Cross-Sector Summer Research in Residence at NISS

Nell Sedransk, National Institute of Statistical Sciences 22 April 2010

Impetus for NISS-NASS Program

NASS

- Critical, complex problems
 - Sophisticated (but practical) problem solutions
 - Research requiring varied, specialized technical expertise
 - Immediate implementation
- Limited statistical research base within agency
 - Postdoctoral training in agriculture survey context
 - Embedded graduate students as potential employees
 - Liaison to statistics research faculty

NISS

- Connected to academia (University Affiliates)
- Active NISS postdoctoral fellows program

Paradigm

Three Teams

TEAM	FACULTY	POSTDOC	STUDENT	NASS
T	S.Ghosh	M. Robbins	J. Habiger	K White
	B. Goodwin			D. Miller
II	L. Young P. Arroway	H. Sang	K. Lopiano	D. Abreu A. Lamas
Ш	B. Nandram	J. Wang	C. Toto	E. Anderson
	S. Holan			W. Barboza

Three Survey-based Problems

- I: ARMS (Agriculture Resources Management Survey) – both NASS and ERS (Economic Research Service)
 - Microdata analysis
- II: June Area Survey of Small Farms & (5-year) Census of Agriculture
 - Coherent estimation of number of small farms
- III: AYS (Agricultural Yield Survey) & DAS (December Agricultural Survey) & OYS (Objective Yield Survey)
 - Prediction with variance estimates

Common Threads

- Multiple Data Sources
 - Different sampling frames
 - Different sample designs
 - Different sources of variation
 - Different sources of bias
- Imputation
- Macro to Micro
 - Estimation of totals multiplicative factor
 - Estimation for small areas, "disagreggation"
 - Analysis of covariation and microdata analysis
- Technology and opportunities
 - Access to multiple sources including covariates
 - Advances in software to replace expert opinion

ARMS: Imputation for Item Nonresponse

ARMS: Comprehensive survey

- 100s of items with 10s of required items
- \Rightarrow high rate of item nonresponse
- Conditional mean imputation*
 - Classification by 3 factors: \$\$, farm type, region
 - Disrupts joint distribution structure
 - Covariance structure
 - Disrupts marginal distribution structure
 - Skewed distribution for much economic data
 - Underestimates variances
 - For tested factors: underestimates std dev by up to 50%

*: with restrictions: donor pool size > 10; extreme values excluded from pool

Objective: Preserve Data Structure

Goals

- Analysis of microdata
 - Example: relationship of two highly skewed variables
- Variance estimation
- Imputation Approaches
 - MCMC
 - EM

Data augmentation

- Good representation of joint distribution
 - Allows random draws from joint distribution
 - If parametric, permits transformation
 - (e.g., log transformation of data

 \Rightarrow skew-normal distribution)

Joint Distribution Construction

Sequential procedure

- Transform data to use (skew)normal theory
 - Continuous economic data log transformation
 - Discrete and mixed data see paper*

Fit sequentially expanded subsets of data

- Initiate with maximal set of variables & maximal set of complete observations
- Expand set of observations: Impute by random draw from posterior distribution of missing data given observed data
- Recompute posterior distribution
- Iterate
- Apply inverse transformation to imputed data values

See Schafer (19970, Little & Rubin (2002), Robbins (2009)

Method Performance: ARMS Data

Commodity payments & Farm income

- Highly skewed distributions
- Separate models
- Random item response deletion
- Results
 - Improved estimated distribution tails
 - Improved variance estimates
 - Good covariance estimates
- Next Step Method robustness
 - Missing at random from simple pattern

AYS, DAS &OYS: Composite Prediction

- Forecasting: from planting to harvest
- Current practice
 - Expert panel review of data, ancillary information
- Objectives
 - Estimates (predictions) with stated precision
 - Variance quantified by source

Paradigm

			Planting	9			H	Harvest
	Survey #1	farmer opinion	sample	\Rightarrow	\Rightarrow	\Rightarrow	\Rightarrow	
Year 1	\prec Survey #2	farmer opinion					lar	ge sample
	Survey #3	measurement	sample	subsample	\Rightarrow	\Rightarrow	\Rightarrow	⇒
	Survey #1	farmer opinion	sample	\Rightarrow	\Rightarrow	\Rightarrow	\Rightarrow	
Year 2	$\begin{pmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	farmer opinion					lar	ge sample
	Survey #3	measurement	sample	subsample	\Rightarrow	\Rightarrow	\Rightarrow	\Rightarrow
	Survey #1	farmer opinion	sample	\Rightarrow	\Rightarrow	\Rightarrow	\Rightarrow	
Year 3	$\left. \right. \left. \right\}$ Survey #2	farmer opinion					lar	ge sample
	Survey #3	measurement	sample	subsample	\Rightarrow	\Rightarrow	\Rightarrow	\Rightarrow

Modeling Goals

Hierarchical Bayes Model

- Prediction with quantified variance
- Multiple repeated surveys
- Model for complex structure
- Priors for parameters
- Model comparisons
- Forecast comparisons actual data

Structure: Survey Level (time series)

Structure: Historical Series

Hierarchical Model Approach

Stage 1: Data Model • {Survey Data | True yield Θ_d } Stage 2: Process Model • { True yield $| \Phi_{p}$ Stage 3: Parameter Model • $\{\Theta_{d}, \Phi_{p}\}$ Posterior for process & parameters | Survey data • {True yield, Θ_d , Φ_p } \propto {Data_{#3}|True yield, Θ_d } {Data_{#1}|True yield, Θ_d } {Data_{#2}|True yield, Θ_d } {True yield Φ_p } { Θ_d , Φ_p }

Hierarchical Model

• Data Model {Survey Data | True yield Θ_d }

- [Data_{#1,} Data_{#2}] AR(1)
- Data_{#3} AR(1)
- Conditionally independent
- Survey Biases
 - Bias parameters {B_{#1}, B_{#2}}
 - Independent forecasting errors
- Latent Process Model
 - Regression
 - Location/Region specific factor values
 - Weather
 - Crop progress
 - Interactions
- Prior Distributions

Model Performance

Example:NASS survey data for corn yield

- Survey biases
 - Non-ignorable
 - Consistent across years
 - AR (1) good fit to data
 - Survey #2 "close" to True Yield
- Bayesian Hierarchical Model
 - Outperforms other composite estimators