Sparse NMF via Alternating Non-negativity Constrained Least Squares

Hyunsoo Kim and Haesun Park

\{hskim,hpark\}@cc.gatech.edu

College of Computing
Georgia Institute of Technology
Atlanta, GA 30332, USA

Nonnegative Matrix Factorization Workshop, NISS

Feb. 24, 2007

Outline

■ NMF as a Dimension Reduction/Clustering method

■ NMF Algorithm via Alternating Least Squares and Convergence
\square Algorithms for Non-negativity Constraint Least Squares (NLS) Single right hand side vs. Multiple right hand sides

- Other algorithms

■ Sparse NMF via Alternating Least Squares and Convergence

■ Applications: Microarray Analaysis ...

Dimension Reduction

■ Unsupervised Dimension Reduction
■ SVD (LSI, PCA)

- Nonnegative Matrix Factorization (NMF)
\square One-sided Nonnegative Matrix Factorization
- Dimension Reduction for Clustered Data

Linear Discriminant Analysis (LDA/GSVD)
■ Orthogonal Centroid Method (OCM)

- Centroid-based Method
- Nonnegativity constraint Centroid-based Method
- NMF/initialization with centroid method

Nonnegativity Constraints?

Better Approximation vs. Better Representation/Interpretation Given $A: m \times n$ and $k<\min (m, n)$

■ SVD: Best Approximation
Find ($W: m \times k$) and ($H: k \times n$) s.t. $A \approx W H$
$\rightarrow \min \|A-W H\|_{2, F}, A=U \Sigma V^{T}, A \approx U_{k} \Sigma_{k} V_{k}^{T}$
■ NMF: Better Representation/Interpretation?
Find $(W: m \times k) \geq 0$ and $(H: k \times n) \geq 0$ s.t. $A \approx W H$
$\rightarrow \min \|A-W H\|_{F}$ where $W \geq 0$ and $H \geq 0$
■ Non-negative constraints are physically meaningful.
\square Pixels in digital image \rightarrow Biomedical image processing
\square Molecule concentration in bioinformatics (e.g. mRNA, protein, miRNA, etc.) \rightarrow Microarray data analysis
\square Signal intensities in mass spectrometry \rightarrow Computational Proteomics

- Interpretation of analysis results: non-subtractive combinations of non-negative vectors.

A Test on an Artificial Data

(a) Artificial dataset A

(b) Actual W

(c) W from NMF/ANLS

(d) W from SVD

NMF/ANLS on the artificial dataset $A=W H$.
Zeros: white, Positive values: darker
But in (d), Negative values: black, Zero: gray, Positive values white

Non-negative Matrix Factorization (NMF)

■ Given a non-negative matrix $A: m \times n$ and a desired rank k, NMF solves:

$$
\min _{W, H}\|A-W H\|_{F}, \text { s.t. } W \geq 0 \text { and } H \geq 0
$$

$\square W \in \mathbb{R}^{m \times k}$: basis matrix, related to dimension reducing transformation $A \approx W H \rightarrow f(W) A \approx H$ in SVD, $A \approx U_{k} \Sigma_{k} V_{k}^{T} \rightarrow U_{k}^{T} A \approx \Sigma_{k} V_{k}$
Sparse \rightarrow Parts-based Basis Vectors?
$\square H \in \mathbb{R}^{k \times n}$: encoding matrix, non-negative lower dimensional representation

- Sparseness, dimension reduction: computational efficiency (storage, speed)

■ W and H not unique

NMF Algorithms (1)

■ Multiplicative update rules
\square Lee and Seung, Nature $1999 \rightarrow$ Brunet, et. al., PNAS 2004 (showed that NMF performs better than HC and SOM)
■ nsNMF, Pascual-Montano et al., IEEE TPAMI 2006
\square Alternating Least Squares (ALS)
■ Berry et al., Computational Statistics and Data Analysis, 2006
\square MUR+LS, Pauca et al., SDM $2004 \rightarrow$ Gao and Church, Bioinformatics 2005

■ Gradient Descent

- Hoyer, JMLR 2004
- Projected gradient ANLS, C. Lin, tech report, 2005

NMF Algorithms (2)

■ Alternating Non-negativity Constrained Least Squares (ANLS)

- Paatero and Tapper, 1994
- NMF/ANLS, Kim and Park, ISBRA 2007, to appear
\square SNMF/ANLS, Kim and Park, Bioinformatics 2007, to appear
■ One-sided NMF, Park and Kim, SDM06, Textmining Workshop
■ Others
■ Quasi-Newton optimization, Zdunek and Cichocki, ICAISC, 2006
- Low Dimensional polytope approximation, M. Chu, draft Jan. 2007
- Improved projected gradient ANLS (Newton+line search), S. Ingram
- Newton-type ANLS, D. Kim, et al., SDM 2007, to appear

NMF/Alternating Least Squares (NMF/ANLS)

(Paatero and Tapper, Environmetrics, 1994)

1. Initialize $W \in \mathbb{R}^{m \times k}$ (or $H \in \mathbb{R}^{k \times n}$) with non-negative values, and scale the columns of W to unit L_{2}-norm.
2. Iterate the following ANLS until convergence:
fixing W, solve $\min _{H \geq 0}\|W H-A\|_{F}$
fixing H, solve $\min _{W \geq 0}\left\|H^{T} W^{T}-A^{T}\right\|_{F}$
3. The columns of W are normalized to unit L_{2}-norm at each iteration.

■ Each NLS can be solved by MATLAB’s LSQNONNEG (but DO NOT!)

- Lawson and Hanson 74, Active set method, for Single Right Hand Side, $\min _{h \geq 0}\|W h-a\|_{2}$
■ Faster algorithms exist for Multiple Right Hand Side problems:
Bro and de Jong 97 (J. of Chemo.), for multi right hand sides Van Benthem and Keenan 04 (J. of Chemo.), further improvements

NMF/Multiplicative Update Rules (NMF/NUR)

(Lee and Seung, Nature, 1999)

$\square \min _{W, H}\left(f(W, H)=\frac{1}{2}\|A-W H\|_{F}^{2}\right), W, H \geq 0$
$\nabla_{W} f(W, H)=(W H-A) H^{T}, \quad \nabla_{H} f(W, H)=W^{T}(W H-A)$
\square KKT Conditions:
$W \geq 0, H \geq 0, \nabla_{W} f(W, H) \geq 0, \nabla_{H} f(W, H) \geq 0$
$W_{i l} \cdot \nabla_{W} f(W, H)_{i l}=0, H_{q j} \cdot \nabla_{H} f(W, H)_{q j}=0$
■ Alternating multiplicative update rules:
$H_{q j} \leftarrow H_{q j} \frac{\left(W^{T} A\right)_{q j}}{\left(W^{T} W H\right)_{q j}+\epsilon}, \quad 1 \leq q \leq k, \quad 1 \leq j \leq n$,
$W_{i q} \leftarrow W_{i q} \frac{\left(A H^{T}\right)_{i q}}{\left(W H H^{T}\right)_{i q}+\epsilon}, \quad 1 \leq i \leq m, \quad 1 \leq q \leq k, 0<\epsilon \ll 1$
\square If $W_{i q}^{(k+1)}=W_{i q}^{(k)}>0$ and $\left(W^{(k)} H^{(k)} H^{(k)^{T}}\right)_{i q} \neq 0$,
then $\left(\nabla_{W} f\left(W^{(k)}, H^{(k)}\right)_{i q}=0\right.$
$\|A-W H\|_{F}$ is monotonically non-increasing

Convergence of NMF/ANLS

\square Block Coordinate Descent method in Bound-constrained Optimization
$\square^{\min _{W, H}}\|A-W H\|_{F}^{2}$, s.t. $W, H \geq 0$
■ Given $A \in \mathbb{R}^{m \times n}$, NMF/ANLS iteratively solves

$$
\min \left(f(W, H)=\|W H-A\|_{F}^{2}\right)
$$

fixing W with constraint $H \geq 0$ and fixing H with constraint $W \geq 0$.
■ For $\mathrm{k}=1,2, \ldots$

$$
\begin{aligned}
& W^{(k+1)} \in \arg \min _{W} f\left(W, H^{(k)}\right) \\
& H^{(k+1)} \in \arg \min _{H} f\left(W^{(k+1)}, H\right)
\end{aligned}
$$

■ No matter how many blocks, if the sub problems have unique solutions, then the limit point of the sequence is a stationary point (Powell 73, Bertsekas 99)

- For two block problems, any limit point of the sequence is a stationary point (Grippo and Siandrone, 00)

NLS with Multiple Right Hand Side Vectors

\square Assume $W: m \times k$ and $A: m \times n$ with $m>k$ are Given.
\square LS-S: $\min _{h}\|W h-a\|_{F}$
\square LS-M: $\min _{H}\|W H-A\|_{F}$
Extremely inefficient if LS-S is solved n times independently W needs to be processed only once (e.g. compute SVD of W only once)
\square NLS-S: $\min _{h \geq 0}\|W h-a\|_{F}$ (Lawson and Hanson 74)
Active set method: initially $h=0, S_{a}=\{1, \cdots, k\}, S_{p}=$ null
Each step solves min $\left\|W^{(p)} h^{(p)}-a\right\|_{2}$
\square NLS-M: $\min _{H \geq 0}\|W H-A\|_{F}$
■ Apply NLS-S n times? Inefficient!

- Bro and de Jong 97:

Compute $W^{T} W$ and $W^{T} A$ only once in $W^{T} W H=W^{T} A$

- Van Benthem and Keenan 04:

Initialization of active set based on LS-M
Rearrange computation to be column parallel, e.g., $k=3, n=4$

$$
\begin{aligned}
& S_{P 1}=\{\{3\},\{3\},\{3\},\{1\}\} \\
& S_{P 2}=\{\{2,3\},\{1,3\},\{2,3\},\{1,3\}\} \\
& S_{P 3}=\{\{2,3\},\{1,3\},\{1,2,3\},\{1,2,3\}\}
\end{aligned}
$$

Constrained NMF (CNMF) for Sparse NMF

(Pauca et al., LAA, 2006, Pauca et al., SDM, 2004; Gao and Church, Bioinformatics, 2005)
$\square \min _{W, H}\left\{\|A-W H\|_{F}^{2}+\alpha\|W\|_{F}^{2}+\beta\|H\|_{F}^{2}\right\}$, s.t. $W, H \geq 0$
\square Multiplicative updating rules:

$$
\begin{array}{lll}
H_{q j} \leftarrow H_{q j} \frac{\left(W^{T} A\right)_{q j}-\beta H_{q j}}{\left(W^{T} W H\right)_{q j}+\epsilon}, & 1 \leq q \leq k, & 1 \leq j \leq n \\
W_{i q} \leftarrow W_{i q} \frac{\left(A H^{T}\right)_{i q}-\alpha W_{i q}}{\left(W H H^{T}\right)_{i q}+\epsilon}, & 1 \leq i \leq m, & 1 \leq q \leq k
\end{array}
$$

$\alpha \geq 0$ and $\beta \geq 0$ balance between approximation and sparseness
\square Set negative values to zero for imposing non-negativity \rightarrow not LS sol.
$\square L_{1}$-norm based formulations recommended to control sparsity (Tibshirani, J. Roy. Statist. Soc. B, 1996)

Sparse NMF using L_{1}-norm (SNMF/R)

(Kim and Park 2007, Bioinformatics)

■ SNMF/L (sparse W) and SNMF/R (sparse H)
■ $\min _{W, H}\left(\|A-W H\|_{F}^{2}+\eta\|W\|_{F}^{2}+\beta \sum_{j=1}^{n}\|H(:, j)\|_{1}^{2}\right), W, H \geq 0$ $\min _{W, H}\left(\|A-W H\|_{F}^{2}+\eta\|W\|_{F}^{2}+\beta \sum_{j=1}^{n}\left(\sum_{i=1}^{k} H(i, j)\right)^{2}\right), W, H \geq 0$

- Initialize W with nonnegative values
- Iterate the following ANLS until convergence:
$\min _{H \geq 0}\left\|\binom{W}{\sqrt{\beta} \mathbf{e}_{1 \times k}} H-\binom{A}{\mathbf{0}_{1 \times n}}\right\|_{F}^{2}$
$\min _{W \geq 0}\left\|\binom{H^{T}}{\sqrt{\eta} I_{k}} W^{T}-\binom{A^{T}}{0_{k \times m}}\right\|_{F}^{2}$
■ $\beta>0$ and $\eta>0$ balance between accuracy of approximation and sparseness of H.
■ Two-block coordinate-descent method.
Any limit point is a stationary point.

Performance Comparison on Leukemia Data Set

Leukemia Data:5, 000×38, 3 clusters

Algorithms	NMF/NUR	NMF/ANLS
$\#(W=0)(\%)$	$2.72 \%^{*}$	2.71%
$\#(H=0)(\%)$	$17.28 \%^{*}$	18.42%
Purity	0.974	0.974
Entropy	0.095	0.095
\# of iterations	3806	91.5
Computing time	159.2 sec.	7.1 sec.

$k=3$, average of 30 runs. Purity and entropy computed from H with the lowest approximation error. *The average percentages non-negative elements that are smaller than 10^{-8} in magnitude.

Performance Comparison on CNS Tumor Data Set

Algorithm	NMF/NUR			
k	3	4	5	
$\#(W=0)(\%)$	$8.77 \%^{*}$	$9.07 \%^{*}$	$12.60 \%^{*}$	
$\#(H=0)(\%)$	$16.99 \%^{*}$	$24.14 \%^{*}$	$25.43 \%^{*}$	
$\#$ of iterations	11151	13770	16717	
Computing time	563.5 sec.	836.4 sec.	1334.9 sec.	
Algorithm	NMF/ANLS			
k	3	4	5	
$\#(W=0)(\%)$	8.69%	9.03%	12.54%	
$\#(H=0)(\%)$	18.63%	25.00%	26.88%	
$\#$ of iterations	105.2	100.3	130.5	
Computing time	9.8 sec.	12.1 sec.	20.3 sec.	

Average of 30 runs. Central Nerve System tumors: four distinct morphologies: 10 classic medulloblastomas, 10 malignant gliomas, 10 rhabdoids and 4 normals. (Brunet et al., PNAS, 2004. ${ }^{2}$ Pomeroy et al., Nature, 2002.)

CNS Tumors Clustering by NMF/DUR

Reordered consensus matrices on the CNS dataset and the corresponding dispersion coefficients $\rho=\frac{1}{n^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n} 4\left(C_{i j}-\frac{1}{2}\right)^{2}$

CNS Tumors Clustering by NMF/ANLS

Reordered consensus matrices on the CNS dataset and the corresponding dispersion coefficients.

CNS Tumors Clustering by SNMF/R

Reordered consensus matrices on the CNS dataset and the corresponding dispersion coefficients.

SNMF/R $(k=3)$ on leukemia data: $5,000 \times 38$

Leukemia	NMF/DUR	SNMF/R			
β	-	0.001	0.01	0.1	0.5
$\#(W=0)(\%)$	$0.10 \%^{*}$	2.43%	2.17%	1.57%	1.09%
$\#(H=0)(\%)$	$0.00 \%^{*}$	24.56%	30.70%	44.74%	51.75%
Purity	0.953	0.974	0.974	0.947	0.921
Entropy	0.141	0.095	0.095	0.158	0.210
$\#$ of iterations	502.0	328.0	139.0	77.0	95.0
Computing time	53.6	40.1	17.0	9.4	10.9

*For NMF using divergence-based multiplicative update rules (NMF/DUR) the average percentages the non-negative elements that are smaller than 10^{-8} in magnitude.

SNMF/R $(k=4)$ on CNS tumors data: $5,597 \times 34$

CNS tumors	NMF/DUR	SNMF/R			
β	-	0.01	0.1	1.0	2.0
$\#(W=0)(\%)$	$1.65 \%{ }^{*}$	8.45%	7.45%	5.06%	4.31%
$\#(H=0)(\%)$	$1.47 \%^{*}$	25.74%	28.68%	36.76%	41.91%
Purity	0.941	0.971	0.971	0.971	0.941
Entropy	0.122	0.071	0.071	0.071	0.144
$\#$ of iterations	566.0	319.0	174.0	134.0	103.0
Computing time	63.4	51.6	29.5	20.9	16.0

*For NMF using divergence-based multiplicative update rules (NMF/DUR) the average percentages non-negative elements smaller than 10^{-8} in W and H.

W and H from SNMF/R

Leukemia dataset: $5,000 \times 38$, (38 samples: 19 ALL-B, 8 ALL-T, 11 AML)

Summary

■ NMF as a Dimension Reduction/Clustering method

■ NMF Algorithm via Alternating Least Squares and Convergence
\square Algorithms for Non-negativity Constraint Least Squares (NLS) Single right hand side vs. Multiple right hand sides

- Other algorithms

■ Sparse NMF via Alternating Least Squares and Convergence

- Imposing Constraints only on One Factor: Sparsity, Nonnegativity

■ Applications : Gene clustering ...

Thank you!

