

Protecting Tabular Data through Cyclic Perturbation

George Duncan and Steve Roehrig

NCES 2006 December 7

Table of Counts

	w ₁	W ₂	w ₃	W_4	
V ₁	15	1	3	1	20
v ₂	20	10	10	15	55
V ₃	3	10	10	2	25
V ₄	12	14	7	2	35
	50	35	30	20	135

Look For Risky Cells

	W_1	W ₂	w ₃	W ₄	
v ₁	15	(1)	3	1	20
v ₂	20	10	10	15	55
V ₃	3	10	10	(2)	25
V ₄	12	14	7	2	35
	50	35	30	20	135

Apply Disclosure Limitation

Coarsening

- Aggregate attributes
- Suppress some cells
 - Publish only the marginal totals
 - Suppress the sensitive cells, plus others as necessary
- Perturb some cells
 - Round
 - Fuzz

Perturbation Methods

- Controlled rounding (Cox)
- Controlled tabular adjustment (Cox & Dandekar)
 - Replace sensitive cell values with safe values and adjust other cells so that the table "adds up"
- Cyclic perturbation (Duncan & Roehrig)
 - Stochastically modify cell values in a known way, allowing a Bayesian analysis of cell value distributions

Releasing Only the Margins

- 18,272,363,056 tables have our margins (thanks to De Loera & Sturmfels)
- Low disclosure risk, but low data utility
- Easy!
- Very commonly done
- Statistical users might estimate internal cells with, e.g., iterative proportional fitting

Suppress Primary Cells + Complementary Cells

	w ₁	w ₂	w ₃	W_4	
V ₁	15	S	S	S	20
V ₂	20	10	10	15	55
V ₃ V.	3	10	S	S	25
• 4	12	S		S	35
	50	35	30	20	135

- This may not be a good suppression pattern: only three possible original tables ...
- Hard to do well
- Users have no way of estimating cell value, probabilities

Controlled Rounding

	w ₁	w ₂	W ₃	W ₄	
\mathbf{v}_1	15	0	3	0	18
v_2	21	9	12	15	57
v ₃	3	9	9	3	24
\overline{v}_4	12	15	6	3	36
	51	33	30	21	135

Example of base 3 rounding

- Uniform (and known) feasibility interval
- Easy for 2-D tables, perhaps impossible for 3-D
- If we know the *exact* method, we can find the cell distributions
- 1,025,908,683 possible original tables

Alternative Approach: Cyclic Perturbation

- Make perturbation consistent with common error structure—misclassification
- Methods for misclassified categorical data
 - T. Timothy Chen (1989) Statistics in Medicine
 - Jouni Kuha and Chris Skinner (1997)
 "Categorical data analysis and misclassification"

Cyclic Perturbation: Basics

Choose cycles that leave the margins fixed, like

Original

2 12 14 7

 $\mathbf{0}$ $\mathbf{0}$ 0 $\mathbf{0}$

Cycle

Perturbed table

16	1	2	1
19	10	11	15
3	10	10	2
12	14	7	2

The set of cycles determines the published table's feasibility interval

Choose a set of cycles that covers all table cells "equally". Example:

$$\begin{array}{cccccc} + & - & 0 & 0 \\ 0 & + & - & 0 \\ 0 & 0 & + & - \\ - & 0 & 0 & + \end{array}$$

Each cell has exactly two "chances" to move.

-	0	0	+
+	-	0	0
0	+	-	0
0	0	+	-

Flip a three-sided coin with outcomes

- $A (probability = \alpha)$
- -B (probability $=\beta$)
- $C (probability = \gamma)$
- If A, add the first cycle (unless there is a zero in the cycle)
- If B, subtract the first cycle (unless there is a zero in the cycle)
- If C, do nothing
- Repeat with the remaining cycles

For the chosen set of cycles, there are 3⁴=81 possible perturbed tables. The feasibility interval is original value ± 2. TP ß α α TO Original Perturbed Table Table

• Choose α , β .

Perturb.

Publish the resulting table.

• Publish the cycles and α , β .

 Original
 Perturbed table

 15
 1
 3
 1

 20
 10
 10
 15
 21
 11
 9
 14

 3
 10
 10
 2
 2
 11
 11
 1

 12
 14
 7
 2
 11
 13
 8
 3

Distributions of Cell Values

- Since the mechanism is public, a user can calculate the distribution of true cell values.
- Compute every table 7^k that could have been the original, along with the probability Pr(7^p | 7^k).
- Specify a prior distribution over all the possible original tables 7^k.
- Apply Bayes' theorem to get the posterior probability Pr(7^k | 7^P) for each 7^k.
- The distribution for each cell is

$$\Pr(t(i, j) = q) = \sum_{k:t_k(i, j) = q} \Pr(T_k | T^P)_{16}$$

Results for the Example

Properties

It's not difficult to quantify data utility and disclosure risk (*cf.* cell suppression and controlled rounding).

Priors of data users and data intruders can be different.

Theorem: For a uniform prior, the mode of each posterior cell distribution is it's published value.

Scaling

- Sets of cycles w/ desirable properties are easy to find for larger 2-D tables.
- Extensions to 3 and higher dimensions also straightforward.
- Computing the perturbation for any size table is easy & fast.
- The complete Bayesian analysis is feasible to at least 20×20 (with no special TLC)

What Might Priors Be?

They could reflect historical data
 If I'm in the survey, I know my cell is at least 1

- Public information
- Insider information

Cell Suppression & Rounding

- A similar Bayesian analysis can be done, provided the *exact* algorithm is available.
- It's generally much harder to do.
- Using a deterministic version of Cox's `87 rounding procedure, we must consider "only" 17,132,236 tables.
- For uniform priors, the posterior cell distributions were nearly uniform.
- Three days of computing time for a 4×4 table...

A 3-Way Categorical Table (margins not shown)

j

(Source: Java Random.nextInt())

$$M_{1} = \begin{bmatrix} + & - & 0 & \cdot \\ \cdot & + & - & 0 \\ 0 & \cdot & + & - \\ - & 0 & \cdot & + \end{bmatrix}$$

$$M_{1} = \begin{bmatrix} + & - & 0 & \cdot \\ \cdot & + & - & 0 \\ 0 & \cdot & + & - \\ - & 0 & \cdot & + \end{bmatrix} \begin{bmatrix} 0 & + & - & \cdot \\ \cdot & 0 & + & - \\ - & \cdot & 0 & + \\ + & - & \cdot & 0 \end{bmatrix}$$

$$M_1 = \begin{vmatrix} + & - & 0 \\ \cdot & + & - \\ 0 & \cdot & + \\ - & 0 & \cdot \end{vmatrix}$$

Properties of the Perturbations

Each cycle maintains 2-d margins
Each cell has the same (small) number of "opportunities" to move
Small cells are not "favored", so no disclosure from knowledge of the perturbation set

Flip a three-sided coin with outcomes

- A, with probability = α
- B, with probability $= \beta$
- C, with probability = $\gamma = 1 (\alpha + \beta)$
- If A, add the first cycle to the table (unless there is a zero in the cycle)
- If B, subtract the first cycle (unless there is a zero in the cycle)
- If C, do nothing
- Repeat with the remaining cycles

For the chosen set of cycles, there are 3⁴=81 possible perturbed tables.
 The feasibility interval of each cell is its original value ± 2.

32

Choose a perturbation set

- Choose α , β
- Perturb
- Publish the resulting table
- Publish the perturbation set and α , β

Original & Perturbed Tables

1	4	66	3	2	3	2	68	4	80	2	1
1	2	3	1	228	4	78	3	4	2	2	1
4	4	3	1	1	5	6	61	3	4	4	45
2	7	1	3	10	3	1	2	61	3	55	4

Results for the Example

- There are 28 tables that could have been the original
- We have a posterior probability for each
- We can find distributions for cell values

• Example: cell (1,1,1) with $\alpha = \beta = \gamma$

Value 0 1 2 3 Probability 0.34 0.39 0.22 0.05

Cyclic Perturbation Advantages

- Quantify disclosure risk (perhaps using an "intruder prior")
- Quantify data utility (perhaps using a "user prior")
- Perform statistical analyses on the set of possible true tables and their associated probabilities
- The procedure is unbiased with α=β, and for uniform priors, the mode of every cell distribution is the published value

More Advantages ...

Users know exactly how the data have been modified, up to a known stochastic component

The "protection interval" is determined by the set of perturbations; more "opportunities" to move give a wider interval