Cross-Sector Summer Research in
Residence at NISS

Nell Sedransk,

National Institute of Statistical Sciences
22 April 2010



Impetus for NISS-NASS Program

= NASS

Critical, complex problems
= Sophisticated (but practical) problem solutions
= Research requiring varied, specialized technical expertise
= Immediate implementation
Limited statistical research base within agency
= Postdoctoral training in agriculture survey context
= Embedded graduate students as potential employees
= Lijaison to statistics research faculty

= NISS

Connected to academia (University Affiliates)
Active NISS postdoctoral fellows program



Paradigm

NASS Academia
Nonstandard Specialized Technical
Problems Expertise
Data Research Manpower
Contextual Research Mentoring
Experience Experience
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In residence at NISS Summer 2009 NASS-Academic Team
September 2009 - Postdoc at NASS - May 2010

In residence at NISS Summer 2010 NASS-Academic Team

September 2010 - Postdoc at NASS - May 2011
CONFERENCE
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Three Survey-based Problems

= | ARMS (Agriculture Resources Management
Survey) — both NASS and ERS (Economic Research
Service)

s Microdata analysis
= |I: June Area Survey of Small Farms & (5-year)
Census of Agriculture
s Coherent estimation of number of small farms

= [|II: AYS (Agricultural Yield Survey) & DAS

(December Agricultural Survey) & OYS (Objective
Yield Survey)

2 Prediction with variance estimates



Common Threads

= Multiple Data Sources
Different sampling frames
Different sample designs
Different sources of variation
Different sources of bias

= |mputation

= Macro to Micro
Estimation of totals — multiplicative factor
Estimation for small areas, “disagreggation”
Analysis of covariation and microdata analysis

= Technology and opportunities

Access to multiple sources including covariates
Advances In software — to replace expert opinion



ARMS: Imputation for Item Nonresponse

= ARMS: Comprehensive survey
100s of items with 10s of required items
=> high rate of item nonresponse

= Conditional mean imputation*

Classification by 3 factors: $$, farm type, region

Disrupts joint distribution structure
= Covariance structure

Disrupts marginal distribution structure
= Skewed distribution for much economic data

Underestimates variances
= For tested factors: underestimates std dev by up to 50%

*: with restrictions: donor pool size > 10; extreme values excluded
from pool



Objective: Preserve Data Structure

= Goals
Analysis of microdata
= Example: relationship of two highly skewed variables
Variance estimation

= |mputation Approaches
MCMC
EM

Data augmentation
= Good representation of joint distribution
Allows random draws from joint distribution
If parametric, permits transformation
(e.g., log transformation of data
— = skew-normal distribution)



Joint Distribution Construction

= Sequential procedure

Transform data to use (skew)normal theory
= Continuous economic data — log transformation
= Discrete and mixed data — see paper*

Fit sequentially expanded subsets of data

= [nitiate with maximal set of variables & maximal set of
complete observations

= Expand set of observations: Impute by random draw from
posterior distribution of missing data given observed data

= Recompute posterior distribution
= |terate

Apply inverse transformation to imputed data values

See Schafer (19970, Little & Rubin (2002), Robbins (2009)



Method Performance: ARMS Data

= Commodity payments & Farm income
Highly skewed distributions
Separate models
Random item response deletion

= Results
Improved estimated distribution tails
Improved variance estimates
Good covariance estimates

= Next Step — Method robustness
Missing at random from simple pattern



AYS, DAS &O0YS: Composite Prediction

= Forecasting: from planting to harvest

= Current practice

Expert panel review of data, ancillary
iInformation

= Objectives
Estimates (predictions) with stated precision
Variance guantified by source



Paradigm
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Modeling Goals

= Hierarchical Bayes Model
Prediction with quantified variance
Multiple repeated surveys
Model for complex structure
Priors for parameters
Model comparisons
Forecast comparisons — actual data



Structure: Survey Level (time series)
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Structure: Historical Series
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Hierarchical Model Approach

= Stage 1. Data Model
{Survey Data | True yield G4}

= Stage 2: Process Model
{ True yield | @, }
= Stage 3. Parameter Model
{6y, D, }
= Posterior for process & parameters | Survey data
{True yield, @4, @} |
oc {Data,,|True yield, ®,} {Data,,|True yield, @4}
{Data,,|True yield, ®4} {True yield| @} {®4, @, }



Hierarchical Model

Data Model {Survey Data | True yield 04}
[Data,, Data,, ] AR(1)
Data,, AR(1)
Conditionally independent
= Survey Biases
Bias parameters {B,,, B,.}
Independent forecasting errors
= Latent Process Model
Regression
= Location/Region specific factor values
= Weather
= Crop progress
= |nteractions

= Prior Distributions



Model Performance

= Example:NASS survey data for corn yield

= Survey biases
Non-ignorable
Consistent across years
AR (1) — good fit to data
Survey #2 “close” to True Yield
= Bayesian Hierarchical Model
Outperforms other composite estimators
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