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What is the Statistician’s Role?

Statisticians are concerned with uncertainty!

Some general areas (all related) in the geosciences for which statisti-
cians can contribute include:

• Model Data Fusion (Data Assimilation)

• Dimension reduction

• Multiscale modeling

• Multiprocess modeling

• Computation

• Spatio-Temporal field comparison

• Extremes
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General Framework: Hierarchical Bayesian

It is increasingly common for statisticians to represent problems in
geosciences in three stages (Berliner, 1996):

Basic Hierarchical Model

1. [data|process, parameters]

2. [process|parameters]

3. [parameters]

Bayes:
[process,parameters|data]∝ [data|process, parameters]

× [process|parameters][parameters]
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Bayesian Hierarchical Modeling: Think Conditionally!!

Data → Y Process→ X Parameters→ θ

• Data Model(s):[Y | X, θ ]

– Simpler dependence structures through conditioning. e.g.,
[Ya, Yb|X, θ] = [Ya|X, θ][Yb|X, θ]

– Change of resolution; misalignment

• Process Model(s):[X | θ ]

– Can build-up complicated dependence by conditional models. e.g.,
[X2, X1|θ] = [X2|X1, θ][X1|θ]

– Incorporate science!! (e.g., PDEs)

• Parameter Model(s):[ θ ]

– Further conditioning, e.g.,[θ1|θ2][θ2]; Incorporate science

Bayes:
[X, θ|Y ] ∝ [Y |X, θ][X|θ][θ]
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Hierarchical Models (cont.)

Specifically, consider ahierarchical state-spaceframework: Data (yt),
Process (xt), Parametersθ

Data Stage:
yt = H(xt, θh)

Process Stage:
xt = M(xt−1, θm)

Parameter Stage:
[θh, θm]

Bayesian framework provides a solution:

p(x0:t, θ|y1:t) ∝ p(y1:t|x0:t, θh)p(x0:t|θm)p(θ)

wherex0:t ≡ {x0,x1, . . . ,xt}, y1:t ≡ {y1, . . . ,yt}, θ ≡ {θh, θm}.
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Hierarchical Models (cont.)

Many examples over the last few years of statisticians and geoscien-
tists using this framework for “real” (although not necessarily “opera-
tional”) problems: e.g.,

• winds (tropical Pacific, subpolar, coastal, sea breeze)

• Pacific sea surface temperature forecasts

• hurricane/tornado climatology

• air pollution

• glacial dynamics

• radar nowcasting

Most (if not all) of these examples considered various degrees of pre-
existing scientific knowledge to inform the models (at the data, pro-
cess, and/or parameter stages) and MCMC implementation.

Such “subjective” prior information is critical.
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Hierarchical Models (cont.)

In general, a powerful paradigm, but practical limitations!

Fundamental Questions:

• To what extent do we knowH,M, θh, θm?

–M “known” - Deterministic model/data fusion
–M “unknown” - e.g., short time-scale or long-lead forecasts in

atmospheric science; one must estimate the evolution operator
from the data and prior knowledge

–H (measurement function) usually assumed known
– θ typically, only variance/covariance parameters are “unknown”

(if any)

• What is the dimensionality ofyt, xt, θ?

– Makes a huge difference in how we implement a solution; ap-
proximations and “adhockery” are rampant!!
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Model/Data Fusion or Data Assimilation (DA)

The “traditional” DA problem:

• H andM nonlinear and known

• state process covers multiple scales of variability

• many observations, yet sparse relative to state dimension

• model error and biases

NOTE: as a special case of the hierarchical Bayesian paradigm (with
known parameters), the solution can be found from Bayes rule:p(X|Y).

In case of linear model operatorsH,M, and Gaussian error distribu-
tions, this can be derived analytically and gives the traditional optimal
interpolation (i.e., kriging) formulas. Variational solution just the pos-
terior mode (but no measure of uncertainty).
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Sequential DA

Forecast Distribution:

p(xt|y1:t−1) =
∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1

Analysis Distribution:

p(xt|y1:t) ∝ p(yt|xt)p(xt|y1:t−1)

• Linear, Gaussian case: traditional Kalman Filter (KF).

• Linearized operators, Gaussian errors: Extended KF

• Monte Carlo sampling form evolution distribution, with added as-
sumptions of linear measurement operator, Gaussian error distribu-
tions, and sample-based covariance estimates: Ensemble Kalman
filter (EnKF).

• Monte Carlo sampling from the model evolution distribution, reweighted
according to the data model (likelihood): sequential importance
sampling (particle filtering)
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Sequential DA (cont.)

Some Statistical Issues with EnKF

• When is it sufficient to just consider the first two moments?

• Can modifications to sequential importance sampling contribute?
e.g., controlling degeneracy through data distribution factorization
(e.g., Mark Berliner’s talk at SAMSI DA workshop yesterday)

• How large does ensemble have to be?

• Parameter estimation? (can be done with sequential importance
sampling; what about EnKF?). NOTE: state augmentation not al-
ways appropriate (high dimensional parameter space; significant
prior information for parameters). Hybrid MC and MCMC meth-
ods?

• In general: add statistical rigor to implementations that seem to
work well but have numerous approximations and ad hoc modifi-
cations.
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General DA Statistical Issues

• Parameter estimationin large numerical models.

[Work in progress: formulated stochastic convective initiation scheme
in a regional climate model (MM5); used radar reflectivities as
“data” and Bayes to obtain posterior probability distributions for
the parameters]

• Model uncertainty: fundamental problem that model and “real
world” do not live on the same attractor (see Z. Toth and L. Smith’s
talks at Oct. 5 SAMSI DA meeting); can statistical methods help???

• Non-additive errors

[Work in other disciplines (e.g., Ecology) consider observational
processes that have explicitly non-Gaussian error structures; e.g.,
species abundance with sampling uncertainty, and spatio-temporal
dynamics from reaction diffusion equations with stochastic param-
eters; fully Bayesian implementation via MCMC.]
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Dominant Statistical Issues

There are many statistical issues in both the general (hierarchical)
modeling framework, and specific (data assimilation) problems.

Dimension Reduction

A fundamental problem in many atmospheric/ocean applications is the
curse of dimensionality(i.e., sample size needed to estimate a function
of several variables to a specified degree of accuracy grows exponen-
tially as the number of variables increases).

This affects model/data fusion (DA) but also modeling processes for
which explicit dynamics are less well-known. That is, when one must
estimate the evolution operator (e.g., short term nowcasting, seasonal
prediction)
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Dimension Reduction (cont.)

Consider the data stage:

yt −→ xt

whereDim(yt) >> Dim(xt).

Some Approaches:

• Non-probabilistic methods

– Principal component analysis (EOFs), Wavelet’s with thresh-
olding, Projection pursuit, Principal curves, Vector quantization
(self-organizing maps, elastic nets), Multidimensional scaling,
Locally linear embedding

• Probabilistic methods

– Factor analysis, Independent component analysis, Independent
factor analysis, Generative topographic mapping
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Dimension Reduction (cont.)

Probabilistic methods can all be characterized as some form oflatent
variable model. This framework (aka hidden process models, mixture
models, hidden-Markov models, etc.) is equivalent to the hierarchical
model we have already considered:

Let yt be the high-dimensional observation vector, andxt the under-
lying latent (unobservable) process of interest. As before, we specify
a distribution for the data given this processp(yt|xt, θh): e.g.,

yt = H(xt; θh)

whereH is the map that controls the dimension reduction.

Most of the methods listed previously have not been used in a mod-
eling sense for geophysical data. Need for estimation approaches for
these in the context of state-space models - rich collaborative possibil-
ities.
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Multiscale Processes

Multiscale processes are ubiquitous in the natural world (e.g, the trans-
fer of energy across scales in the atmosphere.)

• Data models: Data at different scales; the so-called “change of
support” problem in spatial statistics. Exploration of these ideas
for data sets of varying resolutions. (e.g., Wikle and Berliner 2005)

[Ya, Yc|Xb, θa,c|b]

• Process models: link processes at various scales; e.g.,

[Xa|Xb, θa][Xb|Xc, θb][Xc, θc]

– graphical models, multigrid methods

• Parameter models: include scaling relationships (e.g., turbulent
scaling relationships in variances)
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Example: Multiresolution Model with Latent Process Dynamics

yt = Wαt + ξt

where W is a multiresolution operator andαt are the time-varying
multiresolution coefficients.
Each resolution ofαt is conditioned on an underlying dynamical pro-
cess,bt:

αj
t = φj(bt; θ

j
φ)

for each multiresolution scale,j = 0, . . . , J .

bt = M(bt−1; θm)

• φ( ) maps thenj-dimensional subprocessαj
t to thep-dim process

bt (p � ∑
j nj) [KEY ]
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Multiresolution Hidden Process Model: Example

- Model with linearφ,M, and Gaussian errors
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Multiple Process Modeling

It is critical to link (or couple) multiple processes in geophysical sys-
tems (e.g., atmosphere/ocean)

This can be done hierarchically (e.g., Berliner, Milliff, Wikle,Journal
of Geophysical Research: Oceans, 2003)

• Couple models of interacting spatio-temporal processes (atmosphere
and ocean)

– Hierarchical coupling of complicated systems; each of which is
also modeled hierarchically

– Use approximate dynamics; physical-statistical models

• Incorporate diverse datasets

• Include stochastic elements to adjust for model uncertainty, un-
modeled components, etc.

• Quantify uncertainty in each phase
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Coupled Atmosphere-Ocean Model

Data

* Da Atmospheric data (scatterometer)
* Do Ocean data (altimeter)

HBM Skeleton

1. [Da, Do|Atm, Ocean, θa, θo]
2. [Atm, Ocean|ηa, ηo|a]
3. [θa, θo, ηa, ηo|a]

Parameters

θa, θo, ηa, ηo|a
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Multiprocess Model Example (cont.)

BHM Keys!

1. [Da, Do|Atm, Ocean, θa, θo] = [Da|Atm, θa][Do|Ocean, θo]

2. [Atm, Ocean|ηa, ηo|a] = [Ocean|Atm, ηo|a][Atm|ηa]

1. Atm & Ocean data are conditionallyindependent

2. Parameterized air-sea model is stochastic atmospheric model
coupled to stochastic Ocean-given-Atmosphere model

* Posterior:[Atm, Ocean|Da, Do]

Implementation: MCMC for atmospheric model; Importance Sam-
pling MC to link atmosphere and ocean (stochastic coupling)
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Other Statistical Issues

• Field Comparison:
Atmospheric scientists have a long history of at least considering
comparisons (verifications) with recognition of the process behav-
ior.

Statisticians have very few good approaches for comparing fields
in space and time, especially in a distributional (ensemble) context.

• Extremes:
Of increasing interest due to the concern that anthropogenic changes
in the environment will be manifest as changes in extremes.

Extreme value theory is just now starting to be applied to spatial
and spatio-temporal problems in statistics. Very little has been
done in complicated non-linear dynamical systems. This is an area
that would benefit from strong collaboration with applied mathe-
maticians and dynamicists.
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Computation

• Model applicability critically tied to computational practicality

• Related to issues of model/data fusion, sequential estimation, di-
mensionality, multiscaling, multi-process modeling

• Statisticians, as a group, are behind: we don’t use parallel codes,
and we are not very good at handling huge data sets!

• Subject matter scientists are wedded to certain numerical approaches
and are often not willing to “retool”.

• It is time to start considering computational approaches that may
benefit both deterministic “rules” and statistical parameterizations
in massively parallel environments!
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Conclusion

• There are numerous sources of uncertainty in problems in the geo-
sciences.

• It is essential that statisticians play a role. But, they must be willing
to learn the science and consider new approaches!

• Similarly, geoscientists must be willing to consider new approaches
to handling uncertainty.

• We are in a second “golden age” of statistics in which scientific
problems are providing the motivation for new methodologies!

• True collaboration is essential!
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