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A Definition and Objective

• Biosurveillance(HSPD-21): the process of active data-gathering

with appropriate analysis and interpretation of biosphere data

that might relate to disease activity and threats to human or

animal health – whether infectious, toxic, metabolic or other-

wise and regardless of intentional or natural origin – in order to

achieve early warning of health threats, early detection of health

events and overall situational awareness of disease activity.

•Objective: To describe how extreme value theory might be

used in a biosurveillance problem.
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The Problem

• Soon after exposure to a variety of different pathogens, victims
will present symptoms of influenza-like illness(IFI) .

• Such exposures would very likely be “hidden” if they occurred
during the “flu season”.

• A clue to the possibility of such exposures might be a sudden
increase in the incidence of influenza.

• How can we assess the extremeness of the number of influenza
cases in a population?

This could be our earliest indication that something out-
of-the-ordinary is happening.
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Outline

Consider EV theory from the perspective of what is needed for

statistical modeling as an aid in decision-making when extreme

natural or man-made catastrophic events occur

• Block maxima models

• Threshold excess models

• Time/spatial-location (nonstochastic) dependence

• Stochastic dependence

• SUMMARY
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A First Fundamental Result: Extremal Types

Theorem 1:Let {Xi}∞i=1 be a sequence of IID r.v.’s and let Mn =

max{X1, X2, . . . , Xn}. If there exist sequences of constants {αn >

0} and {βn} such that

Pr
[
Mn − βn

αn
≤ z

]
→ G(z) as n →∞

where G(·) is a nondegenerate DF, then G is a member of the

generalized extreme value (GEV) family of DF’s:

G(z) = exp



−

[
1 + ξ

(
z − µ

σ

)]−1
ξ





where σ > 0 and −∞ < µ < ∞; and the support is {z : 1 + ξ(z −
µ)/σ > 0}.
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Block Maxima Models

(creating a straw man)

• Suppose we have several years (say, m) of weekly observations

and that for a crude and very quick analysis pertinent to the cur-

rent year we are willing to regard each previous year as providing

52 independent observations from a common distribution.

• Let Xj denote the maximum number of cases in each year (a

year providing a block of observations) for j = 1,2, . . . , m.
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Block Maxima Models

(creating a straw man) continued

We might then consider maximum likelihood estimation of µ, σ

and ξ in G(·) of Theorem 1 – that is, we would find values for

these parameters which maximize the log-likelihood

l(µ, σ, ξ) = −mlnσ−
(
1 +

1

ξ

) m∑

j=1

ln
[
1 + ξ

(
z − µ

σ

)]
−

m∑

j=1

[
1 + ξ

(
z − µ

σ

)]−1
ξ
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Some Problems/Issues

• Systematic components of seasonality and trends

• Dependence among the observed numbers of cases in adjacent

weeks

• Changes in the population base: numbers of people; mix by

age, race and sex

• Spatial distribution and clustering of a population at risk

etc.
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Some Problems/Issues continued

From Coles (2001)

• ”... modeling only block maxima is a wasteful approach to

extreme value analysis if other data on extremes [for example,

the five largest values] are available”

• ” If an entire time series of ... observations is available, then

better use is made of data by avoiding altogether the procedure

of blocking.”
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A Second Fundamental Result:

Excess Above A Threshold, u

Theorem 2: As before, let {Xi}∞i=1 be a sequence of IID r.v.’s and let Mn =
max{X1, X2, . . . , Xn}. Suppose that the conditions of Theorem 1 are again
satisfied so that for the DF common to all the r.v.’s of the sequence there
exist sequences of constants αn > 0 and βn such that

Pr

[
Mn − βn

αn
≤ z

]
→ G(z) (nondegenerate)

as n →∞ and

G(z) = exp

{
−

[
1 + ξ

(
z − µ

σ

)]−1

ξ

}

for some µ, σ and ξ. Then, for large enough u (a real number), the DF of
(X−u) conditional on X > u is given approximately by the generalized Pareto
distribution function – that is,

H(y) = Pr[(X − u) ≤ y] = 1− (1 +
ξy

σ̃
)−

1

ξ ,

for y in {y : y > 0 and (1 + ξy/σ̃) > 0}, where σ̃ = σ + ξ(u− µ).
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Important Value Added by Threshold Excess Models

• It is reasonable to expect that some level of incidence in IFI-

symptoms is normal and nothing to be concerned about but,

beyond a certain threshold, there is, indeed, reason for alarm!

• EV theory supplies the statistical models and the diagnostic

procedures for determining what a useful threshold might be:

Q-Q plots, Gumbel plots, mean-excess plots and Z- and W-

statistics.

• EV theory provides estimates of the probabilities of various exceedances δ
of the threshold u

ζu

[
1 +

ξδ

σ̃

]−1

ξ

,

where ζu = Pr[X > u]. If ξ = 0, the second factor is replaced by its limit as
ξ → 0, exp(− δ

σ̃
).
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Systematic Nonrandom Variation

• For the GEV distribution

GZ(z) = exp



−

[
1 + ξ

(
z − µ

σ

)]−1
ξ



 ,

one finds that E[Z] = µ− σ
ξ (1+Γ(1− ξ)), Γ(·) being the gamma

function, and V ar[Z] = (σ
ξ )

2{Γ(1− 2ξ)− Γ2(1− ξ)}.

• It may be difficult to model the shape parameter, ξ, as a

function of time. However, to account for the systematic com-

ponents of trend and seasonal variation, it is not unreasonable

to consider µ and, possibly, σ2 as functions of time, t.
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Systematic Nonrandom Variation continued

For subsequent analyses, it is then useful to note that the stan-

dardized form of Z, defined by

Z∗ =
1

ξ
ln

[
1 + ξ

(
Z − µ

σ

)]
,

has a Gumbel distribution G(z) = exp{−e−z} so that assuming

accurate modeling of µ(t) and σ2(t) (t ≡ j for j = 1,2, . . .) the

Z∗j =
1

ξ
ln

[
1 + ξ

(
Zj − µ̂(j)

σ̂(j)

)]

are approximately Gumbel. Here the “hatted” variables are m.l.e.

or other consistent estimators.
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Stochastic Dependence

• Use is made of a property frequently assumed in the analysis

of some wide-sense stationary time series: the “strength” of

the dependence weakens somewhat monotonically with the time-

separation of r.v.’s

• One example is that of the D(un) condition: if for all i1 < i2 <

. . . < ip < j1 < j2 < . . . < jq with j1 − ip > `
∣∣∣Pr

{
Xi1 ≤ un, . . . , Xip ≤ un, Xj1 ≤ un, . . . , Xjq ≤ un

}

−Pr
{
Xi1 ≤ un, . . . , Xip ≤ un

}

· Pr
{
Xj1 ≤ un, . . . , Xjq ≤ un

}∣∣∣ ≤ α(n, `)

where α(n, `n) → 0 for some sequence `n such that `n/n → 0 as

n →∞. Examples: Gaussian m-dependent series, ARMA series.
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Stochastic Dependence continued

Theorem 3: Let X1, X2, . . . be a stationary process and define

Mn as before. Then, if {αn > 0} and βn are sequences of real

numbers such that

Pr{(Mn − βn)/αn} → G(z),

a nondegenerate DF, and the sequence satisfies the D(un) con-

dition, un = αnz+βn for all z, then G belongs to the GEV family.
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Poisson Models

• Since Poisson models are generalized linear models, for an ob-
served process Yj, we have two basic possibilities for the inverse-
link relationship when considering stochastic time-dependence.
This can be exemplified by

g(µj) =
⇀
Xj

′⇀
β + dj

where, at time j, µj is the mean,
⇀
Xj is a vector of covariates,

⇀
β is a

vector of regression coefficients, and dj is either a latent process
or an explicit function of the past observables: Yj−1, Yj−2, . . . , Y1.

• In the first specification of dj, the process is called parameter-
driven; in the second, observation-driven because the conditional
expectation of the outcome given the past values of outcomes
depends explicitly on those values.
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Poisson Models continued

• The most useful class of models would provide for both positive

and negative serial dependence, which is the case for parameter-

driven models. However, methods for estimating the parameters

of those models are computationally intensive.

• Observation-driven models are easier to deal with. But, for

some of the observation-driven models, the requirement of sta-

tionarity imposes constraints on the values of model coefficients

which exclude the possibility of positive dependence.
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SUMMARY

Primary interests:

• Models of threshold excess

• Methods for dependent sequences that exploit stationarity and
“weak” dependence

• Account for systematic variation with time

• Concentrate on methods for observation-driven series

• Account for differences in populations due to spatial distribu-
tion, indicators of health status and access to medical services

• Multivariate models to account for possible interactions due to
simultaneously occurring events at several locations
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