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Thanks to ..

The results on scalability of classification algorithms were
co-authored by

Atina Brooks – SAS

Qianyi Zhang – Statistics Dept., NCSU
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Chemical data sets as arrays

Chemical data sets are large and somewhat sparse, i.e., if
they are considered as arrays, then perhaps ten per cent of
the entries are nonzero. Data sets can consist of thousands
or millions of chemicals.

Sparse array storage allows processing of large data sets

be stored and minimizes the number of computations. But

computation with sparse matrices is typically orders of mag-

nitude slower (per flop) than with the dense matrix package

LAPACK.
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Sparse matrix techniques

Applying recent experience in improving computational
efficiency in the LAPACK SVD algorithm, See LAPACK
Working note 147, Howell, et al, we can solve sparse least
squares problems with similar efficiency. Providing an
efficient sparse SVD computation in the package R will be
of wide use to the statistical community as well as aiding in
handling the drug discovery data sets.

Similar techniques can be applied to the rSVD (robust sin-

gular value decomposition) and hopefully to other algorithms

presented here.
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Memory Hierarchy

Assumption: algorithm execution time is proportional to
amount of data transferred from cache to main memory.

CPU

Registers

L1 cache

L2 Cache

Other Cache (If Any)

Main Memory
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Clocks To CPU

CPU

Registers – 1 clock

L1 cache – 2-3 clocks

L2 Cache – 6-12 clocks

Other Cache (If Any)

Local RAM 20-200 clocks

Hard Drive 107 clocks Distributed RAM 105 clocks
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BLAS and LAPACK

use cache memory . When porting software packages, e.g.
the statistical package R, one task is to find machine tuned
BLAS and LAPACK packages and link R to them.
For dense matrix operations, using machine tuned BLAS
and LAPACK libraries, can give dramatic speedups.

For example, a crystallography code solved Ax = b by using

a routine from the popular book Numeric Recipes. Replacing

those calls by calls to LAPACK and BLAS reduced run times

from ten hours to ten minutes.
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60 fold speedup

In that case it was the order of accessing data. Processor
speeds have gone up dramatically in the last few decades.
Speed of accessing data plucked randomly form the
Random Access Memory has increased much less
dramatically. Accessing data from RAM can take a few
hundred clock cycles.
By accessing data in order, throughput can be increased by
an order of magnitude to perhaps ten per cent of theoretical
peak speed.
By blocking a computation so that data fetched from RAM is
stored in cache and re-used, Ax = b can be solved at near
processor peak speed.

Scalable Factorization and Classification – p.8/43



Sparse Data Sets

If chemical data sets are represented as arrays, the arrays
are usually sparse, i.e., most entries often all by a few per
cent, are zero.
Storing array as sparse (only storing the nonzero entries
and their indices) can save a good deal of storage so that
larger jobs (perhaps ten times larger) times larger can be
done with a given number of processors. Algorithms using
the sparse array can save perhaps 90% of the
computations.
If algorithms accessing the array can access data
sequentially, we can expect to get about ten per cent of
peak speed. So if we reduce the number of floating point
operations by a factor of ten, we get about the same overall
speed as using LAPACK.
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Dense Algorithms for Sparse

Advantages: we get good stability (full numeric accuracy).
Flops go at almost the full theoretical peak speed.
Disadvantages: Suppose we get A = UΣV T + E where
‖E‖/‖A‖ = O(10−16 . Then even if A is sparse and takes
only a reasonable amount of storage, U and V are dense,
so take a good deal of storage. Also computing with sparse
A is slow per flop compared to computing with dense A.
To get around the storage issue represent

A = UkΣkV
T
k + Ek

where where we choose ‖Ek‖ ≤ tol. Typically in the sparse
case, we may choose tol = O(1.e− 4/‖A‖. The strategy is
successful in terms of storage if k that achieves the
tolerance is relatively small.
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Sparse flops can be fast
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Factor of 100 serial speedup
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Dense Algorithms in Sparse Case

All block update algorithms extend naturally to the
sparse case. Because until the block update is done,
you still are performing matrix vector multiplications by
the original sparse matrix. So we can get the good
stability properties of the dense algorithm ..

A current improvement in the dense problem is in
combining multiplications of yT A and Ax, thereby
decreasing the number of transfers of A from RAM to
cache. Similarly in the sparse case yTA and Ax are
required for either the BLAS 2.5 - BLAS 3 algorithm or
Lanczos methods.

Grosser, Lang reduce to small band form by totally
BLAS 3 operations, then carry on to bidiagonal via
BLAS 1 operations. Sparse AX , A sparse X dense
can be much faster than Ax. Some of the other tricks
needed are block Householder transformations, similar
to Schreiber and Van Loan or Bischof and Van Loan .
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The Sparse Case

Golub and Van Loan, P. 498, 2nd Ed. “Unfortunately, if A is
large and sparse, then we can expect large, dense
submatrices to arise during the Householder
bidiagonalization.” In context, this is a justification for using
the unstable Lanczos procedure for bidiagonalizing sparse
matrices, so they are probably not very startled to see an
alternative approach.
Actually, the algorithms used to defer updates in the dense
case, also allow sparse bidiagonalization without fill. That is
to say, as long as we continue to defer matrix updates, still
operating on the the original matrix, touching it only to do
matrix vector multiplications, then the original matrix
continues to be sparse.
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Sparse Householder Bidiagonalization

Claim: if the Householder vectors require comparable
storage to the original sparse A, Householder
bidiagonalization is competitive to Lanczos in storage and
overall computational costs.
For storage: If more than a few steps of Lanczos are used
than the Lanczos vectors must be saved for use in
re-orthogonalization. But this is as much storage as saving
the Householder vectors.
For computational costs: the extra Householder flops are in
dense computations, which are relatively fast compared to
the predominant cost yT A and Ax.

All things being equal we should use the more stable algorith m?
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Sparse Matrix Vector BLAS 2.5

For either sparse Householder bidiagonalization or for
Lanczos bidiagonalization the main computational expense
is in the multiplications yT A and Ax. Let’s take the case of
dense x, y, sparse A, A too large to fit in cache.
Multiplication by sparse A is arranged so that either y ← Ax

or w ← AT y stream A from RAM. When A is banded or
consists as in finite differences of several bands, then none
of w, y, x suffer many cache misses in the multiplication.
Combining the multiplications by A and AT gives some
speedup. For example, on a Xeon I saw (intel compiler -xW
-tpp7 flags) 244 Mflops vs. 304 Mflops for the combined
operations. (about 1/20 of the advertised peak speed).
This trick should be orthogonal to other techniques such as
getting dense subblocks, as for example from Vuduc,
Demmel and Yelick .
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x, y with many cache misses

For definiteness, take the artificially evil case that entries of
A are randomly distributed, A strored in sparse row storage.
That is, we read the entries of A as English speakers read
text.
Then Ax is sparse ddots, relatively fast, which entail read
misses in x.
For yTA we have no read misses, as the same entry y(i)
multiplies every entry in the ith row of A, but we update
random entries in the product, so we have write misses.

For A in sparse row storage, Ax is typically faster than ytA.

Not so much in coordinate storage, matrix ordered the same

way (complete vector of row indices for A).
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So column blockA

One solution sometimes used is to keep two copies of A. If
we want to save storage, we can instead use block storage.
What I’ve been trying is to use row storage for column
blocks. (like a reading a newspaper with multiple columns).
The conversion routine first goes to coordinate storage,
then sorts. In place quick sorts, so time goes like
O(nz log(nz)) .
This storage scheme appears to equalize the speeds of Ax

and ytA.
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Multiplying by vector blocks

As any dense method that defers updates is really a sparse
method (until the update), note that the Lang - Bischof -
Sun type algorithms also extend to the sparse case.
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Yet Again
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Multiplying by Multiple Vectors
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Blocking the Sparse Matrix
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Doing Both
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Blocking

Column Blocking (or more generally blocking) helps when
the product and/or multiplicand vectors get too large for
storage. It’s cost is O(log(nz)nz) and additional storage for
storing a complete and column vectors. (About 33% more
storage for matrix compared to compressed row storage).
Multiplying by more vectors at a time "always" improves
performance. Alas involves a rethink of whatever algorithm
you’re interested in and that can be tricky. You can
introduce instability, e.g., block Lanczos. The easy write of
the algorithm is in Matlab, but then there’s an extra hurdle
converting to C or Fortran.

I’ve got a Fortran Householder reduction of a banded matrix

to small band form.
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Upper banded vs. block iteration

In block subspace iteration, singular values of the block
form converge slowly and erratically. Wasteful in terms of
number of floating point operations.

The banded singular values converge monotonically. Each

new batch of flops improves the computation. Also there are

some well-known error bounds.
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Approximate A by Jk = UkBkV
T
k , I

The following results are adapted from Zhang, Zha, and
Simon . Let Bk be the m× n bidiagonal matrix with diagonal
entries α1, α2, . . . αk and superdiagonal β1, β2, . . . βk−1 If Uk

and Vk are orthogonal, then the Frobenius norm
‖A− Jk−1‖ = ωk−1, then ω2

k + α2

k + β2

k = ω2

k−1
.

More generally, denote ‖I − UT
k Uk‖2 = η(Uk) and

‖I − V T
k Vk‖2 = η(Vk). Then in floating point arithmetic

ω2

k+α2

k+β2

k = ω2

k−1
+O(‖A‖2η(Uk)(1+η(Uk)(1+mǫ))+O(‖A‖2+η(U

Here ǫ is the largest number such that fl(1 + ǫ) = 1 .
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Approximate A by Jk = UkBkV
T
k , II

In exact arithmetic, UkAV T
k = Ak where Uk and Vk are

orthogonal. Due to the orthogonality of Uk and Vk

‖Ak‖F = ‖A‖F .

Simplify the partitioning as

Ak =

[

Rk Lk

0 Âk

]

(1)
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Approximate A by Jk = UkBkV
T
k , III

In practice, Âk is not computed as it would be dense and
large and likely to overflow the RAM. Since

‖A‖2F = ‖Ak‖
2

F = ‖Rk‖
2

F + ‖L‖2F + ‖Âk‖
2

F ,

‖Âk‖
2

F = ‖A‖2F − ‖Rk‖
2

F − ‖L‖
2

F

where all the quantities on the right hand side are easily
computed.
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Adapting LSQR

One of the better-known sparse least squares algorithms is

LSQR. due to Paige and Saunders. It’s interesting to trans-

late LSQR, based on the Lanczos method of constructing

locally biorthogonal, globally singular basis vectors. Would

it actually help to have the orthogonal basis? I’m currently at

the stage of constructing a Matlab alorithm.
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SVD Summary

For a particular well-known algorithm (SVD), it appears we
can extend the standard dense algorithm to get comparable
efficiency (time per flop) in the sparse case.
Using block algorithms may enable other sparse algorithms
to have similarly improved efficiency. Success would
improve algorithm scalability and applicability to large data
sets.
Nevertheless, improving sparse algorithm scalability is
laborious and can only be justified for algorithms that will be
widely used.
Except of course, that many fairly standard libraries already
exist and can be easily ported. Sparse packages devloped
by DOE include PETsc, ARPACK, SuperLU, and Trilinos (all
have parallel versions).
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Wny not a SVD for a sparse matrix?

We want a sparse decomposition

We want a positive decomposition

We want a local decomposition

Sometimes we don’t have a matrix (missing data for
some entries).

SVD may not scale well.

SVD may not actually be competitive as a classification
algorithm.
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Scaling Classification Algorithms

Consider a set of compounds as a sparse matrix. Each row
corresponds to a compound, each column to a descriptor.
We want to discover likely compounds for further screening.
And we want algorithms that can be applied to large data
sets.

By using the standard set of modules developed for the R

program, we can test (and allow users to test) a variety of

possible algorithms.
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Least Squares is Hard to Scale

Statisticians and Numerical Analysts like least squares and
we want to put our eggs in that basket.
Thus far the ECCR project has not found least squares
based algorithms to be effective – also they scale badly.
In R implementations, PCR appears to scale like O(m2n) in
time and often classifies no better than would a random
choice. Of course, we can plug in ARPACK and the
methods discussed above .. or other factorization methods.

But the best methods we have seen so far are KNN and tree

based algorithms.
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KNN

KNN (K nearest neighbors) is an unsupervised clustering
algorithm. Given m compounds, we compute a dense
m×m collection of distances dij of distances between
compounds i and j. If there are an average of k nonzero
descriptors per compounds, we have an algorithm requiring
m2/2 storage and O(m2k) computations to get the distances
dij. Also there are O(m2 log m) operations in sorting
distances to find nearest neigbors.

Works fairly well, easy to parallelize. If we can do m = 50K

on one node, then with a hundred nodes, we could do m =

500K (problem size goes as p1/2 for p processors.)
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Tree algorithms

Getting a best tree for m compounds is an NP complete
problem, ... nevertheless we observe tree algorithms to be
highly efficient.
Ms. Zhang has observed that the tree based algorithms,
Rpart, Tree, and the ensemble method Random Forest all
scale as m or O(mlog m) in time.

For these problems, we can scale to very large problems

m = O(106) on a single CPU or set of cores.
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Multi-core Processors

Using the R packages has allowed the ECCR projects easy
access to a number of algorithms.
Recently, we’ve found that some algorithms require 64 bit
computations. Recompiling R for 64 bit is relatively easy in
Linux, as 64 bit Intel CPUs have become standard this year.
A next architectural change is "multi-core". Dual core this
year, quad core this summer, 8 cores next year ..
Codes do not automatically take advantage of the
multi-core machines. Recompilation of codes is required.
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Clocks To Core

core

Registers – 1 clock

L1 cache – 2-3 clocks

L2 Cache – 6-12 clocks

core

Registers – 1 clock

L1 cache – 2-3 clocks

L2 Cache – 6-12 clocks

More clocks depending on which core and register

Local RAM 20-200 clocks

Hard Drive 107 clocks Distributed RAM 105 clocks
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Compiler Generated Parallelism?

As with cache architectures and distributed memory
computing, multi-core architectures have a long history in
high performance computing.
Multi-core (shared memory architectures) have several
standard libraries. The main current two are OpenMP and
pThreads. pThreads libraries are available from C and C++
programs. OpenMP directives can be embedded also in
Fortran codes.

Intel, IBM, and PGI compilers (and others) can automatically

embed OpenMP directives in C or Fortran programs. The

HPC experience is that the automatically inserted directives

can be improved by manual editing, so that some parallel

speed-up is achieved.
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OpenMP?

Is OpenMP adequate for good parallelization? After editing
the OpenMP pragmas, got speedup of two with four
processors?
Workers on the LAPACK project have not found OpenMP
directives adequate for good multi-core performance in the
case of LU decomposition. They have turned to using the
pThreads library.
The UPC project may be an easier route for programmers.
It is also a standard.
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Adapting R Modules to Multi-Core

Part of the continued ECCR project should be adapting R
modules to a multi-core environment. The adapted
algorithms will be widely useful.
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