Problem Day NISS

Pacific Northwest National Laboratory Statistical and Mathematical Sciences

Brent Pulsipher, <u>brent.pulsipher@pnl.gov</u> Tom Ferryman, <u>tom.ferryman@pnl.gov</u> Paul Whitney, <u>paul.whitney@pnl.gov</u> Dale Anderson, <u>dale.anderson@pnl.gov</u>

http://www.pnl.gov/statistics

March 2004

Battelle

Pacific Northwest National Laboratory Operated by Batelle for the U.S. Department of Reagy

Location: Desert Part of Washington State

Haniord Site Location Map

http://www.hanford.gov/top/maps.html

Battelle

Pacific Northwest National Laboratory U.S. Department of Energy tom.ferryman@pnl.gov

Outline

Statistical and Mathematical Sciences Group

- People
- Business
- Capabilities
- Project Examples of Capabilities
- Proposed Problem 1
- Proposed Problem 2
- Proposed Problem 3
- Closing Remarks

What does PNNL Do?

Statistical and Mathematical Sciences works in all areas

STATISTICAL and MATHEMATICAL SCIENCES

- Use standard and/or novel data analysis methods
- Apply to simple or complex data sets
 - High dimensional
 - Large volume
 - Diverse data types
 - Numeric
 - Categorical
 - Text
 - Image
 - Spectra
 - Others
- Data Analysis and Tool Development
- Quantify uncertainties
- Validate models and simulations

Pacific Northwest National Laboratory U.S. Department of Energy tom.ferryman@pnl.gov

Battelle

PNNL Statistics and Quantitative Sciences 38 GREAT PEOPLE !!!

Chemo-

metrics

Bio-

informatic

Sampling Design and DQOs

Brent Pulsipher, MS

Advanc

ed

Applied

Math

- Rick Bates, MS
- Dick Gilbert, PhD
- Nancy Hassig, PhD
- Bob O'Brien, MS
- John Wilson, BS
- Denny Weier, PhD
- Alan Brothers, MS
- Brett Matske, MS
- •Melissa Matske, MS

- Tom Ferryman, PhD
- Don Daly, PhD
- Kris Jarman, PhD
- Amanda White, MS
- Alan Willse, PhD
- Chad Scherrer, PhD
- Andrea Swickard, MS
- Ken Jarman, PhD
- Joel Malard, PhD

Dale Anderson, PhD

Modeling

and

Simulation

- Kevin Anderson, PhD
- Dave Engel, MS
- Chuck LoPresti, MS
- Christian Posse, PhD
- Pat Heasler, MS
- Craig McKinstry, MS
- Al Liebetrau, PhD
- Nat Beagley, MS

Paul Whitney, PhD

nformation

Analytics

Experimenta

Design and

Analysis

- Greg Piepel, PhD
- Brett Amidan, MS
- Sandra Thompson, PhD
- Stacey Hartley, MS
- Bobbi-Jo Webb-Robertson
- Scott Cooley, MS
- Deb Carlson, MS
- Alejandro Heredia-Langner, PhD

ic Northwest National Laboratory U.S. Department of Energy tom.ferryman@pnl.gov

PNNL Statistical Products

PI to outside customers 40%

Collaborate with internal scientists 40%

Statistical Algorithm and Tools Development

- Data Analysis
- Statistical Training

 Traditional Statistical Consulting

> **Traditional Stat. Consulting 5%**

Pacific Northwest National Laboratory U.S. Department of Energy tom.ferryman@pnl.gov

IR&D

15%

A few examples of projects

In-flight Numerical and Categorical Data Analysis

- Goal: Build a pc-based workstation to allow individual airlines to automatically
 - Identify typical patterns
 - Find atypical flights
 - Find *unenvisioned relationships*
 - Investigate long term trends and cyclic patterns
- Data

Battelle

- Hundreds of flight variables measured every second on throughout a flight
- Thousands of flights
- Gigabytes of data
- Used by airlines today

See the forest for the trees. Find the needle in the haystack.

Analysis of Unstructure "dirty" Text

A Multi-Step, Multivariate Data Analysis Process

- Insight hidden in thousands of reports
 - Unstructured text
 - Numeric data
 - Categorical data
- Approach

Battelle

- Standardize the vocabulary.
- Identify typical patterns, atypical reports
- Retrieve by example capability
- Display the analysis results in an intuitive and insightful manner.

See the forest for the trees. Find the needle in the haystack.

Video Clip Analysis: Segment and Summarize Sequential Images

- Sort image ensemble
- Estimate scenechanges
- Calculated summary

APEX Tool kit Automated Peak Extraction for Mass Spec. data Detect and Characterize Transient Features

- D Daly, K Jarman, K Anderson, K Wahl
- Stochastic foundation: Goodness Of Fit, uncertainty estimates
- US patent 6253162 B1 + Continuation in Part
- Peer-reviewed papers, tech. reports ...
- Licenses: 2+ com. + , 6+ gov. & univ.

Battelle

Scaling up to meet The challenges of the 21st century

Big Big Problems

Hanford Site Integration Project System Assessment Capability

Model Flow Schematic

Battelle

Pacific Northwest National Laboratory U.S. Department of Energy tom.ferryman@pnl.gov

Computational Challenges

Analysis Method: Simulate flow through the underground region

- Computational:
 - A single forward run currently requires ~3 hours clock time.
 - A full inverse run requires (as an example):
 - 20 parameters
 - 10 iterations
 - 20 attempts
 - 3 hours per simulation

→ 20*10*20*3 = 12000 hours = 1.4 years

Very limited uncertainty analysis: 9 analytes, 25 Monte Carlos, takes 3 weeks on the 128 node parallel processing cluster.

> Too big a problem Too slow to really get insight

Battelle

west National Laboratory U.S. Department of Energy tom.ferryman@pnl.gov

Distributed Computing Approach

Pacific Northwest National Laboratory U.S. Department of Energy tom.ferryman@pnl.gov

Cloud model highlights

- 3-D nonhydrostatic dynamics
- Nonlinear interaction of thermodynamical, microphysical, and radiative processes
- 80+ variables: Dynamics & thermodynamics (u, v, w, T, q, p) and microphysics (cloud condensation nuclei 12 size bins; liquid drops 30 size bins; ice particles 30 size bins)
- ► $75^3 \approx 500,000$ grid points

Battelle

Pacific Northwest National Laboratory U.S. Department of Energy tom.ferryman@pnl.gov

21st Century Science will investigate BIG problems. We need to find new solutions that will work.

Explore large parameter space

- 100 + parameters with just 5 levels = 7×10^{69} .
- At one second per simulation this would need 2.5 x 10⁶² years.
- Quantify uncertainty about model
- Map the response surface
- Be fast
 - Allow scientist / computer interaction
 - Hypothesis explorations
 - "What if" investigations
- Handle huge data (tera-, peta- bytes)
- Robust to real world data: bad data, missing data

Problem #1 Big Computers (tera-, peta- flops) Big Data (tera-, peta- bytes)

Can current algorithms handle this challenge?

Big Data Analysis – Prospects for Using Big Computers

- Data scales are readily encountered in which our typical tools fail due to the scale
- There's an increasing availability of multi-processor computers, and software

Pacific Northwest National Laboratory U.S. Department of Energy tom.ferryman@pnl.gov

Battelle

Optimistic Vision

- Develop usable statistical analysis tools for big computing, with an eye towards these significant impacts
 - 1. <u>Many orders of magnitude increase in the scales of</u> <u>analyses that can be routinely addressed</u>
 - 2. An increase in the market for multiprocessor computers (more data analysts than computational chemists)
 - 3. Significant increase in capability can result in significant scientific discoveries with scientists using these improved tools.

Optimistic Characteristic

- Existing analysis code/scripts could be compiled and run. Where possible, scaled up.
- Use familiar languages and user interfaces.
- Minimal overhead to convert from single processor to a suite of processors.

Battelle

Potential Resources

Assorted multi-processor computers increasingly available

- PNNL has some available
- Many universities have some available
- Key support libraries exist for numerical computations
 - PNNL has made significant investments in the development of data management tools and specific application simulations.
 - PNNL has developed a beginning tool kit: Global Arrays
 - Others have similar seeds ready for use and refinements to mature
- Brain Power

Raffelle

• Collaboration: Statistics, Mathematics, & Computer Science

Big computing hardware at PNNL

Hewlett-Packard supercomputer

- 11.8 teraflop system
- 1400 processors
- 3.8 terabytes RAM.

Colony

240-processor Linux cluster

Pacific Northwest National Laboratory U.S. Department of Energy tom.ferryman@pnl.gov

Battelle

Big computing software at PNNL – Global Arrays

Called from Fortran 77, C, C++, Python

- Provides support for data handling (abstracts memory management)
- Provides support for numerical analysis
- http://www.emsl.pnl. gov/docs/global/

Remote Data Access in GA

Message Passing:

identify size and location of data blocks

```
loop over processors:

if (me = P_N) then

pack data in local message

buffer

send block of data to

message buffer on P0

else if (me = P0) then

receive block of data from

P_N in message buffer

unpack data from message

buffer to local buffer

endif

end loop
```

copy local data on P0 to local buffer

Global Arrays:

Battelle

Next Steps?

Formulate team

- Who wants to play?
- Evaluate the market
 - Number of Big Computers
 - Dollar value of Big Computer sales
 - Typical job-types on Big Computers (e.g. computational chemistry)
 - Size of data analysis market that might be amenable to big computing
- Formulate technical approach and assess feasibility
- Plan a research program
- Go hunting for resources

Problem #2 Quantifying Uncertainty in Modeling and Simulations

Beyond Monte Carlo

Quantifying Uncertainty in Complex Scientific Simulations

- Problem: Develop computationally efficient methods for local and global sensitivity and uncertainty analysis for complex computational scientific models with hundreds of uncertain input variables
- Application scientists need to be able to deal with increasing numbers of uncertain inputs, multiple conceptual models, model comparisons...

$$"\sigma_{\text{prediction}}^2 = \sigma_{\text{model}}^2 + \sigma_{\text{input}}^2 + \sigma_{\text{numerical}}^2 + \sigma_{\text{geometry}}^2 + \cdots$$
"

Raffelle

Pacific Northwest National Laboratory U.S. Department of Energy tom.ferryman@pnl.gov

Quantifying Uncertainty in Complex Scientific Simulations Problem Drivers

- Subsurface: Contaminant fate
 - High variability in geologic properties, boundary conditions
- Biological Systems: Biochemical kinetics
 - Uncertain/unknown kinetic parameters, pathway structure
- Climate: Aerosols, high-resolution cloud models
 - Aerosol nucleation highly sensitive to microphysics
 - Large discrepancies in cloud model comparisons
- Quantifying confidence in predictions is critical to decisionmaking
- Advances in complex scientific simulations will require a leap in computational efficiency for uncertainty analysis
 - Current science poses problems for which uncertainty analysis is very limited or impossible
 - Dimensionality of uncertain parameters continually increases
 - Advancing scientific needs will exacerbate the challenge

Battelle

Quantifying Uncertainty in Complex Scientific Simulations Sampling Input Space

Input variables (X)

Standard simulation procedure – use Monte Carlos with many runs

- Input variables are assigned joint probability distribution and sampled
- Code is run many times to compute output for resulting input vector
- Input distribution \rightarrow output distribution
- Numerous ways to improve upon current practice
 - Improved sampling strategies, sensitivity analysis, screening, response surface modeling
 - Non-sampling methods for sensitivity and uncertainty estimates
- State of the art sampling designs will require far too many runs
- Future need:
 - Reduce reliance on Monte Carlo
 - Improve efficiency \rightarrow deal with more uncertain variables
- Improve global assessment of uncertainty Raffelle

Pacific Northwest National Laboratory U.S. Department of Energy tom.ferryman@pnl.gov

Next Steps?

- Formulate team
 - Who wants to play?
- Evaluate the market
 - Identify research programs limited by current Monte Carlo techniques
 - Unable to explore full parameter space
 - Unable to estimate response surface variability
- Formulate technical approach and assess feasibility
- Plan a research program
- Go hunting for resources

Problem # 3

Missing Data, Not at random

How to handle missing data?

- Typical: assume data is missing at random and use EM algorithm or similar method
- Many applications can NOT make this assumption

Data might be missing due to:

- Identified as bad data
 - 20 millions parts per million in a chemical concentration assay.
 - 300,000 feet/sec altitude decrease in an aircraft that did not crash.
- Not tested/collected due to:
 - Prior beliefs
 - Related variable values
 - Program budget or schedule constraints
 - Political, privacy, policy, legal decisions

• ...

Raffelle

Missing data can have varying characteristics

- Data missing randomly in various cells
- Data missing in various cells but not believed to be random
- Data missing for entire record, or most of record
- Data censored, too high or too low
- Variables with low probability of being available
 Ratielle

Pacific Northwest National Laboratory U.S. Department of Energy tom.ferryman@pnl.gov

Can we find ways to do analysis without drastically reducing the available data?

Currently, we use

• EM algorithm or other method to impute values or

- Data removal
 - Drop records with many missing variables
 - Drop variables with low probability of valid data
 - Iterate until data matrix is full

or

- Use a rather cumbersome conditional algorithm
- Do better methods exist now?
- Could we develop better methods?

Next Steps?

Formulate team

- Who wants to play?
- Evaluate the market
 - Skip? This is ubiquitous.
- Formulate technical approach and assess feasibility
- Plan a research program
- Go hunting for resources

Closing Remarks

Closing Remarks How can we collaborate?

Conducting research

- Remote collaboration
- Professors: come work with us over the summers or take your sabbatical at PNNL
- 3, 4, 5 year PhD students visits to PNNL (for 3 months or more)
- Post-docs

Raffelle

Joint pursuit of funding

- Formulate joint research programs
- Propose to funding agencies
 - Universities to NSF, DOE, DARPA, HSARPA, …
 - PNNL to DOE, DARPA, DOD, ...