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What does PNNL Do?

Statistical and Mathematical Sciences works in all areas

What does PNNL Do?What does PNNL Do?

Statistical and Mathematical Sciences works in all areasStatistical and Mathematical Sciences works in all areas

National 
Security
National National 
SecuritySecurity

HealthHealthHealth

EnergyEnergyEnergy Environmental 
Technologies
Environmental Environmental 
TechnologiesTechnologies

Basic 
Sciences

Basic Basic 
SciencesSciences
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STATISTICAL and MATHEMATICAL STATISTICAL and MATHEMATICAL 
SCIENCESSCIENCES

Σ

Use standard and/or novel data analysis methods 
Apply to simple or complex data sets

High dimensional 
Large volume
Diverse data types

Numeric
Categorical
Text
Image
Spectra
Others 

Data Analysis and Tool Development
Quantify uncertainties  
Validate models and simulations  
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PNNL Statistics and Quantitative Sciences 
38  GREAT PEOPLE !!!

• Brent Pulsipher, MS
• Rick Bates, MS

• Dick Gilbert, PhD

• Nancy Hassig, PhD

• Bob O’Brien, MS

• John Wilson, BS

• Denny Weier, PhD

• Alan Brothers, MS

•Brett Matske, MS

•Melissa Matske, MS

• Tom Ferryman, PhD
• Don Daly, PhD

• Kris Jarman, PhD

• Amanda White, MS

• Alan Willse, PhD

• Chad Scherrer, PhD 

• Andrea Swickard, MS

• Ken Jarman, PhD

• Joel Malard, PhD

• Dale Anderson, PhD
• Kevin Anderson, PhD

• Dave Engel, MS

• Chuck LoPresti, MS

• Christian Posse, PhD

• Pat Heasler, MS

• Craig McKinstry, MS

• Al Liebetrau, PhD

• Nat Beagley, MS

• Paul Whitney, PhD
• Greg Piepel, PhD

• Brett Amidan, MS

• Sandra Thompson, PhD

• Stacey Hartley, MS

• Bobbi-Jo Webb-Robertson

• Scott Cooley, MS

• Deb Carlson, MS

• Alejandro Heredia-Langner, PhD

Sampling
Design and 

DQOs

Discovery
Via Data

Analytics/
Mining

Modeling
and

Simulation

Experimental
Design and

Analysis

Advanc
ed

Applied
Math

Chemo-
metrics

Bio-
informatic

s

Information
Analytics
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PNNL Statistical ProductsPNNL Statistical ProductsPNNL Statistical Products

Statistical 
Algorithm and 
Tools Development
Data Analysis 
Statistical Training
Traditional Statistical 
Consulting

Collaborate with 
internal scientists 40%

Traditional Stat. 
Consulting 5%

IR&D   
15%

PI to outside 
customers  40%
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A few examples of 
projects



tom.ferryman@pnl.gov

In-flight Numerical and Categorical Data Analysis 

Typical

Atypical

Goal:  Build a pc-based 
workstation to allow individual 
airlines to automatically

Identify typical patterns
Find atypical flights
Find unenvisioned relationships
Investigate long term trends and 
cyclic patterns

Data 
Hundreds of flight variables         
measured every second on 
throughout a flight 
Thousands of  flights 
Gigabytes of data

Used by airlines today
See the forest for the trees.

Find the needle in the haystack.
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Analysis of 
Unstructure “dirty” Text
A Multi-Step, Multivariate 

Data Analysis Process

Analysis of 
Unstructure “dirty” Text
A Multi-Step, Multivariate 

Data Analysis Process
• Insight hidden in thousands of reports  

• Unstructured text
• Numeric data  
• Categorical data

• Approach
• Standardize the vocabulary.
• Identify typical patterns, atypical reports 
• Retrieve by example capability
• Display the analysis results in an intuitive 

and insightful manner. 

Standardize vocabulary
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Signature Generation

Multivariate clustering into 
Groups and Super-groups

See the forest for the trees.
Find the needle in the haystack.
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Video Clip Analysis:  
Segment and Summarize Sequential Images

Video Clip Analysis:  Video Clip Analysis:  
Segment and Summarize Sequential ImagesSegment and Summarize Sequential Images

Sort image ensemble
Estimate scene 
changes
Calculated summary
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APEX Tool kit
Automated Peak Extraction for Mass Spec. data

Detect and Characterize Transient Features

APEX Tool kitAPEX Tool kit
Automated Peak Extraction for Mass Spec. dataAutomated Peak Extraction for Mass Spec. data

Detect and Characterize Transient FeaturesDetect and Characterize Transient Features

D Daly, K Jarman, K Anderson, K Wahl
Stochastic foundation: Goodness Of Fit, uncertainty estimates
US patent 6253162 B1 + Continuation in Part
Peer-reviewed papers, tech. reports …
Licenses: 2+ com. + , 6+ gov. & univ. 

APEX
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Scaling up to meet
The challenges of the 

21st century

Big Big Problems
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Hanford Site Integration Project
System Assessment CapabilitySystem Assessment Capability



tom.ferryman@pnl.gov

Model Flow SchematicModel Flow SchematicModel Flow Schematic
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Computational ChallengesComputational ChallengesComputational Challenges

Analysis Method:  Simulate flow through the underground region
Computational:

A single forward run currently requires ~3 hours clock time.  
A full inverse run requires (as an example):

20 parameters
10 iterations
20 attempts
3 hours per simulation

20*10*20*3 = 12000 hours = 1.4 years
Very limited uncertainty analysis: 9 analytes, 25 Monte Carlos, 
takes 3 weeks on the 128 node parallel processing cluster.

Too big a problem
Too slow to really get insight



tom.ferryman@pnl.gov

Distributed Computing 
Approach

Distributed Computing Distributed Computing 
ApproachApproach

Master

Multiple Slaves

Each of N+1 simulations is independent
20 parameters
10 iterations
20 attempts
3 hours per simulation

10*20*3 = 600 hours = 25 days
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Cloud model highlightsCloud model highlights

(After Ovtchinnikov and Kogan, Journal of Atmospheric Science, 2000)
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liquid

ice

Size distribution of cloud 
particles

3-D nonhydrostatic dynamics
Nonlinear interaction of thermodynamical, microphysical, and radiative processes
80+ variables: Dynamics & thermodynamics (u, v, w, T, q, p) and microphysics (cloud 
condensation nuclei - 12 size bins; liquid drops - 30 size bins; ice particles - 30 size bins)
753 ≈ 500,000 
grid points

Processing takes 
2 months on a 
huge parallel 
machine for 

one realization..
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21st Century Science will investigate BIG problems.
We need to find new solutions that will work.

2121stst Century Science will investigate BIG problems.Century Science will investigate BIG problems.
We need to find new solutions that will work.We need to find new solutions that will work.

Explore large parameter space
100 + parameters with just 5 levels = 7 x 1069.  
At one second per simulation this would need 2.5 x 1062 years.

Quantify uncertainty about model 
Map the response surface 
Be fast 

Allow scientist / computer interaction
Hypothesis explorations 
“What if” investigations

Handle huge data (tera-, peta- bytes)  
Robust to real world data: bad data, missing data



tom.ferryman@pnl.gov

Problem #1
Big Computers (tera-, peta- flops)

Big Data (tera-, peta- bytes)

Can current algorithms 
handle this challenge?
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Big Data Analysis – Prospects for Using Big 
Computers

Big Data Analysis Big Data Analysis –– Prospects for Using Big Prospects for Using Big 
ComputersComputers

Data scales are readily encountered in which our typical tools fail 
due to the scale
There’s an increasing availability of multi-processor computers, 
and software

http://images.google.com/imgres?imgurl=www.delareine.free-online.co.uk/NFOE-WEB-SITE/articles/app0001.gif&imgrefurl=http://www.delareine.free-online.co.uk/NFOE-WEB-SITE/articles/flintandsteel.htm&h=1885&w=1798&sz=44&tbnid=5VO1oVEtfQgJ:&tbnh=149&tbnw=143&prev=/images%3Fq%3Dflint%2Bsteel%26start%3D20%26hl%3Den%26lr%3D%26ie%3DUTF-8%26oe%3DUTF-8%26sa%3DN
http://images.google.com/imgres?imgurl=www.delareine.free-online.co.uk/NFOE-WEB-SITE/articles/app0002.gif&imgrefurl=http://www.delareine.free-online.co.uk/NFOE-WEB-SITE/articles/flintandsteel.htm&h=1664&w=1957&sz=51&tbnid=fqEB7tO0M60J:&tbnh=127&tbnw=149&prev=/images%3Fq%3Dflint%2Bsteel%26start%3D20%26hl%3Den%26lr%3D%26ie%3DUTF-8%26oe%3DUTF-8%26sa%3DN
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Optimistic VisionOptimistic VisionOptimistic Vision

Develop usable statistical analysis tools for big 
computing, with an eye towards these significant 
impacts
1.  Many orders of magnitude increase in the scales of 

analyses that can be routinely addressed
2.  An increase in the market for multiprocessor computers (more

data analysts than computational chemists)
3.  Significant increase in capability can result in significant

scientific discoveries with scientists using these improved 
tools.
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Optimistic CharacteristicOptimistic CharacteristicOptimistic Characteristic

Existing analysis code/scripts could be compiled and run.  Where
possible, scaled up.
Use familiar languages and user interfaces.
Minimal overhead to convert from single processor to a suite of 
processors.

x <- rbind(matrix(rnorm(100000000, sd = 0.3), ncol = 2), 
matrix(rnorm(100000000, mean = 1, sd = 0.3), 

ncol = 2)) 
cl <- kmeans(x, 2, 20) 
plot(x, col = cl$cluster) 
points(cl$centers, col = 1:2, pch = 8) 
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Potential ResourcesPotential ResourcesPotential Resources

Assorted multi-processor computers increasingly available
PNNL has some available
Many universities have some available

Key support libraries exist for numerical computations
PNNL has made significant investments in the development of data
management tools and specific application simulations.
PNNL has developed a beginning tool kit: Global Arrays
Others have similar seeds ready for use and refinements to mature

Brain Power
Collaboration: Statistics, Mathematics, & Computer Science 
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Big computing hardware at PNNLBig computing hardware at PNNLBig computing hardware at PNNL

Hewlett-Packard 
supercomputer 

11.8 teraflop system
1400 processors 
3.8 terabytes RAM.

Colony
240-processor Linux cluster
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Big computing software at PNNL – Global ArraysBig computing software at PNNL Big computing software at PNNL –– Global ArraysGlobal Arrays

Called from Fortran 
77, C, C++, Python

Provides support for 
data handling 
(abstracts memory 
management)

Provides support for 
numerical analysis

http://www.emsl.pnl.
gov/docs/global/

http://www.emsl.pnl.gov/docs/global/
http://www.emsl.pnl.gov/docs/global/


tom.ferryman@pnl.gov

Next Steps?Next Steps?Next Steps?

Formulate team 
Who wants to play?

Evaluate the market
Number of Big Computers
Dollar value of Big Computer sales
Typical job-types on Big Computers (e.g. computational chemistry)
Size of data analysis market that might be amenable to big computing

Formulate technical approach and assess feasibility
Plan a research program
Go hunting for resources
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Problem #2 
Quantifying Uncertainty 

in Modeling and Simulations

Beyond Monte Carlo
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Quantifying Uncertainty in Complex Scientific 
Simulations

Quantifying Uncertainty in Complex Scientific Quantifying Uncertainty in Complex Scientific 
SimulationsSimulations

Problem: Develop computationally efficient methods for local and
global sensitivity and uncertainty analysis for complex 
computational scientific models with hundreds of uncertain input
variables
Application scientists need to be able to deal with increasing 
numbers of uncertain inputs, multiple conceptual models, model 
comparisons…

2 2 2 2 2
prediction model input numerical geometry" + "σ σ σ σ σ= + + + L
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Quantifying Uncertainty in Complex Scientific Simulations 
Problem Drivers

Quantifying Uncertainty in Complex Scientific Simulations Quantifying Uncertainty in Complex Scientific Simulations 
Problem DriversProblem Drivers

Subsurface: Contaminant fate
High variability in geologic properties, boundary conditions

Biological Systems: Biochemical kinetics
Uncertain/unknown kinetic parameters, pathway structure

Climate: Aerosols, high-resolution cloud models
Aerosol nucleation highly sensitive to microphysics
Large discrepancies in cloud model comparisons

Quantifying confidence in predictions is critical to decision-
making
Advances in complex scientific simulations will require a leap 
in computational efficiency for uncertainty analysis

Current science poses problems for which uncertainty analysis is very 
limited or impossible
Dimensionality of uncertain parameters continually increases
Advancing scientific needs will exacerbate the challenge

Ap
pl
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Quantifying Uncertainty in Complex Scientific Simulations 
Sampling Input Space

Quantifying Uncertainty in Complex Scientific Simulations Quantifying Uncertainty in Complex Scientific Simulations 
Sampling Input SpaceSampling Input Space

Output variable (y)

M&S
code

Input variables (x)

Sampling
Algorithm

Standard simulation procedure – use Monte Carlos with many runs
Input variables are assigned joint probability distribution and sampled
Code is run many times to compute output for resulting input vector
Input distribution → output distribution

Numerous ways to improve upon current practice
Improved sampling strategies, sensitivity analysis, screening, response surface 
modeling
Non-sampling methods for sensitivity and uncertainty estimates

State of the art sampling designs will require far too many runs
Future need:

Reduce reliance on Monte Carlo 
Improve efficiency deal with more uncertain variables
Improve global assessment of uncertainty
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Next Steps?Next Steps?Next Steps?

Formulate team 
Who wants to play?

Evaluate the market
Identify research programs limited by current Monte Carlo techniques

Unable to explore full parameter space
Unable to estimate response surface variability 

Formulate technical approach and assess feasibility
Plan a research program
Go hunting for resources
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Problem # 3

Missing Data,
Not at random
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How to handle missing data?How to handle missing data?How to handle missing data?

Typical:  assume data is missing at random and use EM algorithm 
or similar method
Many applications can NOT make this assumption 

Data might be missing due to:
Identified as bad data

20 millions parts per million in a chemical concentration assay.
300,000 feet/sec altitude decrease in an aircraft that did not crash.

Not tested/collected due to:
Prior beliefs
Related variable values
Program budget or schedule constraints
Political, privacy, policy, legal decisions
…
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Missing data can have varying characteristicsMissing data can have varying characteristicsMissing data can have varying characteristics
Variables

Data missing randomly 
in various cells
Data missing in 
various cells but not 
believed to be random
Data missing for entire 
record, or most of 
record
Data censored, too 
high or too low
Variables with low 
probability of being 
available

<<

<<

>>

>>

R
ec

or
ds
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Can we find ways to do analysis without drastically 
reducing the available data?

Can we find ways to do analysis without drastically Can we find ways to do analysis without drastically 
reducing the available data?reducing the available data?

Currently, we use
EM algorithm or other method to impute values

or
Data removal

Drop records with many missing variables
Drop variables with low probability of valid data
Iterate until data matrix is full

or
Use a rather cumbersome conditional algorithm

Do better methods exist now?
Could we develop better methods?
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Next Steps?Next Steps?Next Steps?

Formulate team 
Who wants to play?

Evaluate the market
Skip?  This is ubiquitous.

Formulate technical approach and assess feasibility
Plan a research program
Go hunting for resources
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Closing Remarks
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Closing Remarks
How can we collaborate?

Closing RemarksClosing Remarks
How can we collaborate?How can we collaborate?

Conducting research
Remote collaboration
Professors: come work with us over the summers or take your sabbatical at 
PNNL
3, 4, 5 year PhD students visits to PNNL (for 3 months or more)
Post-docs

Joint pursuit of funding
Formulate joint research programs
Propose to funding agencies

Universities to NSF, DOE, DARPA, HSARPA, …
PNNL to DOE, DARPA, DOD, …
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