The Role of Statistics in Biometric Authentication Based on Facial Images

Sinjini Mitra Department of Statistics & CyLab Carnegie Mellon University smitra@stat.cmu.edu

Collaborators:

rators:Stephen E. FienbergAnthony BrockwellB.V.K. Vijaya Kumar (ECE)Marios Savvides (ECE)Yanxi Liu (Robotics Institute, CS)

What is Biometric Authentication?

Biometrics refer to the unique biological traits (physical or behavioral) of individuals that can be used for identification

Physical: retinal/iris scan, fingerprint, face, palm-print

Behavioral: voice-print, gait, gesture

face

fingerprint

iris scan palm-print

voiceprint

Biometric Authentication

- Technology for verification of a person's identity based on his/her biometrics
- "Something you are" versus "something you know" (passwords) or "something you possess" (ID card)
- Better security and reliability: cannot be stolen or forgotten and less prone to fraud

Applications

Forensics, homeland security, access to ATMs and computer networks

Facial Biometrics

- Fairly accurate, non-intrusive and user friendly
- Analyzes facial characteristics from an image
 Examples: Position relationships between eyes, nose, mouth and chin
- Very challenging sensitive to external factors

A face authentication system has 3 components: (*i*) Enrollment, (*ii*) Identification, (*iii*) Decision: authentic or impostor?

The Face Recognition Vendor Test (FRVT) 2002

- Provide performance measures for assessing the ability of 10 commercially used automatic face recognition systems to meet real-world requirements
 - Participants tested on large data not previously seen 121, 589 images of 37, 437 people

- Effect of demographics (sex, age), image properties (location, resolution, pose, illumination), time difference between enrollment and testing
- Performance degraded with increasing database and "watch-list" size
- **Drawback:** Impressive results but based on observational studies and are empirical in nature no statistical basis (modeling, ROC curves) and scope for valid inference

My Research Goals

- I. Statistical analysis and evaluation of existing authentication systems
- II. Explore new approaches to building statistical model-based authentication systems
- III. Explore other ways to develop distortion-tolerant authentication systems

Motivation: Minimum Average Correlation Energy (MACE) Filter

- Introduced by Kumar, et al. (2002)
- Easily detected features for distinguishing authentics and impostors
- A linear filter and reports impressive results

Objective:

Use MACE as a baseline for developing statistical methods of analysis and evaluation of face authentication systems, in order to make them more rigorous and useful in practice

$$\mathbf{h}_{MACE} = D^{-1} X (X^T D^{-1} X)^{-1} \mathbf{c},$$

D: a diagonal matrix (ave. power spectrum), c: a column vector of ones

- Obtained by minimizing the average correlation plane energy $E_{ave} = h'Dh$ while satisfying $X^+h = \mathbf{c}$ (constraint at the origin)
 - Such a design forces the output plane to have low values everywhere except at the origin facilitates easy distinction

Carnegie Mellon – p.6/19

Filter-based Authentication

- One MACE filter is synthesized per person
- Filter applied to each test image via convolution (frequency domain)
- Inverse Fourier transform yields final spatial output

Peak-to-Sidelobe Ratio (PSR):

Quantitative measure for authentication

The Databases

I. Cohn-Kanade AU-Coded Facial Expression Database: 55 subjects expressing neutral, joy, anger and disgust

II. CMU-PIE Database: 65 subjects under different illumination conditions

Properties and Distortion Tolerance

- Easy to implement and has attractive features
- Shift-invariance, tolerance to illumination and partial occlusion (Savvides and Kumar, 2003), but sensitive to other distortions like noise, expressions, pose, etc.
 - Many heuristics involved: (i) training images, (ii) PSR threshold

Distortion-tolerant MACE

Obtained by minimizing the compromise criterion (Kumar, 1992): $E_{ave} + \alpha \sigma^2 = h'Dh + \alpha h'h = h'(D + \alpha I_d)h$, where σ^2 : noise variance, α : tuning parameter

Replace D in \mathbf{h}_{MACE} by $D + \alpha I$, so that

$$\mathbf{h_{noise}} = (D + \alpha I_d)^{-1} X [X^T (D + \alpha I_d)^{-1} X]^{-1} \mathbf{c}.$$

- Reasonable performance under distortions lower false alarms
- **Drawback:** No deterministic way of choosing α : "brute-force" and ad-hoc, and no fixed optimal value

Statistical Analysis of MACE

MACE is not a model-based technique

- Model variation in PSR values with changes in image properties (noise, resolution), filter design parameters (sidelobe dimension, α) and demographics (age, sex)
- Performance evaluation and inference:
 - Confidence intervals and hypothesis tests for PSR and error rates
 - Predict PSR values and error rates for unobserved large new data
- Model performance statistics as a function of database and "watch-list" sizes

Exploratory Analysis

- More training images required in presence of distortions
- Often better authentication with (*i*) fewer training images, (*ii*) lower resolution images, (*iii*) smaller sidelobe dimension

Performance Evaluation: The Literature

A decision-theoretic framework: a match score T and a threshold au

- $T > \tau$: match (authentic), $T \le \tau$: mismatch (impostor)
- Solution Type I error: FNR = $P(T \le \tau | T \in \text{Authentic}) = \int_{-\infty}^{\tau} f_A(x) dx$ Type II error: FPR = $P(T > \tau | T \in \text{Impostor}) = \int_{\tau}^{\infty} g_I(y) dy$
- Trade-off between FPR, FNR and their behavior with τ can be represented by a Receiver Operating Characteristic (ROC) curve
- Error rates estimated empirically by sample proportions
- Confidence intervals and hypothesis tests for error rate estimates: binomial distribution and bootstrapping (Bolle et al, 2000), beta-binomial distribution (Schuckers, 2003)
- Drawback: Based on many assumptions independence, equality of variances, which seldom hold in practice for real image data
- ROC curves help in evaluation of score distributions Ishwaran and Gatsonis (2000) used hierarchical models for clustered data

My approach:

Use ROC curves to study the score distributions and use the robust modeling approach

Inference for New Data

Goal: Predict PSR value for new large face data, estimate the expected error rates and model variation as a function of database and "watch list" size

Random Effects Hierarchical Model (Gelfand, et al. JASA 1990)

Conjugate hyperpriors for θ_0 , Σ and MCMC-based posterior simulation

Inference based on θ_0 and posterior predictive distributions $p(y_{ij}|\mathbf{y})$

PSR is the MACE "score", so Y :	$\log(PSR),$	covariates x_{ij} :
-----------------------------------	--------------	-----------------------

Image properties	Filter parameters	Database properties
Authentic/Impostor (binary)	# training images	size
Distortions (categorical)	lpha	"watch-list" size
Image resolution	sidelobe dimension	

Model the odds of false alarm (FPR, FNR) in a logistic regression framework

Model checks for validity of assumptions: linearity, independence, homoscedasticity

II. Statistical Model-based Systems

- Spatial models (2D AR, MRF)
 - inadequate for building model-based classification tools
- Spectral models: My approach
 - No one has modeled the image spectrum directly
 - The Fourier transform of an image $x(n_1, n_2)$ is defined as:

$$X(j,k) = \frac{1}{N_1^2} \sum_{n_1=0}^{N_1-1} \sum_{n_2=0}^{N_1-1} x(n_1,n_2) e^{-i2\pi(n_1j/N_1+n_2k/N_1)}$$

(polar form)

$$\underbrace{|X(j,k)|}_{\text{magnitude}} e^{i \underbrace{\theta_x(j,k)}_{\theta_x(j,k)}}, \quad j,k = 0, 1, \dots, N_1 - 1$$

We will model magnitude and phase

Spectral Modeling

Phase captures most of a face image identifiability (Hayes, 1982)

Subject 1 Subject 2

Mag 1 + Phase 2

Mag 2 + Phase 1

Difficulties in Phase Modeling:

- No stationarity assumptions work "wrapping around" property
- Hard to isolate location of discriminating information in phase
- Varies considerably with any kind of distortion

Model Selection:

- Idea: Generate models for an "optimal" number of Fourier coefficients by preserving identifiability dimension reduction
- An image of good quality can be reconstructed using few low frequency components (high energy) while higher ones (low energy) represent finer facial details

3%

Mixture Models

- Flexible semi-parametric framework for modeling unknown distributional shapes
- Mixtures represent different illumination conditions for each person
- Model log-magnitude and phase for pixels within a 50×50 grid around origin:

$$\mathbf{Y_j} = \begin{pmatrix} L_{s,t}^{k,j} \\ P_{s,t}^{k,j} \end{pmatrix} \sim BVN\left(\boldsymbol{\mu_{s,t}^k, \Sigma_{s,t}^k}\right)$$

Mixture model:

$$f(\mathbf{y_j}; \mathbf{\Psi}) = \sum_{i=1}^{g} \pi_i \phi(\mathbf{y_j}; \boldsymbol{\mu_i}, \boldsymbol{\Sigma_i})$$

- One mixture model per pixel per person: $f_{s,t}(\mathbf{y_j}; \mathbf{\Psi}|k)$
- Gibbs Sampler used for parameter estimation via posterior simulation, using conjugate priors for π , μ_i and Σ_i
 - New test image ($\mathbf{x} = (L_{s,t}, P_{s,t})$) classified by MAP estimate based on posterior likelihood:

 $C = \arg \max_k g(k|L, P) \equiv \arg \max_k g(L, P|k)p(k)$

where $g(L, P|k) = \prod_s \prod_t f_{s,t}(\mathbf{x}; \Psi|k), \ p(k) = 1/k$

Possible to classify the illumination type of an image of a person

Summary

- Presented a rigorous statistical framework for analysis and evaluation of existing authentication systems which helps in bypassing the need for the empirical system evaluation tools mostly used today
 - Shown significance of statistically-based systems:
 - inference for large new data
 - guidelines to users of existing systems, making them more reliable
- Exploiting the key role of phase in face identification for building models in the spectral domain is a promising novel approach with a simple classification scheme
- Current research agenda consists of implementing all these techniques in the context of the MACE filter system and the spectral model-based system (after development)

Future Directions:

- Spectral Models: Model all pixels together using inter-pixel correlations, increase algorithm efficiency
- Other Methods: *Facial Asymmetry* potential for devising distortion-tolerant authentication systems (Liu et al. 2003)
 - Other Biometrics: Fingerprints, Multi-modal systems

References

- Bolle, R.M., Pankanti, S. and Ratha, N.K. (2000). Evaluation Techniques for biometrics-based authentication systems (FRR). *In Proceedings of ICPR 2000*, pages 2831-2837.
- Gelfand, A.E., Hills, S.E., Racine-Poon, A., Smith, A.F.M. (1990). Illustration of Bayesian Inference in Normal Data Models Using Gibbs Sampling. *JASA*, 85(412):972-985.
- Hayes, M.H. (1982). The Reconstruction of a Multidimensional Sequence from the Phase or Magnitude of its Fourier Transform. *IEEE Transactions on Acoustics, Speech and Signal Processing*, 30(2): 140-154.
- Ishwaran, H. and Gatsonis, C. (2000). A general class of hierarchical ordinal regression models with applications to correlated ROC analysis. *The Canadian Journal of Statistics*, 28:731:750.
- Liu, Y., Schmidt, K., Cohn, J., Mitra, S. (2003). Facial Asymmetry Quantification for Expression-invariant Human Identification. *Computer Vision and Image Understanding Journal*, 91(1/2):138-159.
- Savvides, M. and Vijaya Kumar, B.V.K. (2003). Efficient Design of advanced correlation filters for robust distortion-tolerant face identification. *Proceedings of the IEEE International Conference on Advanced Video and Signal-based Surveillance (AVSS)*, pages 45-52.
 - Schuckers, M.E. (2003). Using the Beta-Binomial Distribution to Assess Performance of a Biometric Identification Device. *International Journal of Image Graphics*, 3(3):523-529.

References (cont.d)

- Vijaya Kumar, B.V.K., Savvides, M., Venkataramani, K., Xie, C. (2002). Spatial Frequency Domain Image Processing For Biometric Recognition. *Proceedings of the International Conference on Image Processing (ICIP)*, Rochester, NY.
- Vijaya Kumar, B.V.K. (1992). Tutorial survey of composite filter designs for optical correlators. *Applied Optics*, 31(23): 4773-4801.

Acknowledgment:

Funding in part by the Army Research Office contract DAAD19-02-1-3-0389 to CyLab.