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Influential units

Unusual observations with possibly large design weights

Many survey statistics are sensitive to the presence of influential units

Including or excluding an influential unit in the calculation of these
statistics can have a dramatic impact on their magnitude.

The occurrence of outliers is common in business surveys because the
distributions of variables (e.g., revenue, sales, etc.) are highly skewed
(heavy right tail)

Influential units are legitimate observations

The impact of influential units can be minimized by using a good
sampling design: for example, stratified sampling with a take-all
stratum
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Influential units

Even with a good sampling design, influential units may still be
selected in the sample (e.g., stratum jumpers)

In the presence of influential units, survey statistics are
(approximately) unbiased but they can have a very large variance.

Reducing the influence of large values produces stable but biased
estimators

Treatment of influential units: trade-off between bias and variance
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Two-phase designs

U: finite population of size N

s1: first-phase sample, of size n1

s2: second-phase sample, of size n2, selected from s1

I1i : first-phase sample selection indicator for unit i

I2i : second-phase sample selection indicator for unit i

Vectors of indicators: I1 = (I11, · · · , I1N)′ and I2 = (I21, · · · , I2N)′

First-phase inclusion probability for unit i : π1i = P(I1i = 1)

Second-phase inclusion probability for unit i :
π2i (I1) = P(I2i = 1|I1; I1i = 1)
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Two-phase sampling

U(N) 

 

 

 

1 20, 0i iI I   

1 21, 0i iI I   

1 21, 1i iI I   

1 1( )s n  

2 2( )s n  
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Invariance

A two-phase sampling design possesses the invariance property if
P(I2|I1) = P(I2)

Invariance ⇒ π2i (I1) = π2i

Example of invariance: simple random sampling without replacement
in both phases and both n1 and n2 are fixed prior to sampling

Example of non-invariance:

simple random sampling without replacement in the first phase
proportional-to-size sampling in the second phase. That is,

π2i (I1) = n2
xi∑
i∈s1

xi
,

where x is a size variable available for all i ∈ s1

In the remaining, we assume that the two-phase design satisfies the
invariance property
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Point estimation

Goal: estimate a population total of a variable of interest y ,

Y =
∑
i∈U

yi

y -values: available only for i ∈ s2

Complete data estimator: Double expansion estimator

ŶDE =
∑
i∈s2

yi
π1iπ2i

=
∑
i∈s2

yi
π∗i

ŶDE is design-unbiased for Y ; that is,

E1E2(ŶDE |I1) = Y
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E1E2(ŶDE |I1) = Y

David Haziza and Jean-François Beaumont () Robust inference in two-phase sampling June 21, 2011 8 / 22



Point estimation

Goal: estimate a population total of a variable of interest y ,

Y =
∑
i∈U

yi

y -values: available only for i ∈ s2

Complete data estimator: Double expansion estimator
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Total error

The total error of ŶDE :

ŶDE − Y =
(
ŶE − Y

)︸ ︷︷ ︸
first-phase

error

+
(
ŶDE − ŶE

)︸ ︷︷ ︸
second-phase

error

(1)

where ŶE =
∑

i∈s1
π−1

1i yi is the estimator one would have used in a
single-phase sampling design

An influential unit may have an impact on both the first phase and
the second phase errors

How to measure the influence (or impact) of a unit on both errors?
Single phase sampling: the conditional bias; Moreno-Rebollo,
Munoz-Reyez and Munoz-Pichardo (1999), Beaumont, Haziza and
Ruiz-Gazen (2011).

How to construct a robust estimator to the presence of influential
units? Single phase designs: Beaumont, Haziza and Ruiz-Gazen
(2011).
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)︸ ︷︷ ︸
second-phase

error

(1)

where ŶE =
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Measuring the influence: the conditional bias

We distinguish between three cases:

i ∈ s2: sampled unit
i ∈ s1 − s2: sampled in first phase but not in the second phase
i ∈ U − s1: nonsampled unit

We can only reduce the influence of the sampled units (i.e., the units
belonging to s2)

Nothing can be done for the other units at the estimation stage

Influence of sampled unit i ∈ s2 :

BDE
i (I1i = 1, I2i = 1) = E1E2(ŶDE − Y |I1, I1i = 1, I2i = 1)

= E1(ŶE − Y |I1i = 1)

+ E1E2(ŶDE − ŶE |I1, I1i = 1, I2i = 1)
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Measuring the influence: the conditional bias

Arbitrary two-phase design:

BDE
i (I1i = 1, I2i = 1) =

∑
j∈U

(
π1ij

π1iπ1j
− 1

)
yj︸ ︷︷ ︸

Influence of unit i on
the first-phase error

+
∑
j∈U

π1ij

π1iπ1j

(
π2ij

π2iπ2j
− 1

)
yj︸ ︷︷ ︸

Influence of unit i on
the second-phase error

=
∑
j∈U

(
π∗ij
π∗i π

∗
j

− 1

)
yj︸ ︷︷ ︸

Total influence of unit i
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(
N

n1
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N

(N − 1)

N

n1
(
n1

n2
− 1)(yi − Ȳ )

=
N

(N − 1)
(
N

n2
− 1)(yi − Ȳ )
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BDE
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(
1

π1i
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1

π1i

(
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π2i
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(
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− 1

)
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π−1

2i − 1
)
yi

Conditional bias:

unknown ⇒ must be estimated
can be interpreted as a contribution of each unit (sampled or
nonsampled) to the total error
take fully account of the sampling design: an unit may be highly
influential under a given sampling design but may have little or no
influence under another sampling design
If π∗i = 1, then BDE

i (I1i = 1, I2i = 1) = 0
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A robust version of the double expansion estimator

Following Beaumont, Haziza and Ruiz-Gazen (2011), we obtain

Ŷ R
DE = ŶDE −

∑
i∈s2

B̂DE
i (I1i = 1, I2i = 1) +

∑
i∈s2

ψ
{
B̂DE
i (I1i = 1, I2i = 1)

}

Example of ψ-function:

ψ (t) =


c if t > c
t if |t| ≤ c
−c if t < −c

c : tuning constant

Special case: single-phase sampling; i.e., I2i = 1 for all i ⇒ Ŷ R
DE

reduces to the robust estimator proposed by Beaumont, Haziza and
Ruiz-Gazen (2011).
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Unit nonresponse

s2: set of respondents

n2: number of responding units (random)
I2i : response indicator for unit i
π2i : unknown response probability for unit i .
We assume sampled units respond independently of one another
(similar to Poisson sampling in the second phase)
Propensity score adjusted estimator, assuming the π2i ’s are known:

ỸPSA =
∑
i∈s2

yi
π1iπ2i

Influence of a responding unit:

BPSA
i (I1i = 1, I2i = 1) =

∑
j∈U

(
π1ij

π1iπ1j
− 1

)
yj︸ ︷︷ ︸

Influence of unit i on
the sampling error

+π−1
1i

(
π−1

2i − 1
)
yi︸ ︷︷ ︸

Influence of unit i on
the nonresponse error
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ỸPSA =
∑
i∈s2

yi
π1iπ2i

Influence of a responding unit:

BPSA
i (I1i = 1, I2i = 1) =

∑
j∈U

(
π1ij

π1iπ1j
− 1

)
yj︸ ︷︷ ︸

Influence of unit i on
the sampling error

+π−1
1i

(
π−1

2i − 1
)
yi︸ ︷︷ ︸

Influence of unit i on
the nonresponse error

David Haziza and Jean-François Beaumont () Robust inference in two-phase sampling June 21, 2011 15 / 22



Unit nonresponse

s2: set of respondents
n2: number of responding units (random)
I2i : response indicator for unit i

π2i : unknown response probability for unit i .
We assume sampled units respond independently of one another
(similar to Poisson sampling in the second phase)
Propensity score adjusted estimator, assuming the π2i ’s are known:
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Nonresponse model

In practice, the response probability π2i is unknown

Parametric nonresponse model: π2i = m (xi ,α) , where

m(.) is a known function
xi is a vector of auxiliary variables available for all the sampled units
(respondents and nonrespondents)
α is a vector of unknown parameters

Example: logistic regression model

π2i =
exp (x′iα)

exp
(
1 + x′iα

)
Estimated response probability for unit i : π̂2i = m (xi , α̂)

Special case: xi is a vector of weighting class indicators ⇒ weight
adjustment by the inverse of the within-class response rate
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Nonresponse model

Propensity score adjusted estimator: ŶPSA =
∑

i∈s2

yi
π1i π̂2i

One can show that

ŶPSA − ŶL = Op(n−1),

where ŶL is the linearized version of ŶPSA.

Asymptotic conditional bias of a responding unit:

BL
i (I1i = 1, I2i = 1) = E1E2(ŶL − Y |I1, I1i = 1, I2i = 1)

Robust version of ŶPSA

Ŷ R
PSA = ŶPSA −

∑
i∈s2

B̂PSA
i (I1i = 1, I2i = 1)

+
∑
i∈s2

ψ
{
B̂PSA
i (I1i = 1, I2i = 1)

}
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Simulation study

We generated a population of size N = 10000 with two variables: y
and x

x ∼ Gamma

Mixture model: yi = δi × (100 + xi + 5εi ) + (1− δi )× (400 + xi + 50εi )

εi ∼ N(0, 1)

5% contamination: i.e., P(δi = 1) = 0.95

Select R = 10000 samples, of size n = 500, according to simple
random sampling without replacement

Generate nonresponse: Bernoulli trials with probability π2i , where

π2i =
1

exp(α0 + α1xi )

Global response rate: 70%
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Simulation study

We computed: ŶPSA and Ŷ R
PSA

π̂2i : estimated using a logistic regression model with x as a predictor

Monte Carlo measures:

Monte Carlo percent Relative Bias:

RB(Ŷ ) =
1

10000

∑10000
t=1 (Ŷt − Y )

Y

Relative Efficiency with respect to the nonrobust estimator:

RE (Ŷ R
PSA) =

MSE (Ŷ R
PSA)

MSE (ŶPSA)

Note: ŶPSA has negligible bias
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Relative bias of the robust estimator (5% contamination)

20000015000010000050000

0

-5

-10

-15

-20

Tuning constant

R
e

la
ti

v
e

 b
ia

s

0

Relative bias of the robust estimator

 

David Haziza and Jean-François Beaumont () Robust inference in two-phase sampling June 21, 2011 20 / 22



Relative efficiency with respect to the nonrobust estimator
(5% contamination)
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Concluding remarks

Conditional bias: measure of influence that takes account of the
sampling design, the parameter to be estimated and the estimator

If the invariance property does not hold, it is still possible to assess
the influence of a sampled unit and construct robust estimators

Results can be extended to the case of calibration estimators ⇒
important in the unit nonresponse context since weight adjustment
procedures by the inverse of the estimated response probabilities are
generally followed by some form of calibration

Requires further investigations:

Choice of the tuning constant
MSE estimation: reverse framework for variance estimation?
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