A Dynamic Model of Sponsored Search

Song Yao, Carl Mela Duke University

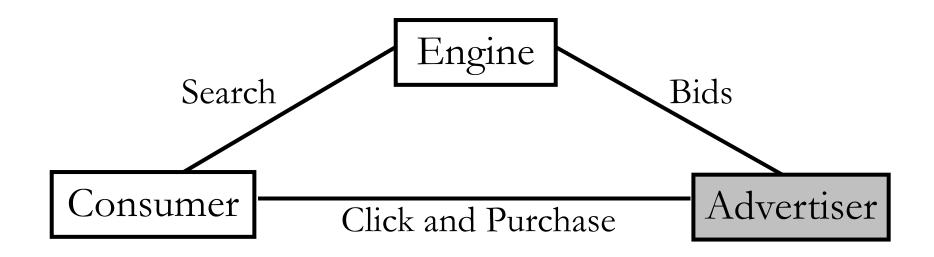
Research Goals

- Framework to assess effect of search engine strategy on its revenues
 - Bids and clicks jointly determine search revenues
 - Using click histories, assess how consumers search
 - Using bid histories, impute advertisers' expected profit for a key word advertisement

Research Implications

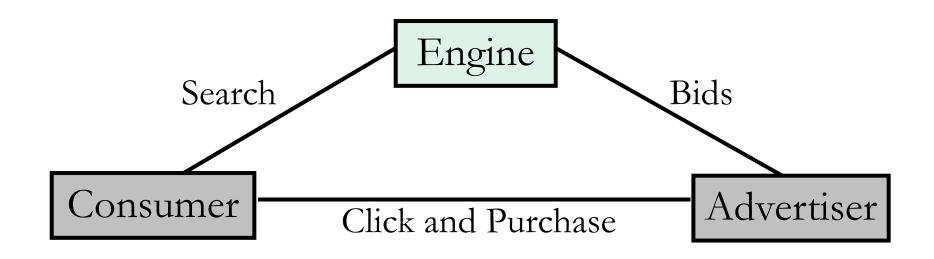
- Marketing to searcher/consumer
 - Webpage design: sort, filter, rank, etc.
- Marketing to advertiser
 - Market intelligence: search engine knows person's ad clicks, advertisers do not
 - o Targeting: bid by key word and segment
 - Auction mechanism: first or second price

Prior Literature



Overview Data Model Estimation Results Summary

This Research



Overview Data Model Estimation Results Summary

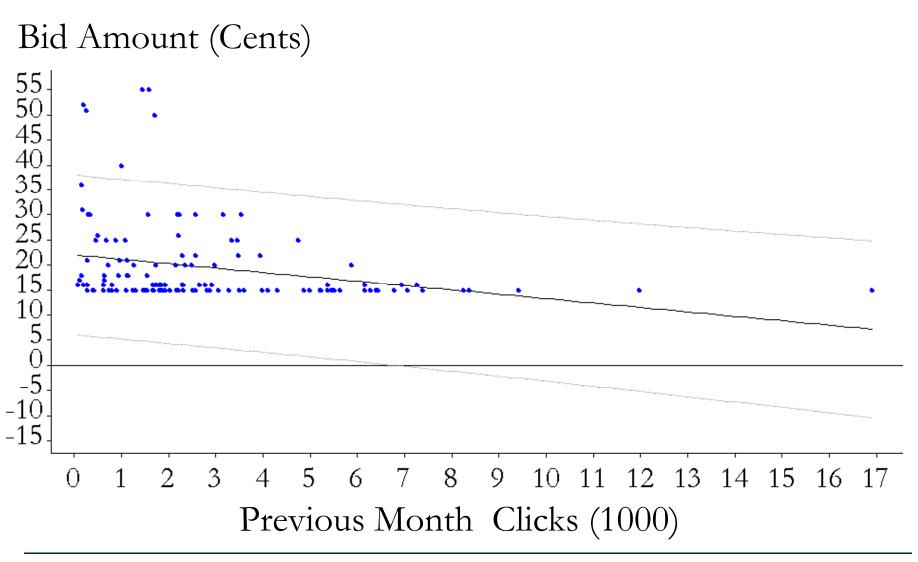
Data

- Advertiser
 - o 32 months for 21 bidders
 - Bid level, time of bid, slot positions, total clicks
 - Product attributes (downloadable software)
- Consumer
 - 4 months
 - Browsing and click history

Bidding Rules

- Monthly auction, simultaneous bids
- Top 5 win sponsored slots in current period
- Winners pay their bids for each click
- Bidders ranked by bid*last period clicks
 - Hence, bidding problem is dynamic

Advertiser Behavior



Advertiser Data

	Mean	Std. Dev.	Minimum	Maximum
Non-zero Bids (¢)	19.55	8.32	15	55
Non-zero Bids/Bidder	21.78	10.46	1	30
All Bids (ϕ)	8.14	11.04	0	55
Bids/Bidder	23.13	9.68	1	32

Overview **Data** Model Estimation Results Summary

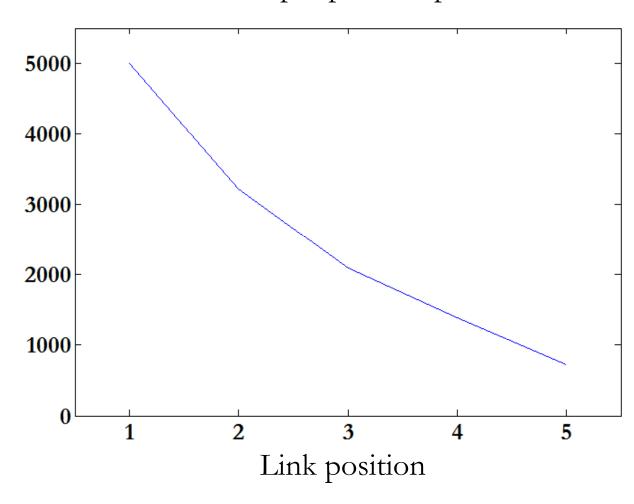
Product Attributes Data

	Mean	Std. Dev.	Minimum	Maximum
All Products				
Non-trial Version Price \$	16.65	20.43	0	150
Expert Rating (if rated)	3.87	0.81	2	5
Average Consumer Rating (if rated)	3.89	1.31	1	5
Months Lapse Since Last Update	15.31	9.88	1	31
Compatibility Index	3.29	1.47	0	5
Bidders' Products				
Non-trial Version Price \$	21.97	15.87	0	39.95
Expert Rating (if rated)	4	0.50	3	5
Average Consumer Rating (if rated)	4.06	0.91	2.5	5
Months Lapse Since Last Update	2.38	0.66	1	3
Compatibility Index	3.51	1.51	0	5

Overview **Data** Model Estimation Results Summary

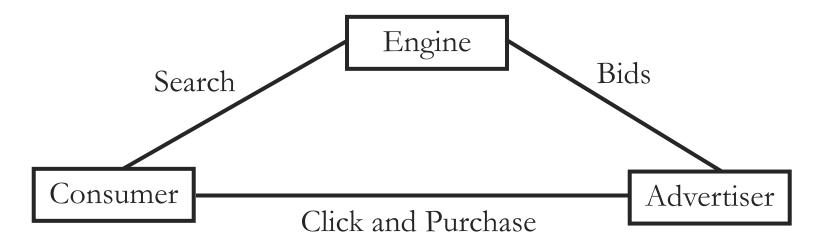
Consumer Click Data

Mean clicks per product per month



Model Overview

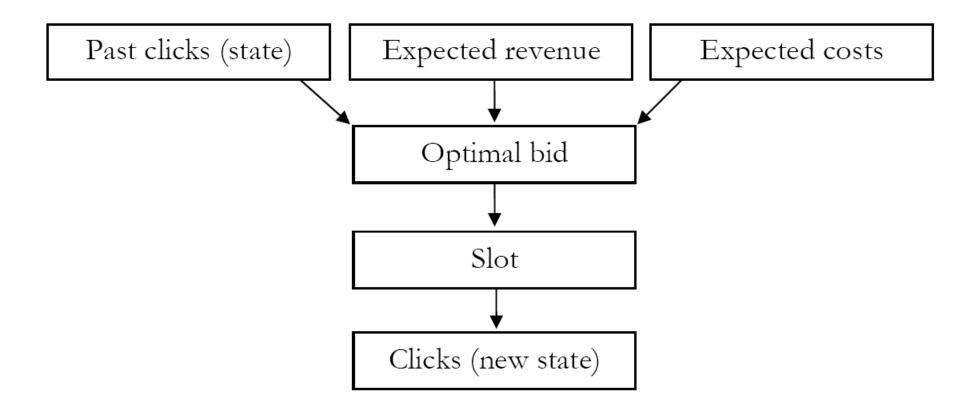
Stage 1: Search Engine



Stage 3: Consumers
Click to max utility

Stage 2: Advertisers
Bid to max
discounted profits

Stage 2: Advertiser Model



Advertiser Revenues and Costs

- Monthly revenues: $v_j^t d_j^t$
 - $v_j^t = X_j^t \theta + f_j + r_j^t$ is click value to infer
 - $\circ d_j^t$ are clicks from consumer model
 - o j is firm, t is month and r are random terms
- Monthly costs if win: $b_j^t d_j^t$
 - \circ b_j^t is the current period's bid (decision variable)
 - No costs per click if lose

Advertiser Period Profits

• Monthly profit = paid prof. + organic prof.

$$\mathbf{E}\pi_{j}\left(\mathbf{b}^{t},\mathbf{s}^{t},\mathbf{X}^{t},r_{j}^{t};\theta,f_{j}\right)$$

$$= \sum_{k=1}^{K} \Pr\left(k|b_j^t, \mathbf{b}_{-j}^t, \mathbf{s}^t, \mathbf{X}^t\right) \cdot (v_j^t - b_j^t) \cdot d(k, X_j^t; \Omega_c)$$

$$+\sum\nolimits_{k=K+1}^{\overline{N}}\Pr\left(k|b_{j}^{t},\mathbf{b}_{-j}^{t},\mathbf{s}^{t},\mathbf{X}^{t}\right)\cdot v_{j}^{t}\cdot d(k,X_{j}^{t};\Omega_{c})$$

probability getting slot k

value per click

clicks (from consumer model)

back

Advertiser Total Profit

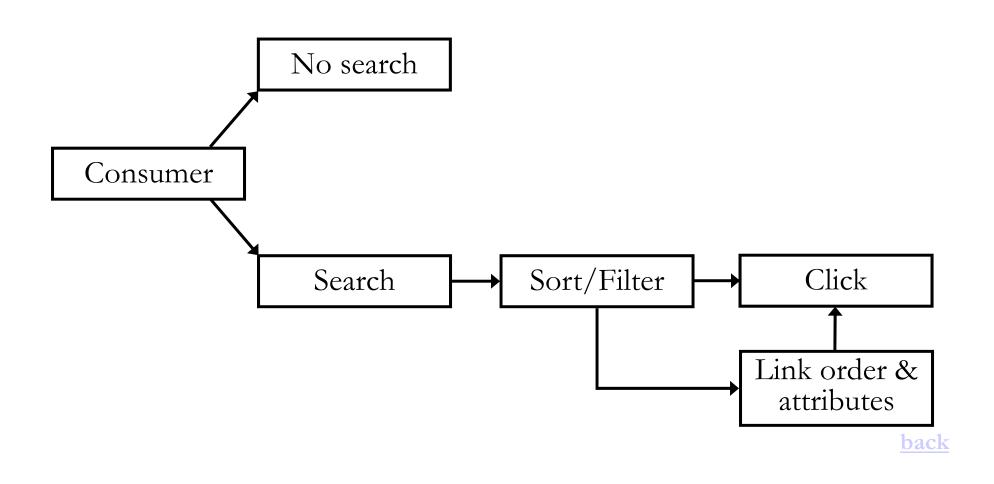
• Total profits are discounted sum of period profits:

value function
$$V(d_{j}^{t}, b_{j}^{t}, v_{j}^{t} | \mathbf{s}^{t}, \mathbf{X}^{t})$$

$$= E[\sum_{\tau=t}^{\infty} \rho^{\tau-t} \pi(d_{j}^{\tau}, b_{j}^{\tau}, v_{j}^{\tau} | \mathbf{s}^{\tau}, \mathbf{X}^{\tau})]$$
discount rate advertiser period profits

• Advertiser chooses bid to max total profit

Stage 3: Consumer Model



Overview Data Model Estimation Results Summary

Click Likelihood

- Click likelihood is product of three decisions
 - p(click | strategy, search)
 - p(strategy | search)
 - p(search)
- Heterogeneity accommodated via a latent class structure

detail back

Stage 1: Search Engine Strategy

- Consumer
 - Webpage design
 detail
- Advertiser
 - Market intelligence detail
 - ° Targeting detail
 - Auction mechanism detail

Estimation

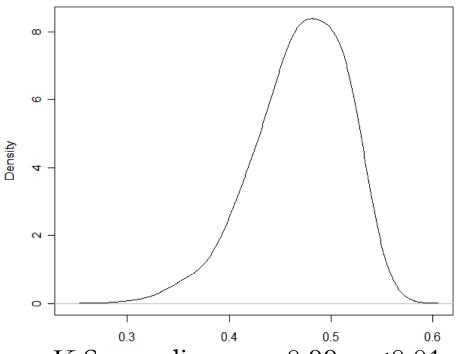
- Two-step estimation (Bajari et. al. 2007):
 - ° Profit function requires $b_j^t(\mathbf{s}^t, \mathbf{X}^t), d_j^t(\mathbf{X}^t), v_j^t(\mathbf{X}^t)$
 - \circ Step 1: $b_j^t(\mathbf{s}^t, \mathbf{X}^t), d_j^t(\mathbf{X}^t)$
 - Advertiser behavior: tobit yields bids $b_j^t(\mathbf{s}^t, \mathbf{X}^t)$ as function of states and attributes
 - Consumer behavior: choice model yields clicks $d_j^t(\mathbf{X}^t)$ as function of attributes
 - Substitute $b_j^t(\mathbf{s}^t, \mathbf{X}^t)$ and $d_j^t(\mathbf{X}^t)$ into profit function and obtain $v_j^t(\mathbf{X}^t)$ in Step 2

Estimation

- Two-step estimation (continued):
 - \circ Step 2: obtain advertiser value parameters, v_j^t
 - compute profit recursion as function of v_j^t
 - choose v_j^t to yield highest V such that no deviation from optimal bids yields higher profit

Bayesian Estimation

Expert Rating Parameter Posterior Advertiser Value Model



First Step: Advertiser Bidding Policy

Median	95% Interval
-0.12^*	(-0.16, -0.09)
0.04*	(0.01, 0.08)
0.04^{*}	(0.01, 0.06)
-0.31^*	(-0.70, -0.02)
0.36*	(0.33, 0.39)
0.47	(-0.26, 1.23)
0.81^{*}	(0.10, 1.50)
-0.91^*	(-1.74, -0.20)
0.03^{*}	(0.02, 0.03)
8.14*	(6.78, 11.37)
_	-1123.59
	0.04^* 0.04^* -0.31^* 0.36^* 0.47 0.81^* -0.91^* 0.03^* 8.14^*

Overview Data Model Estimation Results Summary

Search Advertising

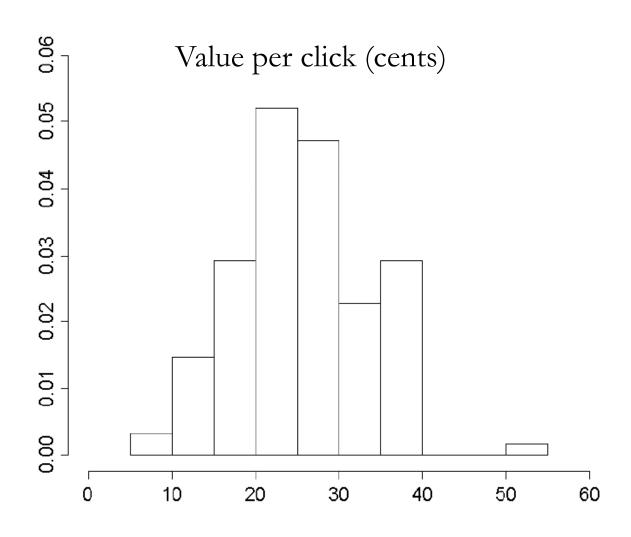
First Step: Consumer Model

	Segment 1 (89.5%) (Infrequent searcher)	Segment 2 (10.5%) (Frequent searcher)
	Median (95%Interval)	Median (95%Interval)
β^g (utility parameters)		
Constant	$\begin{array}{c} -0.09 \\ (-0.11, 0.001) \end{array}$	$\underset{(0.31,0.38)}{0.35}$
Slot Rank	$\substack{-0.08 \\ (-0.06, -0.09)}$	$\substack{-0.51 \\ (-0.52, -0.50)}$
Non-trial Version Price	$\underset{\left(0.03,0.04\right)}{0.03}$	$\substack{-0.04 \\ (-0.04, -0.03)}$
Expert Ratings	$\underset{(0.15,0.17)}{0.16}$	$\underset{\left(0.06,0.07\right)}{0.06}$
Consumer Ratings	$\underset{(0.11,0.12)}{0.11}$	$\underset{(0.03,0.05)}{0.03}$
Compatibility Index	$\substack{-0.08 \\ (-0.09, -0.07)}$	$\underset{(0.16,0.17)}{0.16}$
Total Click Percentage	$\underset{(-0.02,0.05)}{0.01}$	$\underset{(0.08,0.10)}{0.09}$
δ^g (sorting/filtering scaling)	$\frac{1.52}{(1.48, 1.55)}$	$\frac{1.87}{(1.78, 1.99)}$
λ^g (search probability)		
λ_0^g (base)	$\substack{-10.22 \\ (-10.75, -9.60)}$	$\begin{array}{c} -0.78 \\ (-1.21, -0.54) \end{array}$
λ_1^g (1-correlation)	$\underset{(0.01,0.02)}{0.02}$	$\underset{(0.01,0.04)}{0.03}$

Overview Data Model Estimation Results Summary

Search Advertising

Second Step: Advertiser Value



Second Step: Advertiser Value

- Mean value per click is 27 cents
 - Implied click/sale conversion rate is \$0.27/\$22.00 = 1.2%
 - o Industry Average 1-2% (Gamedaily.com)
- Attributes that enhance product quality correlate with higher values per click

Advertiser Policy Simulations

- Webpage design: remove sort, filter, etc.
 - Search Revenue -3.7% (-6.4% cons.; +2.7% advt.)
 - Consumer welfare decreases 5.6%
 - Advertiser profits increase 4.1%

Advertiser Policy Simulations

- Targeting: bid by key word and segment
 - Revenue +1.4% (+2.2% cons.; -0.8% advt.)
 - Advertiser revenue increases 11%
 - Consumer welfare increases 2.9%
- Welfare gains are positive for all agents

Advertiser Policy Simulations

- Market intelligence: search engine knows person's ad clicks, advertisers do not
 - No change in profits or welfare
 - Need to couple with targeting
- Auction mechanism: first to second price
 - Bids/Values 72% to 98% (truth telling)
 - However, no effect on search profits (0.01%)

Contribution

- Substantive Contribution
 - Findings (e.g., valuations)
 - o Prescriptions (e.g. consumer and advertiser)
- Methodological Contribution
 - Bayesian 2 step estimation
- Theoretical Contribution
 - Dynamic 2 sided network for key words

Future Potential Directions

- More advertiser problems
 - Choice of key words
 - Multi-word bidding
 - Other mechanism considerations
 - Continuous/discrete time bidding
 - Bidding caps

Appendix

Policy Simulations

- Two-step estimates reflect old policy rules
 - Now need to solve dynamic program (DP)
- Approximate dynamic program (Judd, 1998)
 - Estimate bidding rule in lieu of bidding path
- Reduce state space
 - Own and total clicks instead of all firms' clicks
 - Own clicks only (oblivious equilibrium (Weintraub, Benkard and van Roy, 2008))
- Other solutions detail

Consumer Click

- A consumer clicks if expected utility from doing so is greater than zero
 - Link position
 - Product attributes
- Leads to probit model of clicks

detail

Consumer Sort and/or Filter

- Consumers sort and/or filter if their expected utility from doing so increases
 - For example, does sorting by price increase the expected utility of the search alternatives?
 - Yes, if one is price sensitive
 - No, if i) one cares more for quality, ii) initial query lists high quality goods first, and iii) low price alternatives are also lower quality ones
 - Leads to logit choice model for search strategy

detail

Consumer Search Decision

- Consumers choose to search if the expected maximum utility across search strategies is greater than zero
- Leads to nested logit model of search decision
 - Lower nest is search strategy
 - Upper level is search/no search

detail

Consumer Clicks

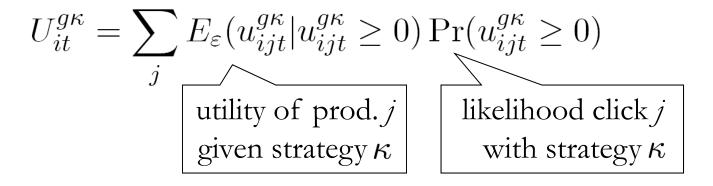
• Click if utility $u_{ijt}^{g\kappa} > 0$

$$\circ u_{ijt}^{g\kappa} = \widetilde{\alpha}_j^g + x_{jt}^{\kappa} \widetilde{\beta}^g + \widetilde{\varepsilon}_{ijt}^{g\kappa}$$

- Utility, $u_{ijt}^{g\kappa}$ for consumer i at time t
- Attributes, x
- Parameters, α and β
- Segment, g (latent class model)
- Sort/filter option, κ
- Yields probit click model

Consumer Sort and Filter

• Expected utility for sort/filter strategy κ



• Probability choose sort/filter strategy κ

$$\Pr(\kappa)_{it}^g = \frac{\exp(U_{it}^{g\kappa})}{\sum_{\kappa'=0}^3 \exp(U_{it}^{g\kappa'})}$$

Consumer Search Decision

- Consumer searches key word if expected utility across search strategies is positive
 - Nested logit where inclusive value is:

$$IV_{it}^g = \log[\sum_{\kappa} \exp(U_{it}^{g\kappa})]$$

Leading to search probability:

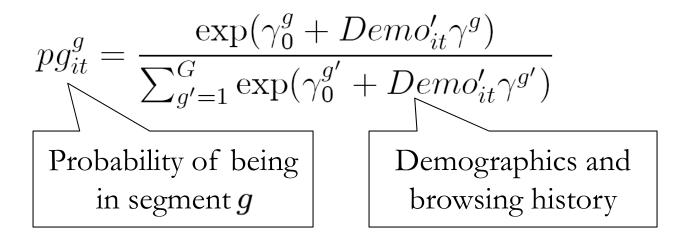
$$\Pr(search_i^g) = \frac{\exp(\lambda_0^g + \lambda_1^g I V_{it}^g)}{1 + \exp(\lambda_0^g + \lambda_1^g I V_{it}^g)}$$

Click Likelihood

probability of click probability probability of given sort/filter of search sort/filter strategy option κ (probit) given search (logit) (nested logit) $P_{ijt} =$ $\int_{Demo_{it}} \sum_{g} \sum_{\kappa} \left[\Phi(\overline{u}_{ijt}^{g\kappa}) \frac{\exp(U_{it}^{g\kappa})}{\frac{3}{\sum} \exp(U_{it}^{g\kappa'})} \right] \Pr(search_{it}^{g}) p g_{it}^{g} d\mathcal{D}(Demo_{it})$ average over segments, strategies and demographics (not known to advertiser)

Consumer Model: Heterogeneity

- Targeting and value of information
- Latent class model where:



Consumer Model: Scaling Parameter

$$u_{ijt}^{g\kappa} = \widetilde{\alpha}_{j}^{g} + \sum_{a} x_{jat}^{\kappa} \widetilde{\beta}_{a}^{g} + \widetilde{\varepsilon}_{ijt}^{g\kappa}$$

$$= \delta^{g} (\alpha_{j}^{g} + \sum_{a} x_{jat}^{\kappa} \beta_{a}^{g} + \varepsilon_{ijt}^{g\kappa})$$

$$= \delta^{g} (\alpha_{j}^{g} + \sum_{a} x_{jat}^{\kappa} \beta_{a}^{g} + \varepsilon_{ijt}^{g\kappa})$$
Std. dev. of $\widetilde{\varepsilon}_{ijt}^{g\kappa}$

$$= \sum_{j} E_{\varepsilon} (u_{ijt}^{g\kappa} | u_{ijt}^{g\kappa} \ge 0) \cdot \Pr(u_{ijt}^{g\kappa} \ge 0)$$

$$= \delta^{g} \sum_{j} \left(\overline{u}_{ijt}^{g\kappa} + \frac{\phi(\overline{u}_{ijt}^{g\kappa})}{\Phi(\overline{u}_{ijt}^{g\kappa})} \right) \cdot \Phi(\overline{u}_{ijt}^{g\kappa})$$

DP in Policy Simulations

- Other solutions
 - Local perturbation starting around the original equilibrium
 - Continuous-time DP (Doraszelski and Judd, 2008; Nekipelov, 2008)
 - Sequential state-to-state transition
 (Doraszelski and Judd, 2007)
 - Static game

Parametric vs. Nonparametric

- The objective of first step: approximate the equilibrium play
- The ideal solution: non-parametric first step
 - Data requirement
 - Still needs arbitrary assumptions (e.g., bin width in Kernel estimator)
- Flexible parametric specifications
 - Choose the one with the best fit

Advertiser Heterogeneity

- Panel data help to identify the unobserved heterogeneity (e.g., BBL; Honde and Imai, 2006)
- Other methods for identifying heterogeneity include Kasahara and Shimotsu (2008), Hu and Shum (2008)

Segment Specific Values

Monthly prof.=paid prof. from each seg.
 +organic prof. from each seg.

$$\mathbf{E}\pi_{j}\left(\mathbf{b}^{t},\mathbf{s}^{t},\mathbf{X}^{t},r_{j}^{t};\theta,f_{j}\right)$$

$$= \sum_{g=1}^{G} \left[\sum_{k=1}^{K} \Pr\left(k|b_j^t, \mathbf{b}_{-j}^t, \mathbf{s}^t, \mathbf{X}^t\right) \cdot (v_{jg}^t - b_j^t) \cdot d_g(k, X_j^t; \Omega_c) \right]$$

$$+ \sum_{k=K+1}^{\overline{N}} \Pr\left(k|b_j^t, \mathbf{b}_{-j}^t, \mathbf{s}^t, \mathbf{X}^t\right) \cdot v_{jg}^t \cdot d_g(k, X_j^t; \Omega_c) \right]$$

Segment specific value

Segment specific clicks

Slot Specific Values (Conversion)

Monthly prof.=paid prof. from each slot
 +organic prof. from each slot

$$\mathbf{E}\pi_{j}\left(\mathbf{b}^{t}, \mathbf{s}^{t}, \mathbf{X}^{t}, r_{j}^{t}; \theta, f_{j}\right)$$

$$= \sum_{k=1}^{K} \Pr\left(k|b_{j}^{t}, \mathbf{b}_{-j}^{t}, \mathbf{s}^{t}, \mathbf{X}^{t}\right) \cdot \left(v_{jk}^{t} - b_{j}^{t}\right) \cdot d(k, X_{j}^{t}; \Omega_{c})$$

$$+ \sum_{k=K+1}^{N} \Pr\left(k|b_{j}^{t}, \mathbf{b}_{-j}^{t}, \mathbf{s}^{t}, \mathbf{X}^{t}\right) \cdot v_{jk}^{t} \cdot d(k, X_{j}^{t}; \Omega_{c})$$

Slot specific value

Slot specific clicks

Second Step: Advertiser Model

Table 8: Alternative Models

Model	Log Marginal Likelhood
Base Model	-1651.3
Base Model Without Advertiser Dynamics	-1701.3
Base Model With Heterogeneous Customer Valuations	-1645.1

Overview Data Model Estimation Results Summary