

Secure Data Integration

Alan F. Karr karr@niss.org

Outline

- Three basic operations
 - Secure summation
 - Application to secure association rules
 - Secure Boolean
 - Application to secure opt out
 - Secure data pooling
 - Application to categorical data
- Application
 - Secure (horizontally partitioned) regression

Basics

- Setting
 - Parties with multiple, identical (!?) databases
- Goal
 - Secure computation, analysis, data pooling, ...
 without revealing to any party anything other than what can be deduced by "subtraction" from final result
- Assumptions
 - More than 2 parties
 - Cooperating parties

Secure Summation

- Problem
 - Party k has a_k
 - Compute Σa_k without revealing any of the a_k to others, and without trusted third party (human or machine)
- Solution
 - Party 1: generate enormous random number *R*, and transmit $R + a_1$ to party 2
 - Party 2: Add a_2 , transmit $R + a_1 + a_2$ to party 3
 - Party 1: receive $R + \Sigma a_k$, subtract R and share result

Example: Association Rules

- D = database, a "flat file"
 - Rows = cases
 - Columns = categorical attributes
- A, B subsets of D, typically defined by "attribute = value"
- Association rule A ⇒ B: to what extent does A imply B?
- Quantifications
 - Confidence: $C = P(B|A) = #(A \cap B) / #(A)$
 - Support: $S = P(B \cap A) = #(A \cap B) / #(D)$

Association Rules: Example

- CPS8D data
 - 48,842-element excerpt from 1993 CPS
 - 8 categorical attributes: Age, EmplType, Educ, MarStat, Race, Sex, Hours, Income
 - 2880 (1695 non-zero) cells in full contingency table

Salary x Age

Confidence g	given	Age
--------------	-------	-----

	<25	25-55	>55
<\$50K	8339	23912	4904
>=\$50K	93	9629	1965

	<25	25-55	>55
<\$50K	0.99	71	.71
>=\$50K	.01	.29	.29

Secure Association Rules

- Problem
 - Find item pairs (*i*,*j*) with *global* (across all the databases) association rule support exceeding threshold *s*
 - Protect
 - Data items (no shared data)
 - Database sizes N_k
 - Support $C_k(i,j)/N_k$ at each site
- Solution: use secure summation to compute

$$\mathbb{1}\left(\sum_{k} C_{k}(i, j) - s \sum_{k} N_{k} \ge 0\right)$$

Secure Boolean

- Problem
 - Determine whether "yes/no" vote is unanimous without revealing
 - No voters
 - Number of no votes
- Solution (*K* = number of parties)
 - Party 1 creates and sends to Party 2 p_1 = product of several (large) primes
 - Party 2 forms and sends on
 - $p_2 = p_1 * 1$ prime if "yes"
 - $p_2 = p_1$ * several primes if "no"
 - ...
 - Party 1 ends up with p_K
 - Divide by p_1 and factor result into primes (needs good algorithm)
 - If K 1 factors, all other votes were "yes"
 - Otherwise, there was a "no" vote
 - Informs others of final result

Example: Secure Opt Out

- Problem
 - For pooled data, allow anyone to prevent pooling whose database size N_k exceeds p% of the total
- Solution
 - Secure summation to compute $N = \sum N_k$
 - Secure Boolean with yes = $N_k \leq pN$

(Pretty) Secure Data Pooling

- Problem
 - Build pooled database without revealing to any party the source of "other" elements
- Solution
 - Use secure summation to determine $N = \Sigma N_k$,
 - Party 1 create and send to Party 2 list containing
 - (100 *) N "fake" data records (generated via SDL?)
 - At least 5% of his/her real records
 - Party 2 add at least 5% of her/his records to list, and send to Party 3
 - ... (at most 20 iterations)
 - Party 1 remove the "fake" records and share pooled data set

Secure Pooling for Categorical Data

- Solution: build contingency table
 - Unscalable but completely secure version
 - Use secure summation to compute the associated contingency table in array form, cell-by-cell
 - Scalable but less secure version
 - Build sparse representation (coordinates, count)
 - Use secure data pooling to create list of non-zero cells
 - Use secure summation to compute values of non-zero cells

Secure Regression

- Parameter estimation
 - Compute $X^T X$ and $X^T Y$ entrywise via secure summation; share results; everyone can compute $\hat{\beta} = (X^T X)^{-1} X^T Y$

X: (n₁+n₂) * p

• Diagnostics: under construction