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Distributed Maximum Likelihood
Estimation

Data x
n = {x1, · · · , xn} generated from f(x; θ)

The data are distributed across different agencies

1. Horizontally partitioned

2. Vertically partitioned

The MLE is

θ̂ = arg max
θ

l(θ|xn)

Goal: compute θ̂ without sharing data between
agencies
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Horizontally partitioned, exponential
family

Exponential family f(x) = b(x)exp{a(θ)T t(x) − c(θ)}

Log likelihood

l(θ;xn) =
n

∑

i=1

log b(xi) +
n

∑

i=1

{a(θ)T t(xi) − c(θ)}

The MLE is

θ̂ = arg max
θ

a(θ)T
n

∑

i=1

t(xi) − nc(θ)

Secure summation of
∑n

i=1 t(xi)
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Horizontally partitioned, Newton
Raphson

Given the estimates θ(s−1) from the previous step, new
estimate is

θ(s) = θ(s−1) − (D2l(xn; θ(s−1)))−1∇l(xn; θ(s−1)),

where D2l() is the Hassian and ∇l() is the gradient

Assume θ = {θ1, · · · , θk},

∇l(xn; θ(s−1)) =





n
∑

i=1

∂f(xi;θ
)

∂θ1

f(xi; θ)
, · · · ,

n
∑

i=1

∂f(xi;θ)
∂θk

f(xi; θ)





′

θ(s−1)
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Horizontally partitioned, Newton
Raphson

Locally, we can compute Lj, 1 ≤ j ≤ m, where

Lj =





mj
∑

i=1

∂f(xi;θ
)

∂θ1

f(xi; θ)
, · · · ,

mj
∑

i=1

∂f(xi;θ
)

∂θk

f(xi; θ)





′

θ(s−1)

Similarly we can compute

Hj(h, l) =
mj
∑

i=1





∂2f(xi;θ
)

∂θh∂θl

f(xi; θ)
−

∂f(xi;θ
)

∂θh

∂f(xi;θ
)

∂θl

f 2(xi; θ)





θ(s−1)

The iteration step becomes

θ(s) = θ(s−1) − (
m

∑

j=1

Hj)
−1(

m
∑

j=1

Lj)
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Horizontally partitioned, Newton
Raphson

Hj and Lj can be computed locally at each agency

If m > 2, use secure summation to compute and share
∑m

j=1 Hj and
∑m

j=1 Lj

Potential drawbacks

1. m has to be greater than 2

2. Share more than necessary

Compute (
∑m

j=1 Hj)
−1(

∑m
j=1 Lj) directly
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Horizontally partitioned, direct
computation

Without loss of generaility, assume m = 2

Note that when m = 2, secure summation can’t be
applied

Our goal: Compute (H1 + H2)
−1(L1 + L2) securely

Approach: Solving linear equation system

Denote X = (H1 + H2)
−1(L1 + L2), the problem is

equivalent to solve

(H1 + H2)X = (L1 + L2)
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Horizontally partitioned, direct
computation

Assume two agencies A and B

A and B generate k × k matrix M1 and M2 respectively,
both with rank k/2

A sends M1 to B. B computes M1H2 and M1L2, sends
them to A

A can produce the linear equation system

M1(H1 + H2)X = M1(L1 + L2)

Symmetrically, B can produce

M2(H1 + H2)X = M2(L1 + L2)
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Horizontally partitioned, direct
computation

Sharing the two linear equation systems directly will
reveal L1 and L2

Solution: A and B generate full rank matrices T1 and T2

respectively

Combine the following two linear equation systems to
solve for X

T1M1(H1 + H2)X = T1M1(L1 + L2)

T2M2(H1 + H2)X = T2M2(L1 + L2)
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Security analysis and discussion

Agency A sent to B: M2H1,M2L1, T1M1(H1 + H2) and
T1M1(L1 + L2)

A can check the rank of M2. When K > 2, H1 and L1

are not revealed

Sharing of T1M1(H1 + H2) reveals T1H1 to B, but not
H1

Protocol is symmertric

Protocol works for m = 2
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Vertically partitioned, independent
variable

Assume x
n = {x1, · · · , xn}, where xi = (x1

i , · · · , x
p
i ).

Each agency owns portion of the variables for all xi

Assume f(xi, θ) = Πp
s=1fs(x

s
i ; θ)

Log likelihood

l =
p

∑

s=1

[

n
∑

i=1

log fs(x
s
i ; θ)

]

Compute locally at each agency and use secure
summation or the direct computation protocol
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Vertically partitioned, exponential
family

Exponential family f(x) = b(x)exp{a(θ)T t(x) − c(θ)}

The MLE is

θ̂ = arg max
θ

a(θ)T
n

∑

i=1

t(xi) − nc(θ)

Two agencies, A and B. A holds (x1,i, · · · , xk,i), and B
holds (xk+1,i, · · · , xp,i), 1 ≤ i ≤ n

Need a protocol to compute
∑n

i=1 t(x1,i, · · · , xk,i;xk+1,i, · · · , xp,i) securely

Workshop on Data Confidentiality, Hyattsville, MD, May 2008 – p. 13/20



Vertically partitioned, secure two
party computation

Protocol to compute
∑n

i=1 t(x1,i, x2,i) securely

Step one. Agency A generate a vector of length s,
among which the kth item xk

1,i = x1,i. The other s − 1

items are random numbers

Step two. A sends this vector to B, B computes
t1 = t(x1

1,i, x2,i), · · · , t
s = t(xs

1,i, x2,i). B generates a
random number ǫi and computes
g1

i = t1 − ǫi, · · · , g
s
i = t2 − ǫi
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Vertically partitioned, secure two
party computation

Step three. Agency A obtains gk
i using 1 out of s

oblivious transfer

Step four. Agency A has
∑n

i=1 gk
i and Agency B has

∑n
i=1 ǫi. Their sum gives

∑n
i=1 t(x1,i, x2,i)
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Vertically partitioned, secure two
party computation

Agency A obtains gk
i . Since Agency does not know ǫi,

value of x2,i is not revealed

The quantities
∑n

i=1 gk
i and

∑n
i=1 ǫi are shared, but not

the individual values

Non symmetric due to 1 out of N oblivious transfer

Communication cost n ∗ s + n ∗ L(s). L(s) is the
communication cost for 1 out of s oblivious transfer
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Vertically partitioned, Newton
Raphson

The gradient vector and Hessian matrix are

L =





n
∑

i=1

∂f(xi;θ)
∂θ1

f(xi; θ)
, · · · ,

n
∑

i=1

∂f(xi;θ)
∂θk

f(xi; θ)





θ(s−1)

and

H =
n

∑

i=1





∂2f(xi;θ)
∂θh∂θl

f(xi; θ)
−

∂f(xi;θ)
∂θh

∂f(xi;θ)
∂θl

f 2(xi; θ)





θ(s−1)

Assume the functional form of H and L are shared,
parameters can be updated using the last protocol
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“Opt out" strategies

Utility and security considerations will cause agencies
to opt out

Size of dataset, numbers of variables

Observed Fisher Information matrix

(J(θ))qh = −
n

∑

i=1

∂2

∂θq∂θh

log f(xi; θ).

Compare local J with the global J

Other utility and risk measures
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Conclusion

Privacy Preserving MLE for horizontally partitioned
data using secure summation

Privacy Preserving MLE for horizontally partitioned
data using direct computation

Privacy Preserving MLE for vertically partitioned data
using secure function evalution

Opt out strategies
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Future work

Private information propagation through iterations

Constrained MLE

θ̂ = arg max l(θ;xn) s.t. Cj(θ) 1 ≤ j ≤ m,

where Cj(θ) are the parameter constraints each
agency follows and can not be shared

General constrained optimization problems with
privacy assurance

Connection between privacy preserving distributed
computing and SDL
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