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Social Networks

» A model of the relationships between entities.
» Also used to study insurgent groups, terrorist cells, etc.

» Relates actors (nodes in the network) through relationships
(edges in the network).

» Typically used for small groups, with full knowledge of all
links.

° Marriage Network

Family Wealth _ Betw. _Eigenv. Degree

ACCIAIUOL 10 00 013 67
ALBIZZI 3% 193 024 200
BARBADORI 55 85 021 133
BISCHERI I 95 028 200
CASTELLAN 20 50 026 200
seruz | GINORI 32 00 007 67
[ S GUADAGNI 8 230 029 27
LAMBERTES 12 00 009 6.7
MEDICI 103 415 043 400
e PAZZL 48 00 004 67
PERUZZI 19 20 028 200
o PUCCI 3 00 000 00
RIDOLFI 27103 034 200
| i SALVIATL 10 130 015 133
STROZZI 146 93 0% 267
o TORNABUON 18 83 033200
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Wealth & Betweenness c. 03512
Wealth & Eigenvector c. 05366

Wealth & Degree c. 05590




Covert Networks

Actors have a vested interest in not being observed.
Networks may be very large.
The networks change in time.

Some links are known to be there, some known to be
missing, but others are unknown.

» An actor may try to hide (change email address, change
phone number, start calling themselves Colonel Guapa).
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Methodology

» Assume the existence of a “social space” S which controls
the structure of the network.

» The probability of an edge in the network is a function of
the “closeness” of the nodes in S.

» The social space provides a framework from which
inference can be performed.




Social Space

» Early work reported by Hoff et al in JASA.
» Model based on location:
» Probability of an edge between v; and v; a function of their
distance in social space.
» Several variations proposed.
» Versions of the Exponential Random Graph Models
(ERGMSs) (Hunter et al, JASA 2008) can be thought of in
terms of a “social space”.

» We will discuss a “social space” model that has a simple
least squares algorithm for fitting the parameters, which
can be used on large graphs (thousands to tens of
thousands of nodes or more).
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Graph Definitions

» A graph is a pair (V,E) where V is a set (vertices) and E
is a collection of unordered pairs of vertices (edges).

» We can consider directed graphs (V,A) where A (arcs or
arrows) are ordered pairs.

» The order of the graph is |V | and the size of the graph is
|[E| (or |A] in the case of directed graphs (digraphs)).

» Vertices are sometimes called “nodes” or “actors”.

» Edges are sometimes called “links” or “relations”.

» The adjacency matrix A = (a;) is the |V | x [V| binary
matrix with a 1 in those places where an edge occurs in
the graph.




Probabilistic Framework

» We place a probability structure on the network.
» This means we fit a generative model to the graph.

» This allows us to estimate the probability of a missing
(unknown) link.

» We can bring node attributes into the model.

» We are essentially choosing the “most likely” graph given
the model assumption and the observed edges.




Random Dot Product Graphs

» Each vertex v; has associated with it a vector ;.

» Place an edge v;v; between vertices v; and v; with
probability proportional to x;x;, the dot product of x; and x;.

> Thus p; = f(xix;). We'll use the threshold function for f:

0 x<0
f(x)=¢ x 0<x<1

1 x>1

» The edges in the random graph are no longer independent.
» We need to estimate the x; from the observed graph.
» We can extend the model to directed graphs by having in-

and out-vectors x| and x° with p;; proportional to x°x/.




» Each vertex v; has associated with it a vector x; € S.

» The proximity (as measured by the dot product) of two
vectors controls the probability of an edge.

» Thus S is the space which defines the random graph that
we observe.
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Linear Algebra (Least Squares)

Note that if we want to find the vectors U which best “match” the
adjacency matrix A (best in Frobenius norm), then the singular
value decomposition: A = UDV’ almost works (the problem is
the diagonal). Note that for graphs A is symmetric, so V = U.
1. Set D = diag(0).

1.1 s =svd(A+ D).

1.2 X =s$U, scaled by the singular values.

1.3 D = diag(XX’).

2. Repeat 1-3 until convergence.
3. Return X.




The Enron Data
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Graphs (directed graphs) of emails between executives at
Enron.

184 email addresses (nodes).

150 executives (names).

187 weeks.

Each graph corresponds to 1 week of emails.

An edge v — w if there was an email from v to w within
the week.

Note: we are ignoring multiple emails and an email from
one to many generates a “star” of edges.




An Alias
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Finding Patterns

In Corporate Chatter
Computer scientists are analyzing about a half million Enron e-mails. Here is a map of a week's e-mail patterns in May 2001

when a new name sudsenly appeared. Scientists found that this week's pattern differed greatly from omer& suggesting
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The Alias

v

k..allen did not appear in any prior graph.

Perusal of the content of the emails determines that these
were sent by Phillip Allen.

phillip.allen appears in the previous graphs.

A matched filter comparing neighborhoods was
implemented and it found the correct match.

In this work, we develop a “social space” version of the
matched filter.
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Aliases

» Given two graphs G; and G ;.

» Suppose we know some of the vertices are shared by
these graphs (and which ones they are).

» There is one vertex in G, that we have not seen before.

» Assuming that this vertex appeared in G; with a different
label, can we determine this vertex?




Aliases

» Setup:
» Two graphs, G; = (V U U, E) and Giy1 = (V U U1, Era).
» All vertices are labeled (email addresses).
» Vertices in V are named (individual associated with the
address).
» Vertices in U; are not named.

» Want to associate the names to the vertices in Ugy.




Methodology

» Assign the name to vertex u whose vector xy is closest to
the vector x,.

» Optimize:

_|_
F

X.Y1,Y5) =arg min
( s 11, 2) gX,Yl,Yg

(5)(X)) =
() =

» Mo means M with the diagonal replaced with zeros.

)

F

» Thus, we are attempting to fit a set of vectors to the known
and a set each for the unknown in the two graphs. Fitting
to the knowns constrains the Y; to lie in the same space.




The Setup

» Input Aq, Ay, the adjacency matrices of the graphs
corresponding to the vertices (V, U;).

» Set B to be the average of A;[V] and A;[V], the blocks
corresponding to V.

» SetN =n+n; + nyp.

» Set A to be the N x N matrix with first n x n block equal to
B, and blocks A[V, U] = A;, A[U;, V] = Al

ANVNIANNT AV, U] AV, U]
A= A1[U1,V]  Aq[Ug,Uq] Y/

Az[Uz, V] Y Az[Uz, Us]

where Y is the dot product of vectors derived from U, and U,. P




Fitting the Alias

1. Setup as described previously.

2. SetD =0yxN-

3. Set the first n x n block of D equal to the the dot product of
the result of running the least squares Algorithm on B.

3.1 While(Not Converged)

3.2 Y =g4(A+D)

3.3 Set the unknown entries of D (such as those corresponding
to U; x Uy) to the dot products of the appropriate parts of Y .

4. OutputY

» Use the vectors to find the alias: closest named vector to
the one associated with the alias.




Alias Identification: k..allen— phillip.allen

Distance
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Enron Executive
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Conclusions

» Social space provides a mechanism for modeling and
inference on graphs and time series of graphs.

» Dot product graph model is simple, but easy to fit using
linear algebra.

» Sparse matrix approaches can make this efficient:

» There appears to be an O(n®), 2 < s < 3 matrix multiply in
the algorithm, in order to determine the stopping criterion
(compute the error).

» Some tricks can be played to reduce this for this application.

» By using only the change in the diagonal for determining
convergence, we eliminate the need for the full matrix
multiply, replacing it with an O(n) operation. Note that we
only need to check the diagonal, since once this stops
changing the algorithm produces a fixed point.

» It is possible to add covariates (measurements at the

nodes) into the model and still use the linear algebra
approach, but this work is preliminary.




Questions?

Contact Information: dmarchette@gmail.com
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