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Our Original Goal
Privacy-Preserving Analysis of Confidential Data

Mathematical Definition of Privacy

Finding Statistical Correlations
Analyzing medical data to learn genotype/phenotype associations

Correlating cough outbreak with chemical plant malfunction
Can’t be done with HIPAA safe-harbor sanitized data

Noticing Events
Detecting spike in ER admissions for asthma  

Datamining Tasks
Clustering; learning association rules, decision trees, separators; 
principal component analysis

Official Statistics 
Contingency Table Release



Achieved Much
Defined Differential Privacy

Natural goals unachievable

“Ad Omnia” definition; independent of linkage information

General Approach; Rigorous Proof
Relates degree of distortion to the (mathematical) sensitivity of 
the computation needed for the analysis

“How much” can the data of one person affect the outcome?

Cottage Industry: redesigning algorithms to be insensitive

Assorted Extensions
When noise makes no sense; when actual sensitivity is much 
less than worst-case; when the database is distributed; …

Lower bounds on distortion
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Two Models

Database Sanitized Database

?
K

Non-Interactive: Data are sanitized and released
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Two Models

Database

Interactive: Multiple Queries, Adaptively Chosen

?K



Privacy: Outputs vs. Processes
Privacy comes from uncertainty.
Differentially private mechanisms provide uncertainty.
Probability space is the coin flips of the mechanism.

Similar in spirit to randomized response:
Are you now, or have you ever been, a member of the CP?
Flip a coin.  If heads, answer truthfully.

If tails, flip again: say yes if heads, no if tails.

This is a (ln 3)-differentially private mechanism.
If member, answer yes with probability ¾.
If never member, answer yes with probability ¼.
Ratio = 3, bounded by exp(ln 3).
Same possible answers in both cases, different distributions.



Privacy: Outputs vs. Processes
Privacy comes from uncertainty.

Differentially private mechanisms provide uncertainty.

Probability space is the coin flips of the mechanism.

Cf: traditional suppression of cells with low counts
Single datum can determine suppression/release of count.

NOT the same set of possible answers.
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Semantic Security for Statistical Databases?
Dalenius, 1977

Anything that can be learned about a respondent from the 
statistical database can be learned without access to the 
database.

Unachievable
Auxiliary Info/Linkage Data is the stumbling block.

Fun proof; can be told as a parable.

Suggests new criterion: risk incurred by joining DB
Before/After interacting   vs Risk when in/notin DB
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Differential Privacy
K gives ε-differential privacy

 
if for all values of DB, DB’

 differing in at most one row, and all S ⊆

 
Range(K

 
)

Pr [t]

Pr[K
 

(DB) ⊆
 

S]

Pr[K
 

(DB’) ⊆
 

S] ≤
 

eε
 

≈
 

(1+ε)

ratio bounded

Same set of possible answers; different probability distributions
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Differential Privacy: An Ad Omnia
 

Guarantee
K  behaves essentially the same way,  independent 
of whether any individual opts in or opts out

No perceptible risk is incurred by joining DB

Holds independent of aux info, comp power

Bad Responses: X XX

Pr [response]
Probability of Response on DB’
Probability of Response on DB



A Natural Relaxation: (ε, δ)-Differential Privacy
For all DB, DB’

 
differing in at most one element,           

for all S ⊆
 

Range(K
 

),

where
 

δ

 
= δ(n) is negligible. 

Cf

 
: ε

 
−Differential Privacy is unconditional, independent of n

Advantage: Can permit improved accuracy.

See also, eg, Abowd

 
et al., 2008

Pr[ K
 

(DB) ⊆
 

S] ≤
 

eε
 

Pr[ K
 

(DB’) ⊆
 

S] + δ
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An Interactive Mechanism: K

?f

f: DB R
Eg, CountP(DB) = # rows in DB with Property P

K (f, DB) = f(DB) + Noise 

+ noise

K
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Sensitivity of a Function f  
Assume DB and DB’

 
differ only in one row (Me).

How Much Can f(DB) Exceed f(DB’)?
Recall: K (f, DB) = f(DB) + noise

Question Asks: What difference must noise obscure?

Δf = maxd(DB, DB’)=1

 

|f(DB) –
 

f(DB’)|

eg, ΔCount = 1
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Calibrate Noise to Sensitivity
Δ

 
f = maxd(DB, DB’)=1

 

|f(DB) –
 

f(DB’)|

Theorem: Can achieve ε-differential privacy 
by adding scaled symmetric noise ∼

 
Lap(Δf/ε).

Pr[x] proportional to exp(-|x|ε/Δf)
Increasing R=

 
Δf/ε

 
flattens curve; more privacy

Noise depends on f and

 
ε,

 
not on the database

0 R 2R 3R 4R 5R-R-2R-3R-4R
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Multiple/Complex Queries  f: DB Rk

Δ
 

f = maxd(DB, DB’)=1

 

||f(DB) –
 

f(DB’)||1

Theorem: Can achieve ε-differential privacy 
by adding scaled symmetric noise ∼

 
[Lap(Δf/ε)]k.

Noise Grows (and must grow!) with Total Number of Queries
T  Counting Queries: Δ

 
= T

0 R 2R 3R 4R 5R-R-2R-3R-4R



16

Multiple/ Complex Queries  f: DB Rk

Δ
 

f = maxd(DB, DB’)=1

 

||f(DB) –
 

f(DB’)||2

Theorem: Can achieve (ε, δ)
 

-differential privacy
by adding noise ∼

 
N (0, 2 ln

 
(2/δ) (Δf/ε)2)k.

T  Counting Queries: Δ
 

= √T



Examples
Simple Counting Queries

Extremely Powerful Computational Primitive
Data inference, singular value decomposition, principal 
component analysis, k-means clustering, perceptron

 

learning, 
association rules, ID3 decision tree, SQ learning model, 
approximate halfspaces, density estimation, …

Histograms
A histogram looks like many queries, has low sensitivity!

Data of any one person can change only 2 cells, each by 1.

Contingency Tables
Each table is a histogram
Each marginal is a histogram
Can even get consistency across multiple marginals…



Release of Contingency Table Marginals
Privacy, Accuracy, and Consistency Too: A Holistic 
Solution to Contingency Table Release

Barak, Chaudhuri, Dwork, Kale,  McSherry, and Talwar, 2007



Release of Contingency Table Marginals
Simultaneously ensure:

Consistency

Accuracy

Differential Privacy



Release of Contingency Table Marginals
Simultaneously ensure:

Consistency

Accuracy

Differential Privacy

Terms To Define:
Contingency Table

Marginal

Consistency

Accuracy 



Contingency Tables and Marginals
Contingency Table: Histogram / Table of Counts

Each respondent (member of data set)                            
described by a vector of k (binary) attributes

Population in each of the 2k cells 
One cell for each setting of the k attributes

A1

A
2

A3



Contingency Tables and Marginals
Contingency Table: Histogram / Table of Counts

Each respondent (member of data set)                     
described by a vector of k (binary) attributes

Population in each of the 2k cells 
One cell for each setting of the k attributes

Marginal: sub-table
Specified by a set of j ≤ k attributes, eg, j=1 

Histogram of population in each of 2j

(eg, 2) cells 
One cell for each setting of the j selected attributes  

A2 = 0: 3,   A2 = 1: 4, so the A2 marginal is (3,4)

A
2



Consistency
 

Across Reported Marginals
There exists a fictional contingency table T* whose 

marginals
 

equal the reported marginals

Marginals(T*) = Reported Marginals(T) 

Who cares about consistency?
Not we.

Software?



Release of Set M of Marginals
Release noisy contingency table; compute marginals?

Consistency among marginals; differential privacy 

Noise per cell of T: Lap(1/ε)
Noise per cell of M:  about 2k/2/ ε for low order marginals

Release noisy versions of all marginals in M?
Noise per cell of M: Lap(|M|/ε)

Differential privacy and better accuracy

Inconsistency among marginals



Consistency
 

Across Reported Marginals
There exists a fictional contingency table T* whose 

marginals
 

equal the reported marginals

Marginals(T*) = Reported Marginals(T) 
Can view T* (and its marginals) as synthetic data

T*, M(T*) may have negative and/or non-integral counts

Who cares about integrality, non-negativity?
Not we.

Software?  

See the paper.



Move to the Fourier Domain
Just a change of basis.  Why bother?

T represented by 2k Fourier coefficients (it has 2k cells)
To compute j-ary marginal only need 2j coefficients
For any M, expected noise/cell depends on number of 
coefficients needed to compute M(T)

Independent of n and k
For M3 (all 3-way marginals): E[noise/cell]  ≈ (k choose 3)/ε.

The Algorithm for R(M(T)):
Compute  set of Fourier coefficients of T needed for M(T)
Add noise; gives Fourier coefficients for M(T*)

1-1  mapping between set of Fourier coefficients and tables ensures 
consistency

Convert back to obtain M(T*)
Release R(M(T))=M(T*)



Accuracy of Reported Values
Roughly,  described by E[||R(M(T)) – M(T)||1] 

Expected error in each cell:  proportional to  |M|/ε

A little worse

Probabilistic guarantees on size of max error

Key Point: Error is Independent of n (and k)
Depends on the “complexity” of M

Depends on the privacy parameter ε



Improving Accuracy
Gaussian noise, instead of Laplacian

E[noise/cell] for M3 looks more like O((log (1/δ) 1/2 k3/2/ε)

(ε,δ) -differential privacy

Use Domain-Specific Knowledge
We have, so far, avoided this!

If most attributes are considered (socially) insensitive, 
can add less noise, and to fewer coefficients

Eg, ΔM3 with 1 sensitive attribute ≈ k2 (instead of k3 )

Reduce further using Gaussian noise: log (1/δ) 1/2 k 



What We Want to Learn
Noise Reduction for Counting Queries

Is it necessary?  
Can safely release answers to almost-linear number of counting 
queries with noise o(square root of population size).  When is this 
too noisy?  M3?

What is the correct interpretation of DiNi+ results?
Can’t answer “too many” (weighted) subset sum queries “too 
accurately.  But in M3 can’t “zoom in” on a small subset of users 
and launch DiNi-style attacks. 

There is a reasonable noise generation model for which, if want to 
bound even just over than half the queries to a small error p, and 
the coefficients can be as large as 2.1 p, then can attack any row 
using p-1 queries and O(p4) computation.



What We Want to Learn
Noise Reduction for General Queries

Eg: Nissim, Raskhodnikova, Smith ’07
Smoothed Sensitivity can be hard to work with

Subsample and Aggregate seems easier; powerful

Test-estimate-release  [DL, in progress]

Use differentially private test for “nice” data;  proceed iff nice 

Not counting against sensitivity, or perturbing answers to, 
queries on non-sensitive data?

If, in a hypothetical world, sensitive data are always handled in 
a differentially private manner, maybe don’t need to worry 
about insensitive fields being sufficient to identify an individual.  
That is, these can be used as a key, but so what?



What We Want to Learn
Understand what it means not to provide ε-DiffeP

When is it a problem?
Failure to provide ε-DiffeP might result in 2ε-DiffeP

How bad is this?

Can this suggest a useful weakening?
Finite Differential Privacy?

How much residual uncertainty is enough?

(²,δ) Differential Privacy when δ is non-negligible?
E.g, 1/n2 is very small when n is internet scale



What We Want to Learn
Understand the relationship between robust 
statistics and Differential Privacy

Adam will say more about this

Understand what it means for statistical distributional 
assumptions to be false

Differentially Private Algorithms for Statistical Tasks
Parameter estimation, regression, R, SAS?



What We Want to Learn
Differential Privacy for Social Networks

What Can Be Computed Insensitively?

When can the Exponential Mechanism be efficient?

Synthetic Data
Low-quality, low-sensitivity generation of synthetic set 
that will tell where to spend your privacy budget?
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