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Alternative Phenomenologies

Many other phenomenologies for landmine
detection have been suggested

— Electromagnetic induction (EMI)

— Infrared techniques [Lopez, 2004]

— Seismic & Acoustic-seismic coupling [Sabatier,

2001. Scott, 2001]
— Ground penetrating radar (GPR)
— Many others [MacDonald, 2003]
Note:
— Due to differences in:
e Landmine types
e Percent clearance requirements
* Other operational requirements
— No “silver bullet” landmine detection
phenomenology

Sensor fusion is an active area of research

[Collins, 2002. Ho, 2004.]

Image by David Monniaux available under
Creative Commons License
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Motivation & Goal

* Significant diverse research on landmine detection in time-domain GPR data

Ground tracking and removal [Gu, 2002. Abrahams, 2001. Larsson, 2004.
Guangyou, 2001]

Pre-screening [Carevic, 1999. Zoubir, 2002. Kempen, 2001. Karlsen 2001]

Feature extraction [Kleinman, 1993. Carevic,1997. Frigu1, 2004. Gader, 2004. Ho,
2004

Image segmentation [Verdenskaya, 2006. Bhuiyan, 2006. Shihab, 2003]
Etc...

* Many proposed techniques are implicitly based on different underlying models
of received time-domain data

Makes direct motivation and comparison of algorithms difficult without expert
modifications

* Propose an undetlying statistical model for GPR responses that incorporates
spatial variations in response heights and response gains
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Can formalize development of pre-screener algorithms based on underlying models
* Under what conditions will adaptive algorithms perform well?
* Are other algorithms also applicable?
Can provide forward generative model of large data sets
* Given parameters, can simulate roads
* Can not model responses from mines, etc.
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Outline

* Consider various modeling techniques for GPR data
— Computational concerns — FDTD, transmission lines
— Applicability under fielded (unknown soil property) scenarios

* Incorporating statistical parameterization ot transmission line
models
— Markov Random Fields (MRF)
* Gaussian Markov random fields (GMRF)
— Application of MRFs to parameters of interest in transmission-line model

* Implications of proposed statistical model for pre-screener
development

— Adaptive maximum likelthood solution for GMRF parameters in GPR
data time-slices

— Adaptive discriminative algorithms for dual GMRF under both
hypotheses

Results & Conclusions / Future work
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Modeling of GPR Returns

Finite difference time-
domain (FDTD) models
provide state of the art
modeling of GPR responses

— Highly generalizable

— Computationally expensive
Require:

— Accurate knowledge of soil and

anomaly properties

— Locations of discontinuities
— FEtc

Inversion / fielded
application of FDTD models
is difficult
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Basic Transmission l.ine Model

* Significant simplification of
N\ GPR responses

— Treats dielectric
discontinuities in soils as

impedance mismatches on a
transmission line

depth

™ ' ed pulses
A
: — Response

nds on: time

of arrival, gain on recetved
pulses
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Restrictions of Transmission Line-Based
Modeling

Tirne
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Transmission line models
assume:

— Planar waves

— DPlanar interfaces

— Homogeneous transmission
media

— FEtc.

Obviously these assumptions
are violated in fielded
scenarios

Question:

— Can a statistical model over
Dparameters (time of arrival, gain)
mitigate these violated assumptions?




GMRF Modeling of TOA and Gain

Sample Asphalt Road Data

* For simplicity; focus on =
modeling of air/ground P
interface o =i
— Other subtleties for sub-
surface layers

L L L L L L L L L al
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DT Paosition

* Hstimating TOA 1is
straightforward; model as

Oﬁmtenna _{ F
GMRF o
: : - —
* Model recetved gain as : -
combination of deterministic :
: \J
& stochastic part ™ i
4
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Modeling of Received Gain

* Model recetved gain as
combination of deterministic

Sample GPR Mag Data g =g, +g_,

part (spreading loss) E
1 ]

gr =A+ B—

to

* Stochastic part (soil
roughness, dielectric
properties, etc) o= 95,

Channel

9 =9gr + Gmrf

Channel

Down-Track

* Image on right shows
original measured gain,
deterministic gain, MRF gain
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Proposed Statistical Model

Sample Asphalt Road Data
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Combination of simple A-scan
transmission line modeling &
spatial statistical modeling of
underlying gain & time of arrival

(TOA)
By applying spatial statistical
models over A-scan parameters =P

computationally tractable 3-D
volume model for GPR data
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Sample Generative Model Application

Real A-scans (UK Test Site) (Channel 12)

* Images on right show original data (top
images), synthetic data (bottom images)

— Top figure shows ~500 scans

— Bottom figure shows 50 scans

* Synthetic data only models initial
ground bounce response
— Both height and gain terms are

modeled stochastically using Markov
random fields

— MREF parameters trained using data
from UK testing site

* Generative model may be useful in its
own right for simulating responses
over soils with varying parameters,
simulating large data sets, etc.

— Modeling sub-surface structure is a
little more complicated; requires
parameter estimation techniques,
statistics for appearance /
disappearance of sub-surface responses
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Synthetic Ground-Bounce A-scans (Channel 12)
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Implications ot Transmission Line MRF
Modeling of Soils For Pre-Screening

e (Consider distribution of data

R 1) in a time-slice
(-1} i) {ij+1)
(i+1,j+1) (i#1) (i1} A’i,j (tm) — gi,jf(tm - tOi,j)
= P(Asj(tm)) = P9 f (b — to, ;)

p(Ai,j (tm>) — p(.gtoz-,j f(tm - tOi,j))
+p<gm7“fi,j f<tm — tOi,j))

e =» Data in time slice also
MREF, although not closed
form;

— Assume GMRF
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Target Detection Using GMRF For

Data Under H,

e Desire LRT:

~ p(x|Hy)p(H,)
M) = el Ho )p(Ho)

* Assume data under H, 1s ~ improper uniform,;
data under H, 1s ~ GMRF

1 @)= eny, B z(n)?

p(z(n)|xn,) = WG 2052
* Need parameters for GMRF!

* Consistent parameter estimation equations

[Kashyap, 1983]
Be = acaX(N(s))x" (N())] 7" Xocq x(N(s))a(s)




MPLE MRF Modeling =2 Weinet
Hopft?

Ty )? e Kashyap et al. result

exp 202

(x—w

1
2o

p(x|w) = [, p(zs|w, xn,)

p(CE‘W, XN) — . .
is very similar to

Weiner-Hopft

maXy E:c,xN (log(p(:l:|W, XN)) equati()ﬂs
maxy Ep xy 108 72— — 5oz (z — wixy)? e Turns out, can
maxy log o= — 532 E(z?) - w'Rw — 2w'p directly motivate
Weiner-Hopt from
4 —0=2Rw — 2p maximum pseudo-
> w_R, likelihood form of
distributions
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Motivating Adaptive Pre-Screening

Last slides illustrated how

pseudo-likelihood GMRF — = —2z(n)d(n) + 2xNXk On
leads to Weiner-Hopf
Similar arguments (removing Brt1 = Bn + pxn(z(n) — x5 5,)
expected values) show that

ML estimates of non-

« 107 *MSE vs. Iteration for LMS Conver gence to MRF Minimum MSE
11 T T T T T

Stationary GMRF — Average Mean-Squared Error (1)

10 — Average Mean-Squared Error (2)

—pige Watiance

parameters yleld LMS
update equations

This provides a model-based Al
motivation of the application of
AR based signal processing to

pre-screening in GPR data O N I

Pixel Index
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Discriminative Learning in GMRFE
Models

* Previously H, ~ improper uniform
* Alternatively, Consider if data o Likelinond GLRT
under H, is also ~ GMRF

* Can directly solve for discriminative

parameters T s 0 05 1 15 2
Discriminative GLRT

x;,Y; |0
p(yi|wi, 0) = zi<p(ng,«|:k)|9>

* Turns out, for many models the 1 . : o : - :
form of the discriminative logistic Optimal GLRT
function is /Znear in the weights

p(H,|X) = o(wlx)

-1 05 1] 045 1 1.5 2

*  GMRF Models do not lead to
linear logistic discriminative models
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Solving For Adaptive Discriminative

GMRF/GMRF Update Equations

(Q?XN’I', —wi)2

1 o o2
p<x’i|XNi7917H1) — N exp 271
T 2 T 2
__ p(H1) oo (01 xn; —Ti) (6 XN, —4)
Agmrf = lOg p(Hop) + log o1 202 + 202
dagm,,.f _ (Q{XNZ —wi)XNi
&, o2

* Turns out
— Given: ©,,0,,0,,0,
— Given: x, y;

(01 =g+ — BN XN (g o (a)) # g

02 = fo + XN ZZIXN: (4, — 5 (a)) % py

New GMRF <X e s
update equations o1 =01+ (5 + or &% <) (ys — o(a))) * p

o2 = 02 + (& — LN —T)” (y, — 5(a)
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Advantages of Discriminative
Classification

* Modeling data under H, as
GMREF has several implicit

advantages

— Provides natural estimation of
discriminative Akaike
Information Criteria

— Probabilistic outputs from each
time-slice allow principled
depth-bin fusion

* Inclusion of prior information
regarding target depths

* (Can be computationally
complex, however
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Pre-Screener ROC Curves

Adaptive AR and Discriminative Processing; Lane A
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Results show sample ROC
curves for energy (red-dotted),
LMS (blue), discriminative
(green-dashed)

— Note, no pre-processing/post-
processing of outputs.

— ROCs not indicative of system
performance, provide algorithm
comparison only

Discriminative algorithm
provides slight performance
improvements

— Underlying H, model (GMRF)
may be overly simplistic




Other MRF Applications (Image Segmentation)

Metal Mine 1" Plastic Mine @&"

* Image segmentation for

target localization

— Improve extracted feature
SNR, computational
complexity

¢ Shown to improve
performance for target

identification against AP, sl
AT, IED responses )
B || —pe-scresnet
02 ; """"" : N 30 Texture Features (Without bounding box) I
01 B ......... """"""" 3D Texture Features (With bounding box)
DU 2DiU 4UID ESU BUiU 1DiUD 12iDU 14IUU 15iUU 18iUU 2000

Ifa
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GMRF-HMM For Landmine Detection

sample GMRF-HMM Output Far kK=14 T=35 M=4

e Similar to [Gader, 2001]
consider locally stationary
distributions of target
responses

(GMRF FPararmeter k)

Down-Track Scan (HMW Parameter t)

* Idea: Directly model received data

State Mumber ve. Down Track Position as GMRF
4 T \Qf} P
. — No need for ad-hoc feature
s 797999 i extraction
2 \ . .
2 7 1 — Requires neighborhood system
ol N
m .
] TTTT TTTT — Can we simultaneously learn
. 5w 5B B W parameters of GMRF
Dawn-Track Scan (HMM Parameter t) (features) and UﬂdCﬂYiﬁg
A, A, states?

@’ @’ Ps, (Tn|T) = ps,, (Tn|zN,) =

psn (xn‘an) — GMRF(63n7 O-Sn)
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Conclusions & Future Work

Developing a generative model for GPR responses
based on spatial stochastic parameterization of the
transmission line model

— Enables generation of data from sample data; eliminates need
to estimate soil electromagnetic properties directly

Proposed model

— Provides direct motivation for application of AR approaches
to pre—screening

— Motivates application of discriminative approaches to pre-
screening when distribution under H, is known

* Current GMRF distribution appears to be overly simplistic
Future work:

— Incorporate model implications to:
* Ground tracking, image segmentation, feature extraction
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Adaptive Training Issues

* Haven’t incorporated the p(H1), p(HO) terms in
adaptive updates; these will need to be set

— Should not be learned adaptively?

* Issues in adaptively training discriminative models
when we may only see data from HO — the parameters
under H1 will be driven to unrealistic values since
model will do “well” when everything is considered HO

— Solution: Consider library of mine signatures; stochastically

select from these and for every HO sample, train the model
also with a random set of mine data
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Image Depth-Bin Fused Decision
Statistics

* Top image: Energy

e Middle image: LMS Outputs

* Bottom image: p(H1|D,M)
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Global Model

p(Y|X, M) = [T,_y p(H1|M, X,,)¥ (1 — p(H1|M, X,,))* 4"

10g(p(Y|X, M)) — 27];[:1 Yn 10g<p<H1|Ma Xn))_|_<1_yn) 1Og(1_p(H1|Ma Xn))
p(H1|X) = o(a)

* Differentiating:




