Differential Privacy: What we Know and What we Want to Learn

Cynthia Dwork, Microsoft Research

Our Original Goal

Privacy-Preserving Analysis of Confidential Data

- Mathematical Definition of Privacy
- Finding Statistical Correlations
 - Analyzing medical data to learn genotype/phenotype associations
 - Correlating cough outbreak with chemical plant malfunction
 - □ Can't be done with HIPAA safe-harbor sanitized data
- Noticing Events
 - Detecting spike in ER admissions for asthma
- Datamining Tasks
 - Clustering; learning association rules, decision trees, separators; principal component analysis
- Official Statistics
 - Contingency Table Release

Achieved Much

Defined Differential Privacy

- Natural goals unachievable
- "Ad Omnia" definition; independent of linkage information
- General Approach; Rigorous Proof
 - Relates degree of distortion to the (mathematical) sensitivity of the computation needed for the analysis
 - "How much" can the data of one person affect the outcome?
 - Cottage Industry: redesigning algorithms to be insensitive

Assorted Extensions

- When noise makes no sense; when actual sensitivity is much less than worst-case; when the database is distributed; ...
- Lower bounds on distortion

Two Models

Non-Interactive: Data are sanitized and released

Two Models

Database

Interactive: Multiple Queries, Adaptively Chosen

Privacy: Outputs vs. Processes

- Privacy comes from uncertainty.
- Differentially private mechanisms provide uncertainty.
- Probability space is the coin flips of the mechanism.
- Similar in spirit to randomized response: Are you now, or have you ever been, a member of the CP? Flip a coin. If heads, answer truthfully. If tails, flip again: say yes if heads, no if tails.
- > This is a (ln 3)-differentially private mechanism.
 - ▶ If member, answer yes with probability ³⁄₄.
 - If never member, answer yes with probability 1/4.
 - Ratio = 3, bounded by exp(ln 3).
 - > Same possible answers in both cases, different distributions.

Privacy: Outputs vs. Processes

- Privacy comes from uncertainty.
- Differentially private mechanisms provide uncertainty.
- Probability space is the coin flips of the mechanism.
- Cf: traditional suppression of cells with low counts
 - Single datum can determine suppression/release of count.
 - NOT the same set of possible answers.

Semantic Security for Statistical Databases?

- Dalenius, 1977
 - Anything that can be learned about a respondent from the statistical database can be learned without access to the database.

Unachievable

- Auxiliary Info/Linkage Data is the stumbling block.
- Fun proof; can be told as a parable.
- Suggests new criterion: risk incurred by joining DB
 - Before/After interacting vs Risk when in/notin DB

Differential Privacy

 \mathcal{K} gives ε -differential privacy if for all values of DB, DB' differing in at most one row, and all S \subseteq Range(\mathcal{K})

Same set of possible answers; different probability distributions

Differential Privacy: An Ad Omnia Guarantee

- K behaves essentially the same way, independent of whether any individual opts in or opts out
- No perceptible risk is incurred by joining DB
- Holds independent of aux info, comp power

A Natural Relaxation: (ϵ , δ)-Differential Privacy

For all DB, DB' differing in at most one element, for all $S \subseteq \text{Range}(\mathcal{K})$,

 $\Pr[\mathcal{K}(\text{DB}) \subseteq S] \le e^{\mathcal{E}} \Pr[\mathcal{K}(\text{DB'}) \subseteq S] + \delta$

where $\delta = \delta(n)$ is negligible.

Cf : ε –Differential Privacy is unconditional, independent of n Advantage: Can permit improved accuracy. See also, *eg*, Abowd *et al.*, 2008

An Interactive Mechanism: K

f: DB \rightarrow R Eg, CountP(DB) = # rows in DB with Property P

$\mathcal{K}(f, DB) = f(DB) + Noise$

Sensitivity of a Function f

Assume DB and DB' differ only in one row (Me). How Much Can f(DB) Exceed f(DB')? Recall: $\mathcal{K}(f, DB) = f(DB) + noise$ Question Asks: What difference must noise obscure?

 $\Delta \mathbf{f} = \max_{d(DB, DB')=1} |\mathbf{f}(DB) - \mathbf{f}(DB')|$

eg, $\Delta \text{Count} = 1$

Calibrate Noise to Sensitivity

 $\Delta \mathbf{f} = \max_{\mathbf{d}(\mathbf{DB}, \mathbf{DB'})=1} |\mathbf{f}(\mathbf{DB}) - \mathbf{f}(\mathbf{DB'})|$

Theorem: Can achieve ε -differential privacy by adding scaled symmetric noise ~ Lap($\Delta f/\varepsilon$).

${\it Multiple/Complex}\ Queries\ f: DB \to R^k$

 $\Delta f = \max_{d(DB, DB')=1} ||f(DB) - f(DB')||_{1}$

Theorem: Can achieve ε -differential privacy by adding scaled symmetric noise $\sim [Lap(\Delta f/\varepsilon)]^k$.

Noise Grows (and must grow!) with Total Number of Queries T Counting Queries: $\Delta = T$

$\textit{Multiple/Complex Queries f: DB} \rightarrow R^k$

 $\Delta f = \max_{d(DB, DB')=1} ||f(DB) - f(DB')||_2$

Theorem: Can achieve (ε, δ) -differential privacy by adding noise ~ $\mathcal{N}(0, 2 \ln (2/\delta) (\Delta f/\varepsilon)^2)^k$.

T Counting Queries: $\Delta = \mathbf{J}T$

Examples

✓ Simple Counting Queries

Extremely Powerful Computational Primitive

Data inference, singular value decomposition, principal component analysis, k-means clustering, perceptron learning, association rules, ID3 decision tree, SQ learning model, approximate halfspaces, density estimation, ...

✓ Histograms

 A histogram looks like many queries, has low sensitivity! Data of any one person can change only 2 cells, each by 1.

Contingency Tables

- Each table is a histogram
- Each marginal is a histogram
- Can even get consistency across multiple marginals...

Release of Contingency Table Marginals

Privacy, Accuracy, and Consistency Too: A Holistic Solution to Contingency Table Release

Barak, Chaudhuri, Dwork, Kale, McSherry, and Talwar, 2007

Release of Contingency Table Marginals

- Simultaneously ensure:
 - Consistency
 - Accuracy
 - Differential Privacy

Release of Contingency Table Marginals

- Simultaneously ensure:
 - Consistency
 - Accuracy
 - Differential Privacy
- Terms To Define:
 - Contingency Table
 - Marginal
 - Consistency
 - Accuracy

Contingency Tables and Marginals

Contingency Table: Histogram / Table of Counts

- Each respondent (member of data set) described by a vector of k (binary) attributes
- Population in each of the 2^k cells
 - One cell for each setting of the k attributes

Contingency Tables and Marginals

Contingency Table: Histogram / Table of Counts

- Each respondent (member of data set) described by a vector of k (binary) attributes
- Population in each of the 2^k cells
 - One cell for each setting of the k attributes

Marginal: sub-table

- Specified by a set of $j \le k$ attributes, eg, j=1
- Histogram of population in each of 2^j
 (eg, 2) cells
 - One cell for each setting of the j selected attributes
 - $A_2 = 0:3, A_2 = 1:4$, so the A_2 marginal is (3,4)

Consistency Across Reported Marginals

There exists a fictional contingency table T* whose marginals equal the reported marginals

- Marginals(T*) = Reported Marginals(T)
- Who cares about consistency?
 - Not we.
 - Software?

Release of Set M of Marginals

- Release noisy contingency table; compute marginals?
 - Consistency among marginals; differential privacy
 - Noise per cell of T: $Lap(1/\epsilon)$
 - Noise per cell of M: about $2^{k/2}/\epsilon$ for low order marginals

• Release noisy versions of all marginals in M?

- Noise per cell of M: $Lap(|M|/\epsilon)$
- Differential privacy and better accuracy
- Inconsistency among marginals

Consistency Across Reported Marginals

There exists a fictional contingency table T* whose marginals equal the reported marginals

- Marginals(T*) = Reported Marginals(T)
 - Can view T* (and its marginals) as synthetic data
 - ▶ T*, M(T*) may have negative and/or non-integral counts
- Who cares about integrality, non-negativity?
 - Not we.
 - Software?
 - See the paper.

Move to the Fourier Domain

- Just a change of basis. Why bother?
 - T represented by 2^k Fourier coefficients (it has 2^k cells)
 - To compute j-ary marginal only need 2^j coefficients
 - For any M, expected noise/cell depends on number of coefficients needed to compute M(T)
 - Independent of n and k
 - ► For M₃ (all 3-way marginals): E[noise/cell] \approx (k choose 3)/ ϵ .
- The Algorithm for R(M(T)):
 - Compute set of Fourier coefficients of T needed for M(T)
 - Add noise; gives Fourier coefficients for M(T*)
 - 1-1 mapping between set of Fourier coefficients and tables ensures consistency
 - Convert back to obtain M(T*)
 - Release $R(M(T))=M(T^*)$

Accuracy of Reported Values

- Roughly, described by $E[||R(M(T)) M(T)||_1]$
 - Expected error in each cell: proportional to $|M|/\epsilon$
 - A little worse
 - Probabilistic guarantees on size of max error
- Key Point: Error is Independent of n (and k)
 - Depends on the "complexity" of M
 - Depends on the privacy parameter ε

Improving Accuracy

- Gaussian noise, instead of Laplacian
 - E[noise/cell] for M3 looks more like O((log $(1/\delta)^{1/2} k^{3/2}/\epsilon)$
 - (ε,δ) -differential privacy
- Use Domain-Specific Knowledge
 - We have, so far, avoided this!
 - If most attributes are considered (socially) insensitive, can add less noise, and to fewer coefficients
 - ▶ Eg, Δ M3 with 1 sensitive attribute ≈ k² (instead of k³)
 - > Reduce further using Gaussian noise: $\log (1/\delta)^{1/2} k$

Noise Reduction for Counting Queries

- Is it necessary?
 - Can safely release answers to almost-linear number of counting queries with noise o(square root of population size). When is this too noisy? M₃?

• What is the correct interpretation of DiNi+ results?

- Can't answer "too many" (weighted) subset sum queries "too accurately. But in M3 can't "zoom in" on a small subset of users and launch DiNi-style attacks.
- There is a reasonable noise generation model for which, if want to bound even just over than half the queries to a small error p, and the coefficients can be as large as 2.1 p, then can attack any row using p-1 queries and O(p⁴) computation.

- Noise Reduction for General Queries
 - Eg: Nissim, Raskhodnikova, Smith '07
 - Smoothed Sensitivity can be hard to work with
 - Subsample and Aggregate seems easier; powerful
 - Test-estimate-release [DL, in progress]
 - Use differentially private test for "nice" data; proceed iff nice
 - Not counting against sensitivity, or perturbing answers to, queries on non-sensitive data?
 - If, in a hypothetical world, sensitive data are *always* handled in a differentially private manner, maybe don't need to worry about insensitive fields being sufficient to identify an individual. That is, these can be used as a key, but so what?

- **•** Understand what it means *not* to provide ε-DiffeP
 - When is it a problem?
 - > Failure to provide ε -DiffeP might result in 2ε -DiffeP
 - How bad is this?
 - Can this suggest a useful weakening?
 - Finite Differential Privacy?
 - How much residual uncertainty is enough?
 - (ϵ , δ) Differential Privacy when δ is non-negligible?
 - E.g, $1/n^2$ is very small when n is internet scale

- Understand the relationship between robust statistics and Differential Privacy
 - Adam will say more about this
 - Understand what it means for statistical distributional assumptions to be false
- Differentially Private Algorithms for Statistical Tasks
 - > Parameter estimation, regression, R, SAS?

- Differential Privacy for Social Networks
- What Can Be Computed Insensitively?
- When can the Exponential Mechanism be efficient?
- Synthetic Data
 - Low-quality, low-sensitivity generation of synthetic set that will tell where to spend your privacy budget?