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The I.andmine Problem
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Cost of LLandmine Detection

* Demining is a high-risk and high-cost operation

— Costs ~$1,000 to remove and disarm a $3 mine

(Machel, 19906)

— Reducing the false alarm rate of a mine detection
system 1s a major area of research

* EMI (“metal detector”) sensor modalities are
the most common today

— Due to large amount of metallic clutter in postwar
regions, EMI has high false alarm rates

SSPACISS 2]



* Detects subsurface objects
by measuring reflections of
an electromagnetic pulse

— Reflections caused by
changes in electrical

properties (g,W)
* Fasily detects nonmetal
targets

— Unlike conventional EMI
“metal detector’” sensors
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Examples of GPR Data
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Processing GPR Data

Collect Extract :
GPR Data Pre-process C> Pre-screen Features E> Classify
Mine Clutter

e After data is collected, preprocessing is performed to filter out
noise and align “ground-bounce”

* Prescreening algorithm finds anomalies in the data that may be
mine signatures

* A feature-based classification algorithm decides whether the
“alarms” are the result of landmines or non-mine objects (clutter).

SSPACISS &




Factors Complicating GPR Data Interpretation

* Sensor positional uncertainty
* Ground height variation

e Surface clutter

e Shallow-buried mines
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Level Sensor, Rough Surtace
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Uneven Sensor, Uneven Surface
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Surface Clutter

Mine Field at Golan Heights

Photo by David Shay, Under GNU Free Documentation License
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The Problem Summary

Surface clutter
Shallow-buried mines — Mixed into the ground-bounce

Ways to remediate:

— Ground alignment and ground bounce removal

Knowledge of ground height and sensor height (ground
tracking) 1s needed for remediation

Ground tracking is difficult because of:

— Sensor positional uncertainty

— Ground height uncertainty

SSPACISS 2]



The Approach
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The Approach
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Identity the largest local maxima
in each A-scan of 3-dimensional

FDTD data

Choose the local maxima which
maximizes an optimization
criterion — this requires a model
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A Model for the Ground
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Ground Model

* Need a tractable method for estimating how

“oround-like” a choice of local maxima are

* Gaussian Markov Random Fields (GMRFs) can
be used as texture models (Chellapa, 1985), (Li, 2001)

* The G

* The G

I 1s computationally tractable since it

depends only on a neighborhood system

RF has tunable parameters that can be

trained, and can create a wide variety of textures

[1] Torrione, Dissertation, 2008
[2] Torrione and Collins, SPIE, 2008
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GMRF

* Conditional probability distribution of a pixel
gtven its neighborhood [1]:

{ 2
p(fz lfN,.): Wexp{_ 2;2 |:fz — K, _Z:B”(fz_:ul):| }

* Global pseudo-likelihood: Py (=TT rl15)
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Markov Random Field
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Determining the Ground Height Using the
Model

* Given the local maxima at each sensor position

— Maximize the Pseudolikelihood (Besag,1975) of the
oground heights from the available choices

* Optimization: use Simulated Annealing, a
stochastic optimization technique

— Criterion: Maximize the Pseudolikelihood of the
GMRF

— The optimizing set of locations is the ground height

estimate
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Preliminary Results of
Ground Height Estimation
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Transmitter/Receiver
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Estimation Results
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Future Work
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Future Work

e Simulate surface clutter FDTD models

e Determine the effect of the variance of surface
height on the estimate of ground height

* Develop a method for incorporating sensor

positional uncertainty
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Thank Youl

Questions?
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