstices then in the agglomerate can accommodate a ball S(R1), particularly for smaller

values of R1. Accordingly sets of 25 simulations using a range of the larger sizes R1 were run, with

a more stringent `rejection number' N1 = 50; 000, yielding for each R1 as in Table 3 the average

and standard deviation of the number of balls placed, and the mean observed volume fraction; we

also ran replicates of the sizes R1 = 0:05 (0:005) 0:065. The larger is R1, so the more likely we are

to �ll all interstices that will take a ball S(R1); we do not know the size of this error nor how it

a�ects our estimate of Vf(�) (but, see subsection 5.2).
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Using regression as around (5.2) now leads to Est(Vf) = 0:36421 and Est() = 0:31394. The

larger estimate for Vf arises from the larger value of N1; the consistency of the estimate for  is

encouraging, but we have not tried to explain why it might be like 3
4

q
1
6
or 1

10
�.

Comparing these regression results, suggests that we may be able to estimate Vf itself by

repeating the replicate studies of Table 3, say, for N1 = 12,500 and 25,000, and extrapolating via

1=N1 ! 0 (cf. subsection 5.2).

Table 3

Mean numbers of spheres of radius R1 placed in S(1) by sequential touching model

(N1 = 50,000, Mean and s.d. of 25 simulations; edge-correction (5.1) with  =
p

1

6
.)

R1 Mean # SD # (Vf )obs SD (Vf )obs (Vf )adj

0:100 331:92 4:80 0:33192 0:00096 0:37613
0:095 387:40 5:45 0:33215 0:00089 0:37400
0:090 456:72 6:90 0:33295 0:00101 0:37252
0:085 547:76 7:72 0:33639 0:00095 0:37399
0:080 657:12 9:56 0:33645 0:00098 0:37169
0:075 806:16 9:08 0:34010 0:00076 0:37336
0:070 993:16 7:73 0:34065 0:00053 0:37161
0:065 1247:56 10:76 0:34261 0:00059

1247:68 11:71 0:34264 0:00065 0:37142
0:060 1593:92 15:85 0:34429 0:00070

1593:36 16:49 0:34417 0:00073 0:37082
0:055 2079:48 16:97 0:34597 0:00056

2072:20 16:63 0:34476 0:00055 0:36971
0:050 2781:36 18:82 0:34767 0:00047

2775:12 26:69 0:34689 0:00067 0:36945

One possible property to be borne in mind | is it Rankin's problem ? | is work of D. G.

Kendall in two papers c. 1940s (? J. London Math. Soc.) on the `error' term for the number of

points on the square lattice enclosed by a `large' circle, and the analogous 3-D problem.

5.2. Exploiting the rejection numbers between successfully placing uniform spheres

We turn to problem (b) noted in connection with Table 2, and further exempli�ed by comparing

Tables 2 and 3. It is proper to comment that in Table 3 the observed standard deviation in the

number of balls placed in S(1) reects two factors:
(a) Genuine variability in the number of grains dispersed according to a speci�ed protocol within

a �nite region.

(b) The inherent uncertainty associated with randomly searching for possible locations where balls

may be placed in a random sequential �lling protocol.

Here, factor (a) is irrelevant: it simply emphasizes that the volume fraction Vf of a germ{grain

model is indeed a mean: it equals an ergodic limit for suitably de�ned models. Factor (b) is what we

wish to address, noting �rst that, paradoxically, using smaller values of R1 should improve (Vf)obs

as an estimate because the edge e�ect noted earlier is reduced, but the number of (tiny) regions
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where the centre must be located in order to place the `last few' remaining balls may increase

relative to the number for larger R1, so on this account any simulation is more likely to make

(Vf)obs an under-estimate. Given the nature of extrapolation from regression-based estimators,

Est(Vf) = a3 as at (5.2) is therefore biased downwards from Vf .

In the context of steps 1{4 of the simulation procedure, the study of Vf using only homogeneous

balls constitutes the case s = � = 1, so we can omit the su�x s. Suppose that in between

placing the i th and (i+ 1) th balls there are ti repetitions of step 2 that result in failure due to a

potential overlap with a ball placed previously and hence invoke step 3b. Then, t2; t3; : : : are the

consecutive values of Nrpt before it is reset to 0 as in step 3a. Assuming (as we must!) that the

random number generator is indeed producing points xtest that are independently and uniformly

distributed in S(1), each ti is a geometrically distributed random variable with probability qi, say

of success, i.e. Prfti = ng = qi(1� qi)
n, (n = 0; 1; : : :), where the qi � q(x1; : : : ; xi) are themselves

random variables that depend on the centres of balls already placed; necessarily, qi # for i ", and
N(!) � inf ifi: qi = 0g determines exactly the observed volume fraction N(!)R3

1 of a particular

realization. Further, E[N(!)] equals the mean volume fraction for the �nite germ{grain sequential

touching model, i.e. of whatever corresponds to (1 � R1)
3Vf where Vf is the volume fraction in

the sequential touching model with � = 1 in the case of an in�nitely large region (equivalently, for

arbitrarily small radius R1 for the balls).

One possible way of estimating N(!) is to exploit the random sequence consisting of the

conditionally independent geometrically distributed random variables ftig with (conditional) ex-

pectations (1�qi)=qi. As an approximation, suppose that, conditional on the unknown N(!), there

is an � > 0 such that we can use the relation qi � [N(!)� i]� for i su�ciently close to N(!). The

rationale behind this approximation is that for i close to N(!), there are N(!)� i isolated regions,

with average volume � � vol
�S(R1)

�
, in which a centre of a ball S(R1) can be placed without

the ball overlapping any S(xj ; R1) (j = 1; : : : ; i). See also Section 5.6 concerning sets Sph(�) and
Cvr(�).

>From these approximations there follows an approximation to the conditional likelihood Lk

of the last k observations tnp�j (j = 1; : : : ; k), namely

Lk =

np�1Y
j=np�k

qj(1� qj)tj �
kY
j=1

[N(!)� np + j]�

�
1� [N(!)� np + j]�

�tnp�j

; (5:4)

so that

logLk =
kX
j=1

log
�
[N(!)� np + j]�

�
+

kX
j=1

tnp�j log
�
1� [N(!)� np + j]�

�
: (5:5)

If also the simulation terminates as in step 3b on the N1 th failure after placing a ball at S(xnp ; R1),

then in place of (5.4) we should have ~Lk = Lk(1� qnp)N1 , and for log ~Lk we should have (5.5) with

an extra term j = 0 in the second sum and tnp = N1.
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The model here requires 0 � [N(!)� np + k]� � 1, and the extreme values here cannot be

local maxima for the likelihood (or its logarithm), so we can identify the maximum of logLk or

log ~Lk by calculus, regarding N(!) as a continuous parameter for convenience. This leads us to

seek a solution ( bN(!); b�) for the pair of equations in N(!) and �:

kX
j=1

1

N(!)� np + j
=

kX
j=1

�tnp�j

1� [N(!)� np + j]�
;

k

�
=

kX
j=1

tnp�j [N(!)� np + j]

1� [N(!)� np + j]�
=

kX
j=1

tnp�j

�

�
� 1 +

1

1� [N(!)� np + j]�

�
:

Equivalently, with �j = [N(!)� np + j]�,

0 =
kX
j=1

1� (tnp�j + 1)�j

�j(1� �j)
; (5:6a)

kX
j=1

(1 + tnp�j) =
kX
j=1

tnp�j

1� �j >
kX
j=1

tnp�j +
kX
j=1

tnp�j�j : (5:6b)

Inequality (5.6b) gives

� <
kPk

j=1 tnp�j [N(!)� np + j]
=

1

[N(!)� np]T0 + T1
; (5:7)

where for r = 0; 1, Tr = k�1
Pk
j=1 j

rtnp�j . Equation (5.6a) implies that

1

maxj(tnp�j + 1)[N(!)� np + j]
< � <

1

minj(tnp�j + 1)[N(!)� np + j]
: (5:8)

We have done some preliminary work* on estimating N(!) on this basis, with encouraging results.

5.3. The �bre-like structure of the sequential touching model with uniform balls

In contemplating the structure of the tree-like set � that ensues from step 3a of the sequential

touching model with � = 1, it is worth reecting that the point xtest , being uniformly distributed

in S(1), is as likely to be within 0.206 of its surface as within 0:794 = 3
p
0:5 of its centre. Now,

in the earlier stages of the growth of �, any random point xtest nearer to the surface of S(1)
leads to a ball being placed on the `outer' side of an existing ball, thereby yielding a `string' of

balls generally heading out towards the surface of S(1). This means that the tree-like structure

* George Fishman (personal communication, March, 2000) tells me that this is an `old' problem on
which he has notes from about ten years ago, and referred me to both Jodrey and Tory (1980) and Hinde
and Miles (1980) same J., 10, 205{223, though the latter paper is concerned with planar packings and
random tesselations. [John Hinde was a chemist, so maybe the 3-D problem is addressed as well ? ] Je�
Picka mentioned Jodrey and Tory about two years ago, but a 1985 paper.
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of � is initially like individual strands emanating outwards until there is space enough to `split'

and generate more outward-growing strands. If this is indeed the case then, because the �bres

are touching in the outward direction but otherwise separated, their volume fraction may well

approximate that of sparsely packed lines of balls as in Examples 7 and 8, namely 1
2
�=
p
18 = 0:370

(see (3.2)). Whatever else, this is consistent with Est(Vf) from simulations (see especially Table

3).

5.4. Inuence on (Vf)obs of the sequences fNsg and fRsg
Trivially, by increasing the `stopping number' N1 we can only increase (Vf)obs. Similarly, as

follows from a conservation argument, the more space that is covered by larger balls, the fewer balls

in all are needed to attain a particular value for (Vf)obs. This is borne out in simulations reported

in both Tables 4 and 5 where the same sequence of points xtest is used throughout. Comparison of

the simulations within either table shows that the use of larger Ns increases the number of balls

placed of size at least Rs (in Table 4, with strategy 3sa), and, less markedly, of size exactly Rs (in

Table 5, with strategy 3sa
0).

Comparison of the results in Table 4 where Rs+1=Rs = 0:975, with those in Table 1 where the

ratio equals 0.95 and in Table 6 where it equals 0:9025 = (0:95)2, shows up a similar result: that the

more slowly the minimum radius Rs decreases, so the larger the observed volume fraction attained

by the time given smaller-sized balls are placed. Comparison of the simulation with Ns = 5; 000

in Table 4 with the twenty simulations in Table 1 with double the size of Ns and double the

di�erence between 1 and the ratio Rs+1=Rs, suggests that the increase in Ns has greater inuence

in increasing the observed volume fraction. Note however that the strategy 3sa is in e�ect, and

this tends to minimize the inuence of allowing smaller balls to be placed for given s > 1.

Table 4

Volume fractions from spheres of radii Rs � r � R1 (strategy 3sa)
(Rs+1 = 0:975Rs, R1 = 0:1, Ns as shown)

min.rad. (a) Ns = 5,000 (b) Ns = 20,000
s Rs np(Ns) Vf [r � Rs] np(Ns) Vf [r � Rs]

1 0:1000 308 0:30800 320 0:32000
2 0:0975 322 0:32175 345 0:34455
3 0:0951 334 0:33314 354 0:35288
4 0:0927 339 0:33778 354 0:35288
5 0:0904 359 0:35502 375 0:36968
9 0:0817 400 0:38442 422 0:40258
13 0:0738 472 0:42090 491 0:43618
17 0:0667 542 0:44700 543 0:45527
21 0:0603 594 0:46198 655 0:48651
31 0:0468 947 0:52255 993 0:54007
41 0:0363 1494 0:56519 1637 0:58872
51 0:0282 2486 0:60401 2747 0:62799
61 0:0219 4616 0:64323 5077 0:66655
71 0:0170 8727 0:67793 8923 0:69721
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When the strategy 3sa
0 is used, smaller volume fractions are observed as in Table 5.

Table 5

Volume fractions from spheres of minimum radius (strategy 3sa
0)

(Rs+1 = 0:975Rs, Ns as shown)

radius (a) Ns = 5,000 (b) Ns = 10,000 (c) Ns = 20,000
s Rs np(Ns) Vf [r � Rs] np(Ns) Vf [r � Rs] np(Ns) Vf [r � Rs]

1 0:1000 308 0:30800 320 0:32000 320 0:32000
2 0:0975 315 0:31449 322 0:32184 326 0:32556
3 0:0951 325 0:32308 337 0:33474 349 0:34532
4 0:0927 345 0:33900 352 0:34668 361 0:35488
5 0:0904 360 0:35007 369 0:35923 367 0:35930
9 0:0817 412 0:38162 419 0:38912 425 0:39470
13 0:0738 460 0:40260 475 0:41443 489 0:42293
17 0:0667 548 0:43096 547 0:43883 562 0:44570
21 0:0603 638 0:45250 645 0:46318 639 0:46502
31 0:0468 972 0:49704 966 0:50924 1022 0:52015
41 0:0363 1740 0:54549 1664 0:55618 1765 0:56949
51 0:0282 3001 0:58258 3055 0:59864 3038 0:60859
61 0:0219 5226 0:61521 5396 0:63154 5370 0:64293
71 0:0170 9827 0:64784 > 104 0:66294 > 104 0:67541

Table 6

Numbers �s(np) of spheres placed between changes in minimum radius

(Rs+1 = (0:95)2Rs, R1 = 0:1, Ns = 50,000)

s �s(np) Rs Vf [r � Rs] av.radius

1 334 0:10000 0:334000 0:100000
2 57 0:09025 0:380886 0:093697
3 43 0:08145 0:407493 0:085213
4 78 0:07351 0:442278 0:076401
5 80 0:06634 0:469027 0:069407
6 118 0:05987 0:497313 0:062120
7 102 0:05404 0:515461 0:056244
8 152 0:04877 0:535499 0:050895
9 232 0:04401 0:558010 0:045952
10 240 0:03972 0:574935 0:041315
11 395 0:03585 0:595750 0:037491
12 397 0:03235 0:611128 0:033835
13 577 0:02920 0:627897 0:030745
14 722 0:02635 0:643157 0:027648
15 1071 0:02378 0:659781 0:024945

16 5000 pts give (Vf )obs = 0:66447

The last column in Table 6 shows the `average' radius of the �s(np) balls placed at step 3sa,

i.e. while the minimum radius Rs is in force. This average is de�ned as 3
p
av. volume per grain , the

average volume being computed over the �s(np) grains concerned. The fact that these `average'
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radii are closer to Rs than Rs�1 should come as no surprise: because every ball already placed in

S(1) touches another, there are more smaller empty regions (where xtest will not be rejected) than

there are larger, no matter what the critical cut-o� size. Of course, it is also relevant here that

Ns = 50,000: a much smaller size for Ns would give rise to more spheres of radius > Rs�1 being

placed at step 3sa.

5.5. Variable v. �xed radii: strategies 3sa and 3sa
0

For the record, we note that following strategy 3sa and placing at or near xtest a ball with the

largest radius r possible subject to Rs � r � R1, as opposed to using a ball of radius Rs (strategy

3sa
0), leads to higher observed volume fractions (compare Tables 3 and 4).

5.6. `Exclusion' zone around points of contact of spheres

This subsection is concerned with aspects of the following question.

Question 2. During steps 2s of the sequential touching model protocol, what proportion of the

volume of S(1), say, is inaccessible to spheres of radius � �Rs for given � in (0; 1) ?

Two sets, Sph(�) and Cvr(�), are relevant to this question. They are de�ned in the context of a

given compact set S (e.g. S(1)) that is partly covered by a set X (e.g. �i �
Si
j=1 S(xj ; rj)). De�ne

Y � Xc � S nX , and then

Sph(Y ; r) = fy 2 Y : S(y; r) � Y g (5:9)

and

Cvr(Y ; r) =
[

y2Sph(Y ;r)

S(y; r): (5:10)

In words, Sph(Y ; r) consists of the points y in Y such that a sphere S(y; r) would lie totally outside

X (except maybe for touching the surface of X). The larger set Cvr(Y ; r) consists of all points in

any sphere S(y; r) that has its centre at a point in Sph(Y ; r).

In order to gauge the inuence of such sets, we �rst compute the volume A(r;R1; R2) say, of

that part of the immediate neighbourhood of the point of contact of two spheres, of radii R1 and

R2 say, that cannot be covered by spheres of radius larger than r. We evaluate the volume of this

`uncoverable' region, �rst in the case R1 = R2 = R say. Consider the following three elements: the

plane tangential to the two spheres, the axis perpendicular to this plane through the centres of the

two spheres, and a line through the centre of one of the spheres at an angle � to the axis directed

towards the plane. Let the angled line meet the surface of the sphere at a distance h(�) above the

plane, at a distance x(�) from the axis, so that h(�) = R�R cos � and x(�) = R sin �. Observe that

for a sphere of radius r to touch both spheres, a line through the centres of spheres of radii R and

r respectively would make an angle �0 with the axis, where (R + r) cos �0 = R. Then the volume

between the two touching spheres of radii R that cannot be covered by a sphere of radius r is

A(r;R;R) =

Z �0

�=0

2h(�) 2�x(�) dx�
Z 1

2
���0

 =0

2r sin 2�
�
(R+r) sin �0�r cos �d(�r cos ); (5:11)
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where the �rst term corresponds to the region up to a distance x(�0) from the axis where the centre

of a sphere of radius r certainly cannot be placed, and the second term to the region within the

same distance x(�0) of the axis that can be covered by a sphere of radius r placed so as to touch

both spheres of radius R. The �rst term equals

Z �0

0

2R(1� cos �) 2�R sin � R cos � d� = 4�R3

Z �0

�=0

(cos � � cos2 �) d(� cos�)

= 4�R3

�
1
2(1� cos2 �0)� 1

3 (1� cos3 �0)

�
= 2

3
�R3(1� cos �0)2(1 + 2 cos�0)

=
2�r2R3(r + 3R)

3(r+ R)3
= 2�r2R

�
1 + O(r=R)

�
:

The second term equals

�4�r2
Z 1

2
���0

0

�
(R+ r) sin �0 sin2  � r sin2  cos 

�
d ;

in which the term involving cos integrates to 4
3
�r3 sin3

�
1
2
� � �0

�
= 4

3
�(r cos �0)3 =

4�r3R3

3(R+ r)3
;

and the other term equals

�2�r2(R+ r) sin �0
�
1
2� � �0 � 1

2 sin 2�
0
�
= �2�r2

p
r(2R+ r)

�
sin�1

R

R+ r
� sin �0 cos �0

�
:

Thus,

A(r;R;R) =
2�r2R3

(r +R)2
��r2(r+R) sin �0��� 2�0� sin 2�0

�
; where cos �0 =

R

R+ r
: (5:12)

For small r � R, the �rst term is O(r2) and the rest O(r5=2). Table 7 illustrates the growth

of A(r;R;R) in r=R.

Table 7

Volume A(r;R;R) of region near spheres of radii R uncoverable by ball of radius r < R

r=R A(r;R;R)=R3 A(r;R;R)=4
3
�R3

0:1000 0:02683 0:00616
0:2000 0:08710 0:02079
0:3000 0:15324 0:03658
0:4000 0:22164 0:05291
0:5000 0:28925 0:06905
0:6000 0:35458 0:08465
0:7000 0:41699 0:09955
0:8000 0:47619 0:11368
0:9000 0:53216 0:12704
1:0000 0:58497 0:13965
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In the close-packings of uniform balls of radius R = 1
2
in both Examples 1 and 2, each ball

touchers 12 others, so the proportion of space that cannot be covered either by the uniform balls

of the packing or by much smaller balls of radius r <
q

3
2 � 1 � 0:225, i.e. for r=R < 0:45, equals

6A(r; 12 ;
1
2
)

1
2

p
2

; = 0:16 (r=R = 0:3) or 0:03 (r=R = 0:1): (5:13)

In terms of volume fractions, these examples mean that, given a close-packing like that of Example

1 or 2, in adding balls whose radius is 30% or 10% of the radius of the larger balls, the void cannot

be reduced from 26% to less than 16% or 3% of the total space, though these �gures are merely

bounds that do not reect the `inter-stitial voids' that may be created between these smaller balls.

For the record we compute the corresponding functions for A(r;R;1), corresponding to a

sphere of radius R touching a plane (i.e. approximately, a sphere of radius � R). With the same

functions h(�) and x(�), and much the same argument, augmented now by a `sliver' of exclusion

adjacent to the surface of the plane and a touching sphere of radius r, we have

A(r;R;1) =

Z �00

�=0

h(�) 2�x(�) dx�
Z 1

2
���00

 =0

2r sin 2�
�
(R+ r) sin �00 � r cos �d(�r cos )

+

Z 1

2
�

 = 1

2
���00

r(1� sin  ) 2�
�
(R+ r) sin �00 � r cos �d(�r cos ); (5:14)

where (R + r) cos�00 + r = R, i.e. cos �00 =
R� r

R+ r
. Integration much as for (5.12) and collecting

terms gives

A(r;R;1) = 4�r2R
R2(3R� r)
3(R+ r)3

� �r2
p
rR (6�00 � 4 sin �00 � sin 2�00)

+ 1
3�r

3(sin2 �00 + 2(1� cos3 �00) + 4 sin3 �00): (5:15)

Inspection shows that in this function the �rst term is O(r2) and the others at most O(r3) for small

r� R.

Details for both the above and the general case A(r;R1; R2) with r � R1 � R2 � 1 are in

the Appendix.

6. A Miscellany

Problem 3. Suppose that the sequential touching model algorithm is executed with Ns = 1,

i.e. at step 2s, spheres of radii Rs are placed in the region to be covered until no more sites are

available, at which point step 2s+1 starts, for s = 1; 2; : : :. Is there a sequence of radii fRsg such

that the volume fraction (Vf)s covered by all spheres of radii � Rs satis�es lims!1(Vf)s = 1, or

does the limitation on the number of spheres being countable combined with the curvature of their

surfaces force some limit < 1?

It was partly in response to this question that the quantities A(r;R;R) and A(r;R;1) of

section 5.6 were computed (cf. also (5.13) as a start).
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A common aim of both the simulations reported earlier and of Alan Karr's simulations of a

germ{grain model in which successive balls are placed as remotely as possible from existing spheres,

was to develop some feel for the way in which a volume fraction of between 60% and 70% may

be obtainable from spheres. It would appear that the gradation in sphere-size is crucial here |

admittedly, these simulations do not prescribe the proportion of volume occupied by various sizes

(i.e. the volume fractions for the di�erent sizes). In practice there is a smallest size, so the volume

fraction attainable is bounded above by the vacuity fraction of close-packed spheres of the smallest

size, even assuming they �ll the vacuity fraction of the next size up. For example, referring to

Examples 1 and 2, there are fractions there of 1 :
p
2�1 = 2:414 : 1 and

p
2�1 : p1:5�1 = 1:8099 : 1

between the 1st and 2nd order, and the 2nd and 3rd order spheres, respectively, that reduce the

vacuity fraction by about 20% and 7% respectively, as the `empty space' changes from being external

to spheres all of the one size, to spheres of two sizes (though it is two di�erent types of interstices

in the initial spheres that are accommodating the 2nd and 3rd order spheres).

Our algorithm of section 4 can be expected to �nd `most' spheres of radius � r0 say for as long

as the r0-vacuity function

H(r0) � `
�S(1) n �; r0)�
`
�S(1)� ;

where `(�) denotes Lebesgue measure, satis�es

(1�H(r0))Ns � 0:0001 say;

here, Ns denotes the number of failures before the radius is decreased from (say) Rs to Rs+1. For

the record, Table 8 is a more detailed summary of the simulation reported more briey in columns

(b) of Table 4.

What we want to do is to try and recover the volume fraction of aggregate in concrete, prefer-

ably from some `mix' of aggregate sizes (whether speci�ed by volume or mass), via spherical grains.

From this point of view, algorithm with step 3a0 is of lesser interest.

It seems not unreasonable to me that in mixing concrete, that larger items of aggregate should

dominate over smaller which, as the mix tumbles, produce a gradation of sizes locally consistent

with `holes' that are large enough to accommodate whatever is local to the region, with preference

given to the larger over the smaller, and that every item of aggregate should touch at least one

other. Without having the immediate resources to demonstrate that the simulation above achieves

just that, it appears reasonable that this situation is approximated by the scheme devised, more

particularly by the algorithm with step 3a rather than 3a0 (the interest of 3a0 is more of a mathe-

matical nature: how much larger can the volume fraction be made if we allow ourselves the liberty

of choosing the largest possible item, as distinct from the next item to hand; step 3a0 also has the

advantage of indicating the extent to which we fail to achieve mixing because it is an indicator of

`larger' holes that are not found by the progression-rule (i.e. increase s)).
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Table 8

Evolution of a simulation from the sequential touching model
(R1 = 0:1, Rs+1 = Rs, Ns = 20,000)

s AllPts �s(np) �[(Vf )obs] (Vf )s Radius

1 320 320 0:000000 0:320000 0:10000
2 345 25 0:024550 0:344550 0:09750
3 354 9 0:008329 0:352879 0:09506
4 354 0 0:000000 0:352879 0:09269
5 375 21 0:016800 0:369679 0:09037
6 394 19 0:014770 0:384449 0:08811

7 395 1 0:000692 0:385141 0:08591
8 414 19 0:012591 0:397732 0:08376
9 422 8 0:004843 0:402575 0:08167
10 435 13 0:007367 0:409942 0:07962
11 451 16 0:008178 0:418119 0:07763
12 472 21 0:009914 0:428034 0:07569

13 491 19 0:008151 0:436185 0:07380
14 498 7 0:002930 0:439115 0:07195
15 517 19 0:007216 0:446331 0:07016
16 535 18 0:006263 0:452594 0:06840
17 543 8 0:002678 0:455272 0:06669
18 586 43 0:013462 0:468734 0:06502

19 596 10 0:002816 0:471550 0:06340
20 637 41 0:010647 0:482198 0:06181
21 655 18 0:004312 0:486510 0:06027
22 685 30 0:006836 0:493346 0:05876
23 716 31 0:006728 0:500074 0:05729
24 731 15 0:002997 0:503071 0:05586

25 759 28 0:005354 0:508425 0:05446
26 784 25 0:004244 0:512669 0:05310
27 800 16 0:002462 0:515131 0:05178
28 851 51 0:007326 0:522458 0:05048
29 884 33 0:004499 0:526957 0:04922
30 937 53 0:006802 0:533759 0:04799

31 993 56 0:006307 0:540065 0:04679
32 1059 66 0:007052 0:547117 0:04562
33 1076 17 0:001775 0:548893 0:04448
34 1177 101 0:009307 0:558200 0:04337
35 1178 1 0:000088 0:558288 0:04228
36 1289 111 0:008793 0:567081 0:04123

s AllPts �s(np) �[(Vf )obs] (Vf )s Radius

37 1317 28 0:002029 0:569110 0:04019
38 1444 127 0:008629 0:577739 0:03919
39 1462 18 0:001123 0:578863 0:03821
40 1535 73 0:004246 0:583109 0:03725
41 1637 102 0:005613 0:588722 0:03632
42 1641 4 0:000213 0:588935 0:03542

43 1809 168 0:007977 0:596912 0:03453
44 1876 67 0:002988 0:599901 0:03367
45 1963 87 0:003533 0:603434 0:03282
46 2089 126 0:004792 0:608226 0:03200
47 2128 39 0:001349 0:609575 0:03120
48 2330 202 0:006584 0:616159 0:03042

49 2510 180 0:005383 0:621542 0:02966
50 2693 183 0:005060 0:626602 0:02892
51 2747 54 0:001387 0:627990 0:02820
52 2891 144 0:003483 0:631472 0:02749
53 3198 307 0:006773 0:638245 0:02681
54 3331 133 0:002765 0:641010 0:02614

55 3541 210 0:004050 0:645060 0:02548
56 3756 215 0:003808 0:648868 0:02485
57 3809 53 0:000856 0:649724 0:02422
58 3973 164 0:002491 0:652215 0:02362
59 4166 193 0:002758 0:654973 0:02303
60 4635 469 0:006210 0:661184 0:02245

61 5077 442 0:005367 0:666550 0:02189
62 5305 228 0:002569 0:669119 0:02134
63 5682 377 0:003914 0:673033 0:02081
64 6052 370 0:003595 0:676628 0:02029
65 6341 289 0:002592 0:679220 0:01978
66 6899 558 0:004654 0:683874 0:01929

67 6983 84 0:000655 0:684529 0:01881
68 7463 480 0:003485 0:688015 0:01834
69 8107 644 0:004263 0:692278 0:01788
70 8614 507 0:003154 0:695432 0:01743
71 8923 309 0:001777 0:697208 0:01700
72 9433 510 0:002776 0:699985 0:01657

73 10000 points give (Vf )obs = 0:702838

Problem 4. The Surface Skin. When n spheres of radius R have volume fraction Vf , the amount

of space within R+� of the germs is at most (1+�
R )

dvf . For example, when vf = 0:5, (1+�
R )

d = 2

when
�

R
= 21=d � 1; � 0:26 for d = 3:

How can this consideration, not too dissimilar from the motivation behind the function A(r;R1; R2)

of Section 5.6, be applied to understand observed void fraction?

Problem 5. For a sequential packing algorithm such as in Section 4, with �xed R1; R2; : : : ; is

there an optimal ratio Rs+1=Rs ? Does the ratio depend on N1; N2; : : : ?

For the latter question, compare section 5.NNNNN
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It would appear intuitively plausible that sequentially packing spheres into a region such as

via the sequential touching algorithm of Section 4, should produce a volume fraction as close as

we please to 1. But is this really so? Consider again Examples 1 and 2 where unit spheres are

close-packed, occupying 74% of the space. Adding the next largest spheres �lls another 5%, or

about 20% of the remaining empty space. The third-largest set of spheres that can be put into

the empty space that remains �lls another 1.6% of the original volume, or about 8% of the then

remaining empty space.

Equally, it is salutary to reect that in a close-packing of space with spheres of diameter 1 cm,

the amount of occupied space that is within 0:1mm of the surface of a sphere is about 6% of the

occupied space, equivalent to about 24% of the unoccupied space, suggesting that the amount of

empty space that is within 0:1mm of covered space is of the order of 20% of all the empty space.

Consequently, it is little wonder that �lling as much of the empty space as possible with spheres

of about the same size, does nothing like �lling up a substantial part of the space that is presently

empty. A considerable part of empty space is close to the surface of at least one grain (and if it is

close to two, then it is likely that only tiny grains can be �tted into the void); see Table 7.
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Appendix

A. Algebra concerning the excluded volume function A(r;R1; R2)

In the case of A(r;R;1) given at equation (5.14), The �rst term equals

2�R3
�
1
2(1� cos2 �00)� 1

3(1� cos3 �00)
�
=

4�r2R3(3R� r)
3(R+ r)3

= 4�r2R
�
1 + O(r=R)

�
:

The second term, again from earlier work, equals

� 2�r2(R+ r) sin �00
�
1
2
� � �00 � 1

2
sin 2�00

�
+ 4

3
�r3 sin3

�
1
2
� � �00

�
= �4�r2

p
rR

�
sin�1

R� r

R+ r
� 2(R� r)

p
rR

(R+ r)2

�
+

4�r3(R� r)3
3(R+ r)3

:

The last term equals

2�r2
Z 1

2
�

 = 1

2
���00

(sin � sin2  )
�
2
p
rR� r cos 

�
d 

= 4�r2
p
rR
�
sin �00 � 1

2�
00 � 1

4 sin 2�
00
�� 2�r3

�
1
2(1� cos2 �00)� 1

3 (1� cos3 �00)
�
:

Thus,

A(r;R;1) = 2�R3

Z �00

0

(cos� � cos2 �) d(� cos�)

+ �r2
Z �00

0

�
4
p
rR (cos � 1� sin2  )� r sin 2 (1� cos � 2 sin )

�
d 

Now see equation (5.15).

For the general case that r � R1 � R2 � 1, the uncoverable volume A(r;R1; R2) equals

2X
k=1

Z �0k

�k=0

hk(�) 2�xk(�) dxk �
Z 1

2
���0

1

 1=0

2r sin 12�
�
(R1 + r) sin �01 � r cos 1

�
d(�r cos 1)

�
Z 1

2
���0

2

1

2
���0

1

�
r sin 2 � [(R2 + r) cos�02 �R2]

�
2�
�
(R2 + r) sin �02 � r cos 2

�
d(�r cos 2)

� [1]� [2]� [3] say;

where for k = 1; 2, hk(�) = Rk(1� cos �), xk(�) = Rk sin �, and �
0

k are solutions satisfying 0 < �0k <
1
2
� of

(R1 + r) sin �01 = (R2 + r) sin �02;

(R1 + r) cos �01 + (R2 + r) cos �02 = R1 +R2;

[1] = 2�R3
k

Z �0k

0

(1� cos �) sin � cos � d� = 2�R3
k

�
1
2 (1� cos2 �0k)� 1

3 (1� cos3 �0k)
�
;

[2] = 4�r2
Z 1

2
���0

1

 =0

sin 
�
(R1 + r) sin �01 � r cos 

�
sin d 

= 2�r2(R1 + r) sin �01
�
(at12� � �01)� 1

2 sin 2�
0

1

�� 4
3�r

3(R1 + r) cos3 �01;

and the integral [3] is evaluated similarly.
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