NISS

Secure Analyses of Distributed Data

> Alan Karr March 4, 2004

Context

- Related databases held by multiple parties ("agencies")
 Government agencies
 - Corporations (e.g., pharmaceutical companies)
 - Actual data integration impossible
 - Law
 - Proprietary data
 - Data size
- Wish to perform statistical analyses on integrated data Data mining
 - Regression
 - ...

Constraints

- No trusted third party (human or machine)
- Cooperating agencies – Want to perform the analyses
- Semi-honest agencies
 - Use true data
 - Follow agreed on protocols
 - Can retain results of intermediate computations

Data Partitioning

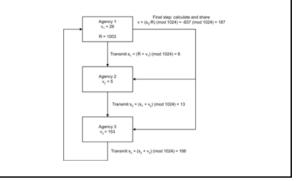
- Horizontal
 - Agencies have same data on disjoint sets of subjects
 - Example: state-level education data
- Vertical
 - Agencies have disjoint sets of attributes on the same subjects, and "clean" record linkage is possible
 Example: IRS, NCES, NCHS
- Mixed

Secure Summation

• Problem

- Party k has a_k
- Compute Σa_k without revealing any of the a_k to others, and without trusted third party (human or machine)
- Solution
 - Party 1: generate enormous random number *R*, and transmit $R + a_1$ to party 2
 - Party 2: Add a_2 , transmit $R + a_1 + a_2$ to party 3
 - ...
 - Party 1 receive $R + \Sigma a_k$, subtract R and share result

Secure Summation: Pictorial View



Confidentiality-Preserving Association Rules

- Problem setting: multiple, identical databases with different
 owners
- Goal: find item pairs (*i*,*j*) with *global* (across all the databases) association rule support exceeding threshold *s*
- Constraint: protect
 - Data items
 - Database sizes N_k
 - Support $S_k = C_k(i,j)/N_k$ at each site
- Answer: Secure summation with $a_k = C_k(i,j) sN_k$ to compute

 $l\left(\sum_{k} C_{k}(i, j) - s \sum_{k} N_{k} \ge 0\right)$

Secure Regression

- Setting: horizontally partitioned data
 - Y = response
 - X = predictors
- Goal: Perform ordinary linear regression, *including diagnostics*

Approaches

• Secure data integration

- Create integrated database in which no agency can recognize the source of data other than its own
- · Secure combination of local computations
 - Compute $(X^T X)^{-1} X^T Y$ using secure summation
 - Diagnostics via
 - · Securely shared local computations
 - · Securely integrated synthetic residuals

Secure DI: Version 1

Round 1

- Agency 1 Puts in only synthetic data
- Each agency 2,...,K
- · Puts in at least 5% of its real data
- · Optionally, puts in synthetic data
- · Randomly permutes order of records

Rounds 2,...,20

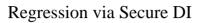
- Each agency 1,...,K
 - Puts in at least 5% of its real data
 - · Optionally, puts in synthetic data · Randomly permutes order of records
- Round 21 Agency I
 - · Puts in any remaining real data
 - · Removes its synthetic data
 - Each agency 2,...,K
 - · Removes its synthetic data

Problems

- · Retained intermediate computations
 - In round 1, agency 3 receives
 - Synthetic data from agency 1
 - · Real and synthetic data from agency 2
 - By comparing with final database, agency 3 can identify the real data from agency 2
- · Vulnerable to poor synthetic data
- Vulnerable to good synthetic data

Secure DI: Version 2

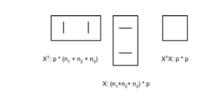
- Stage 1 agency a₁
 - Initialize database with
 - · Some synthetic data
 - · At least real data record
 - Pick stage 2 agency a_2 randomly and send database and indicator vector $d (d_i = l(i \text{ has data left}))$
- · While two or more agencies have data left,
 - Stage *j* agency a_i
 - · Adds at least one real record and optional synthetic data
 - Sets $d_{a_i} = 0$ if it has no data left Chooses a_{i+1} randomly from agencies with data left
- · Final stage: agencies remove synthetic data



- Use Version 2 to create and share integrated database
- Each agency can run whatever analyses it wants

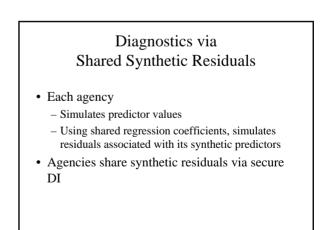
Secure Regression without DI

- Model: $Y = X\beta + \varepsilon$
- · Least squares estimates
 - Compute $X^T X$ and $X^T Y$ entrywise via secure summation
 - All agencies can then compute $\hat{\beta} = (X^T X)^{-1} X^T Y$



Diagnostics via Securely Shared Residual Statistics

- $R^2 = \frac{\sum_{i=1}^{n} (\hat{y}_i \bar{y})^2}{\sum_{i=1}^{n} (y_i \bar{y})^2}$
- $S^2 = \frac{(y X\hat{\beta})^T (y X\hat{\beta})}{n p}$
- Outliers via $H = X(X^T X)^{-1} X^T$



Problems

• Other forms of data

- Secure method for integrated contingency tables
- Text, images, ...
- Other analyses
- Risk-utility characterization
 - Disclosure risk = ???
 - Data utility = ???
- Compare what is revealed to what has to be revealed

Vertically Partitioned Case

- All agencies have data on same subjects – Common primary key
- Agencies "own" disjoint sets of attributes - If there are attributes in common, they agree
- Complete data

What We Can Do

- · Compute least squares estimators
 - Approach 1: Use secure matrix product to compute "off-diagonal" blocks in covariance matrix
 - Approach 1: Use Powell's method to solve the quadratic optimization problem

What We Can't Do

- Diagnostics
- Characterize asymmetries
 - Response holder
 - Calculation of covariance matrix
- Derive any optimality properties

