Introduction

Horizontally Partitioned Data

Vertically Partitioned Data

Complex Partitions R

References

Secure Statistical Analysis of Distributed Databases (Emphasizing What We Don't Know)

Alan F. Karr National Institute of Statistical Sciences Research Triangle Park, NC karr@niss.org

Data Confidentiality: The Next Five Years May 1, 2008

Introduction	SMPC	Horizontally Partitioned Data	Vertically Partitioned Data	Compl

Outline

5

Complex Partitions

References

Introduction	SMPC	Horizontally Partitioned Data

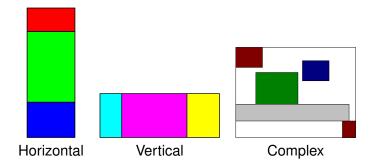
Problem Formulation

Context Related, distributed databases held by multiple owners

- Government agencies (example: US states)
- Corporations (example: pharma companies)
- Goal Valid, complete, statistical inference on the integrated database without actually creating it
- **Constraints** No trusted third party (human or machine)
 - Protect each owner's data from the other owners
 - Protect data subjects
- Other Considerations Reduce incentives to cheat

Introduction	SMPC 000	Horizontally Partitioned Data	Vertically Partitioned Data	Complex Partitions	References

Data Partitioning



Introduction	SMPC
	000

Horizontally Partitioned Data

Vertically Partitioned Data

Complex Partitions References

Basics

Secure Multi-Party Computation

- Setting
 Agencies 1, ..., K with values v₁, ..., v_K
 Known function f with K arguments
 - **Goal** Compute $f(v_1, ..., v_K)$ (exactly) in such a way that
 - All agency *j* learns about {*v_i* : *i* ≠ *j*} is what can be deduced from *v_j* and *f*(*v*₁,..., *v_K*)
 - Outside parties are not involved

Semi-honesty Agencies

- Must use correct data
- Must perform agreed-on computations
- *May* retain results of intermediate computations

Complex Partitions References

Secure Summation

Secure Summation Protocol

Problem Agencies want to compute $v = \sum_{k=1}^{K} v_k$

Secure Summation Protocol

- Agency 1: generate enormous random number R, and transmit R + v₁ to agency 2
- Agency 2: Add v₂, transmit R + v₁ + v₂ to agency 3
- •
- Agency K: Receive $R + v_1 + \cdots + v_{K-1}$ from agency K - 1, add v_K , transmit $R + v_1 + \cdots + v_K = R + v$ to agency 1
- Agency 1: receive R + v, subtract R, share result

Horizontally Partitioned Data

Vertically Partitioned Data

Complex Partitions

References

Secure Summation

Issues with Secure Summation

- Needs "good" random number
- Collusion
 - Agencies j 1 and j + 1, without sharing private information, can determine v_j
 - Can be defeated by splitting calculation into pieces, with different orders for each
- "Bullet-proof" implementation is subtle
- Breaks if semi-honesty fails: secure summation is not a Nash equilibrium

Introduction	SMPC 000	Horizontally Partitioned Data	Vertically Partitioned Data	Complex Partitions	References
Basics for HP [Data				
The On	e Idea				

If the analysis uses sufficient statistics that are additive across agencies, then

- Use secure summation to compute and share each sufficient statistic
- Each agency completes the analysis on its own

Introduction	SMPC 000	Horizontally Partitioned Data	Vertically Partitioned Data	Complex Partitions	References
Analyses					
Linear I	Regres	ssion			

Setting Numerical attributes: y = response, X = predictorsGoal Fit the linear regression and $y = X\beta + \varepsilon$ and calculate estimators, diagnostics, ...

Computation of $\hat{\beta}$ via secure summation: Compute

$$X^T X = \sum_{j=1}^{K} (X^j)^T X^j$$

and

$$X^T y = \sum_{j=1}^K (X^j)^T y^j$$

entrywise. Each agency then calculates $\hat{\beta} = (X^T X)^{-1} X^T y$

Complex Partitions R

References

Analyses

Example: Chemical Data from Multiple Pharmaceutical Manufacturers

Data 1318 molecules

- Response: water solubility
- Predictors 1 constant + 90 (binary) molecular descriptors

Distributed databases 4 companies

- Data split using classifier: each company's data are homogeneous, but with gaps!
- Sizes of databases = 499, 572, 16 (!), 231

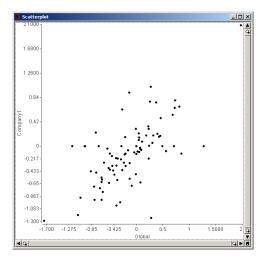
Introduction	SMPC	Horizontally Partitioned Data
		000000000000000000000000000000000000000

omplex Partitions

References

Analyses

Results: Company 1 (n = 499)



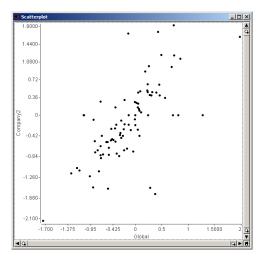
Introduction	SMPC	Horizontally Partitioned Data
		000000000000000000000000000000000000000

Complex Partitions

References

Analyses

Results: Company 2 (n = 572)



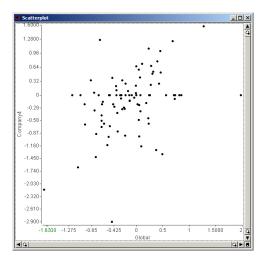
Introduction	SMPC	Horizontally Partitioned Data
		000000000000000000000000000000000000000

Complex Partitions

References

Analyses

Results: Company 4 (n = 231)



Introduction	SMPC	Horizontally Partitioned Data	Ve
		000000000000	

Complex Partitions R

References

Analyses

Back to Regression: What about the Rest of the Analysis?

1. Other securely computable statistics

•
$$R^2 = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2 / \sum_{i=1}^{n} (y_i - \bar{y})^2$$

•
$$S^2 = (y - X\hat{\beta})^T (y - X\hat{\beta})/(n - p)$$

- Hat matrix $H = X(X^T X)^{-1} X^T$, giving information on outliers
- 2. Shared synthetic residuals
 - Each agency
 - Synthesizes predictor values similar to its own
 - Using global regression coefficients, synthesizes residuals associated with its synthetic predictors in a way that mimics the predictor–residual relationship in its own data
 - Agencies share synthetic predictors and residuals via secure data integration
- Each agency can assess fit of global model to its data

Introduction	SMPC 000	Horizontally Partitioned Data	Vertically Partitioned Data	Complex Partitions	References
Other Analyses	3				
The Sar	ne Ide	a Works for			

Secure Data Integration Data values shareable but sources are not

Secure Contingency Tables Right data structure for large (sparse) table is list of (cell coordinate, cell value) pairs for (only) cells with non-zero values.

- Use secure data integration to build list
- Use secure summation to calculate table entries

Secure MLE Exponential families with global log-likelihood $\log I(\theta, \mathbf{x}) =$

$$\sum_{\ell=1}^{L} \boldsymbol{d}_{\ell}(\theta) \left[\sum_{k=1}^{K} \sum_{i \in \text{Agency } k} \boldsymbol{c}_{\ell}(\boldsymbol{x}_{i}) \right]$$

Introduction	SMPC 000	Horizontally Partitioned Data	Vertically Partitioned Data	Complex Partitions	References
What We Don'	t Know				
So Wha	ıt's Wr	ong?			

- We can't be good statisticians: analysis must be pre-specified. What about EDA? Visualization?
- Can't protect against dishonesty: if all agencies but one are semi-honest, it can ensure that it gets the right answer and none of the other agencies does or even knows that it doesn't
 - PTTP can reduce incentives, but no ways to detect cheating
- We don't understand risks arising from diversity, e.g.,
 - Unequal database sizes
 - Data heterogeneities (real point: what's the model?)
 - Differential model fit across owners
- No measures—collective or owner-specific—of analysis utility
- Can't (or have only dorky ways to) handle non-additivity. Examples: maximum, sorting, ...

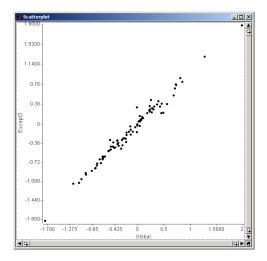
Introduction	SMPC	Horizontally Partitioned Data
		000000000000000000000000000000000000000

Complex Partitions

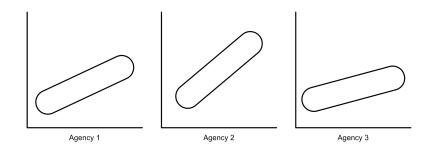
References

What We Don't Know

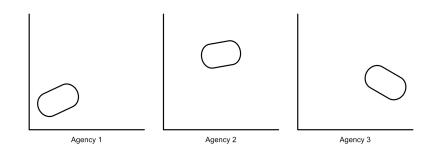
Should Companies 1, 2 and 4 Allow 3 to Participate?



Introduction	SMPC 000	Horizontally Partitioned Data	Vertically Partitioned Data	Complex Partitions	References			
What We Don't Know								
Homogeneous Data								

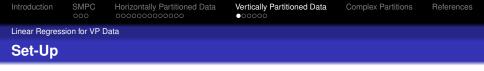


What We Don	000 't Know	000000000000000000000000000000000000000	000000	
Heterog	geneou	us Data		



Introduction	SMPC 000	Horizontally Partitioned Data	Vertically Partitioned Data	Complex Partitions	References		
What We Don't Know							
What Else is Wrong?							

- No method to allow agencies to opt out *based on the results of the analysis*
 - Can't do (k, p)-rules in SDL
 - Can do anonymous opt out using (*n*, *p*)-rules, but in some cases only post-analysis
- Numerical and algorithmic issues, especially in cases (e.g., iterative computations) where the integrity of the process depends on each machine
- How to perform, and risks associated with, pre-processing: agencies must have attributes in the same units and same order, and must ensure that there are no duplicate records



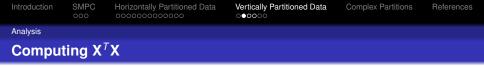
Agencies A, B, ..., Ω

Global database X partitioned vertically among agencies:

$$\mathbf{X} = \begin{bmatrix} \mathbf{X}^A \ \mathbf{X}^B \ \cdots \ \mathbf{X}^{\Omega} \end{bmatrix}$$

Computational need $(p \times p)$ -dimensional full data covariance matrix $\mathbf{X}^T \mathbf{X}$ (for regression, ...)

Goal As little surrender of information as possible



On-diagonal blocks $(\mathbf{X}^A)^T \mathbf{X}^A$ computed by each agency and shared with the others

Off-diagonal blocks $(\mathbf{X}^A)^T \mathbf{X}^B$ computed by pairs of agencies using secure matrix multiplication and shared with the others

000 0000000000 000000	Introduction	SMPC	Horizontally Partitioned Data	Vertically Partitioned Data	Complex
				00000	

Analysis

Secure Matrix Multiplication Protocol

Step 1 Agency A generates a set of *g n*-dimensional vectors $\{Z_1, Z_2, ..., Z_g\}$ such that $Z_i^T X_j^A = 0$ for all *i* and *j*, and sends to agency B the $(n \times g)$ -dimensional matrix $\mathbf{Z} = [Z_1 \ Z_2 \ \cdots \ Z_g]$ Step 2 Agency B computes $\mathbf{W} = (\mathbf{I} - \mathbf{Z}\mathbf{Z}^T) \mathbf{X}^B$ where **I** is an $(n \times n)$ -dimensional identity matrix, and sends **W** to agency A Step 3 Agency A calculates

 $(\mathbf{X}^{A})^{T}\mathbf{W} = (\mathbf{X})^{T}(\mathbf{I} - \mathbf{Z}\mathbf{Z}^{T})\mathbf{X}^{B} = (\mathbf{X}^{A})^{T}\mathbf{X}^{B}$ and shares $(\mathbf{X}^{A})^{T}\mathbf{X}^{B}$ with other agencies

Two extreme cases

- *g* = 0: **W** = **X**^B, so A learns agency B's data exactly
- g = n − p: B knows orthogonal complement of X^A in ℝⁿ

Introduction	SMPC 000	Horizontally Partitioned Data	Vertically Partitioned Data	Complex Partitions	References
Analysis					
Choice	of g				

Loss of protection to one agency: number of (linearly independent) constraints the other agency has on its data

- Agency A: $LP(A) = p_A p_B + p_A g$
- Agency B: LP(B) = $p_A p_B + p_B (n g)$
- Total, as a function of g:

$$LP(g) = 2p_Ap_B + np_B + (p_A - p_B)g$$

Note: $p_A = p_B$ implies $LP(g) \equiv 2p_Ap_B + np_B$

Inequity: $I(g) = |LP(A) - LP(B)| = |(p_A + p_B)g - np_A|$ is minimized by

$$g^* = rac{
ho_{\mathrm{A}}}{
ho_{\mathrm{A}} +
ho_{\mathrm{B}}} n$$

Introduction	SMPC 000	Horizontally Partitioned Data	Vertically Partitioned Data	Complex Partitions	References
Things We Dor	n't Know				
Problen	ns				

- Analysis must be specified in advance
- Inherent asymmetry: holder of the response loses the most
- Agencies must link records, which
 - Requires common primary key
 - Has severe privacy implications
- Other preprocessing issues: duplicate attributes, incomplete records

Things We Don't Know

Another Problem: Multiple Threats to Record-Level Privacy

- (I ZZ^T) contains a column with all zeros except for a non-zero constant in one row: A learns the value of agency B's data for the data subject in that row
- Attribute that equals zero for all but one data subject
- Sparseness of X^A
- Constraints of the form "gross income ≥ net income plus federal tax plus state tax"
- Record in X^A with dominant attribute values
- High *R*² can imply A has good predictors of B's attributes

Introduction SMPC

Horizontally Partitioned Data

Vertically Partitioned Data

Complex Partitions

References

Complex Partitions: What We Don't Know

Short answer: Almost everything

Longer but not necessarily more informative answer:

- Computational protocols
- Risks, both old and new (What if knowing who holds what data is risky?)
- Utility measures

Introduction	SMPC 000	Horizontally Partitioned Data	Vertically Partitioned Data	Complex Partitions	References
Referen	ces				

www.niss.org/dgii/techreports.html