
Scalable Factorization and
Classification

Using Sparsity, Using Multi-Core

Gary Howell, HPC/ITD

NC State University

gary howell@ncsu.edu

Scalable Factorization and Classification – p.1/43

Thanks to ..

The results on scalability of classification algorithms were
co-authored by

Atina Brooks – SAS

Qianyi Zhang – Statistics Dept., NCSU

Scalable Factorization and Classification – p.2/43

Chemical data sets as arrays

Chemical data sets are large and somewhat sparse, i.e., if
they are considered as arrays, then perhaps ten per cent of
the entries are nonzero. Data sets can consist of thousands
or millions of chemicals.

Sparse array storage allows processing of large data sets

be stored and minimizes the number of computations. But

computation with sparse matrices is typically orders of mag-

nitude slower (per flop) than with the dense matrix package

LAPACK.

Scalable Factorization and Classification – p.3/43

Sparse matrix techniques

Applying recent experience in improving computational
efficiency in the LAPACK SVD algorithm, See LAPACK
Working note 147, Howell, et al, we can solve sparse least
squares problems with similar efficiency. Providing an
efficient sparse SVD computation in the package R will be
of wide use to the statistical community as well as aiding in
handling the drug discovery data sets.

Similar techniques can be applied to the rSVD (robust sin-

gular value decomposition) and hopefully to other algorithms

presented here.

Scalable Factorization and Classification – p.4/43

Memory Hierarchy

Assumption: algorithm execution time is proportional to
amount of data transferred from cache to main memory.

CPU

Registers

L1 cache

L2 Cache

Other Cache (If Any)

Main Memory

Scalable Factorization and Classification – p.5/43

Clocks To CPU

CPU

Registers – 1 clock

L1 cache – 2-3 clocks

L2 Cache – 6-12 clocks

Other Cache (If Any)

Local RAM 20-200 clocks

Hard Drive 107 clocks Distributed RAM 105 clocks

Scalable Factorization and Classification – p.6/43

BLAS and LAPACK

use cache memory . When porting software packages, e.g.
the statistical package R, one task is to find machine tuned
BLAS and LAPACK packages and link R to them.
For dense matrix operations, using machine tuned BLAS
and LAPACK libraries, can give dramatic speedups.

For example, a crystallography code solved Ax = b by using

a routine from the popular book Numeric Recipes. Replacing

those calls by calls to LAPACK and BLAS reduced run times

from ten hours to ten minutes.

Scalable Factorization and Classification – p.7/43

60 fold speedup

In that case it was the order of accessing data. Processor
speeds have gone up dramatically in the last few decades.
Speed of accessing data plucked randomly form the
Random Access Memory has increased much less
dramatically. Accessing data from RAM can take a few
hundred clock cycles.
By accessing data in order, throughput can be increased by
an order of magnitude to perhaps ten per cent of theoretical
peak speed.
By blocking a computation so that data fetched from RAM is
stored in cache and re-used, Ax = b can be solved at near
processor peak speed.

Scalable Factorization and Classification – p.8/43

Sparse Data Sets

If chemical data sets are represented as arrays, the arrays
are usually sparse, i.e., most entries often all by a few per
cent, are zero.
Storing array as sparse (only storing the nonzero entries
and their indices) can save a good deal of storage so that
larger jobs (perhaps ten times larger) times larger can be
done with a given number of processors. Algorithms using
the sparse array can save perhaps 90% of the
computations.
If algorithms accessing the array can access data
sequentially, we can expect to get about ten per cent of
peak speed. So if we reduce the number of floating point
operations by a factor of ten, we get about the same overall
speed as using LAPACK.

Scalable Factorization and Classification – p.9/43

Dense Algorithms for Sparse

Advantages: we get good stability (full numeric accuracy).
Flops go at almost the full theoretical peak speed.
Disadvantages: Suppose we get A = UΣV T + E where
‖E‖/‖A‖ = O(10−16 . Then even if A is sparse and takes
only a reasonable amount of storage, U and V are dense,
so take a good deal of storage. Also computing with sparse
A is slow per flop compared to computing with dense A.
To get around the storage issue represent

A = UkΣkV
T
k + Ek

where where we choose ‖Ek‖ ≤ tol. Typically in the sparse
case, we may choose tol = O(1.e− 4/‖A‖. The strategy is
successful in terms of storage if k that achieves the
tolerance is relatively small.

Scalable Factorization and Classification – p.10/43

Sparse flops can be fast

..
0

2
4

6
8

10
12

0

2

4

6

8

10

12
0

500

1000

1500

2000

2500

3000

3500

4000

Number of Vectors

Mflops in Multiplying by a Random Sparse Matrix

Number of Column Blocks Scalable Factorization and Classification – p.11/43

Factor of 100 serial speedup

..
0

2
4

6
8

10
12

0

2

4

6

8

10

12
0

500

1000

1500

2000

2500

3000

3500

4000

Number of Vectors

Mflops in Multiplying by a Random Sparse Matrix

Number of Column Blocks Scalable Factorization and Classification – p.12/43

Dense Algorithms in Sparse Case

All block update algorithms extend naturally to the
sparse case. Because until the block update is done,
you still are performing matrix vector multiplications by
the original sparse matrix. So we can get the good
stability properties of the dense algorithm ..

A current improvement in the dense problem is in
combining multiplications of yT A and Ax, thereby
decreasing the number of transfers of A from RAM to
cache. Similarly in the sparse case yTA and Ax are
required for either the BLAS 2.5 - BLAS 3 algorithm or
Lanczos methods.

Grosser, Lang reduce to small band form by totally
BLAS 3 operations, then carry on to bidiagonal via
BLAS 1 operations. Sparse AX , A sparse X dense
can be much faster than Ax. Some of the other tricks
needed are block Householder transformations, similar
to Schreiber and Van Loan or Bischof and Van Loan .

Scalable Factorization and Classification – p.13/43

The Sparse Case

Golub and Van Loan, P. 498, 2nd Ed. “Unfortunately, if A is
large and sparse, then we can expect large, dense
submatrices to arise during the Householder
bidiagonalization.” In context, this is a justification for using
the unstable Lanczos procedure for bidiagonalizing sparse
matrices, so they are probably not very startled to see an
alternative approach.
Actually, the algorithms used to defer updates in the dense
case, also allow sparse bidiagonalization without fill. That is
to say, as long as we continue to defer matrix updates, still
operating on the the original matrix, touching it only to do
matrix vector multiplications, then the original matrix
continues to be sparse.

Scalable Factorization and Classification – p.14/43

Sparse Householder Bidiagonalization

Claim: if the Householder vectors require comparable
storage to the original sparse A, Householder
bidiagonalization is competitive to Lanczos in storage and
overall computational costs.
For storage: If more than a few steps of Lanczos are used
than the Lanczos vectors must be saved for use in
re-orthogonalization. But this is as much storage as saving
the Householder vectors.
For computational costs: the extra Householder flops are in
dense computations, which are relatively fast compared to
the predominant cost yT A and Ax.

All things being equal we should use the more stable algorith m?

Scalable Factorization and Classification – p.15/43

Sparse Matrix Vector BLAS 2.5

For either sparse Householder bidiagonalization or for
Lanczos bidiagonalization the main computational expense
is in the multiplications yT A and Ax. Let’s take the case of
dense x, y, sparse A, A too large to fit in cache.
Multiplication by sparse A is arranged so that either y ← Ax

or w ← AT y stream A from RAM. When A is banded or
consists as in finite differences of several bands, then none
of w, y, x suffer many cache misses in the multiplication.
Combining the multiplications by A and AT gives some
speedup. For example, on a Xeon I saw (intel compiler -xW
-tpp7 flags) 244 Mflops vs. 304 Mflops for the combined
operations. (about 1/20 of the advertised peak speed).
This trick should be orthogonal to other techniques such as
getting dense subblocks, as for example from Vuduc,
Demmel and Yelick .

Scalable Factorization and Classification – p.16/43

x, y with many cache misses

For definiteness, take the artificially evil case that entries of
A are randomly distributed, A strored in sparse row storage.
That is, we read the entries of A as English speakers read
text.
Then Ax is sparse ddots, relatively fast, which entail read
misses in x.
For yTA we have no read misses, as the same entry y(i)
multiplies every entry in the ith row of A, but we update
random entries in the product, so we have write misses.

For A in sparse row storage, Ax is typically faster than ytA.

Not so much in coordinate storage, matrix ordered the same

way (complete vector of row indices for A).

Scalable Factorization and Classification – p.17/43

So column blockA

One solution sometimes used is to keep two copies of A. If
we want to save storage, we can instead use block storage.
What I’ve been trying is to use row storage for column
blocks. (like a reading a newspaper with multiple columns).
The conversion routine first goes to coordinate storage,
then sorts. In place quick sorts, so time goes like
O(nz log(nz)) .
This storage scheme appears to equalize the speeds of Ax

and ytA.

Scalable Factorization and Classification – p.18/43

Multiplying by vector blocks

As any dense method that defers updates is really a sparse
method (until the update), note that the Lang - Bischof -
Sun type algorithms also extend to the sparse case.

Scalable Factorization and Classification – p.19/43

Yet Again

..
0

2
4

6
8

10
12

0

2

4

6

8

10

12
0

500

1000

1500

2000

2500

3000

3500

4000

Number of Vectors

Mflops in Multiplying by a Random Sparse Matrix

Number of Column Blocks Scalable Factorization and Classification – p.20/43

Multiplying by Multiple Vectors

..
0 2 4 6 8 10 12

0

100

200

300

400

500

600

700

800

900

1000

M
flo

ps
 −

−
 2

00
k

by
 2

00
K

 m
at

rix
 .0

5%
 d

en
se

Number of vectors multiplied by sparse matrix

Mflops for no column blocking

A*x
tr(A)*y
combined operation

Scalable Factorization and Classification – p.21/43

Blocking the Sparse Matrix

..
0 2 4 6 8 10 12

0

100

200

300

400

500

600

700

800

900

1000

M
flo

ps
 −

−
 2

00
k

by
 2

00
K

 m
at

rix
 .0

5%
 d

en
se

Increasing number of column blocks, single vector

Mflops for Sparse Matrix vector multiply with column blocking

A*x
tr(A)*y
combined operation

Scalable Factorization and Classification – p.22/43

Doing Both

..
0 2 4 6 8 10 12

0

500

1000

1500

2000

2500

3000

3500

4000

M
flo

ps
 −

−
 2

00
k

by
 2

00
K

 m
at

rix
 .0

5%
 d

en
se

Mflops −− increasing numbers of vectors and column blocks, 2.8 GHz, g77 −O3

 Mflops along the diagonal of number of vectors = number col blcks

A*x
tr(A)*y
combined operation

Scalable Factorization and Classification – p.23/43

Blocking

Column Blocking (or more generally blocking) helps when
the product and/or multiplicand vectors get too large for
storage. It’s cost is O(log(nz)nz) and additional storage for
storing a complete and column vectors. (About 33% more
storage for matrix compared to compressed row storage).
Multiplying by more vectors at a time "always" improves
performance. Alas involves a rethink of whatever algorithm
you’re interested in and that can be tricky. You can
introduce instability, e.g., block Lanczos. The easy write of
the algorithm is in Matlab, but then there’s an extra hurdle
converting to C or Fortran.

I’ve got a Fortran Householder reduction of a banded matrix

to small band form.

Scalable Factorization and Classification – p.24/43

Upper banded vs. block iteration

In block subspace iteration, singular values of the block
form converge slowly and erratically. Wasteful in terms of
number of floating point operations.

The banded singular values converge monotonically. Each

new batch of flops improves the computation. Also there are

some well-known error bounds.

Scalable Factorization and Classification – p.25/43

Approximate A by Jk = UkBkV
T
k , I

The following results are adapted from Zhang, Zha, and
Simon . Let Bk be the m× n bidiagonal matrix with diagonal
entries α1, α2, . . . αk and superdiagonal β1, β2, . . . βk−1 If Uk

and Vk are orthogonal, then the Frobenius norm
‖A− Jk−1‖ = ωk−1, then ω2

k + α2

k + β2

k = ω2

k−1
.

More generally, denote ‖I − UT
k Uk‖2 = η(Uk) and

‖I − V T
k Vk‖2 = η(Vk). Then in floating point arithmetic

ω2

k+α2

k+β2

k = ω2

k−1
+O(‖A‖2η(Uk)(1+η(Uk)(1+mǫ))+O(‖A‖2+η(U

Here ǫ is the largest number such that fl(1 + ǫ) = 1 .

Scalable Factorization and Classification – p.26/43

Approximate A by Jk = UkBkV
T
k , II

In exact arithmetic, UkAV T
k = Ak where Uk and Vk are

orthogonal. Due to the orthogonality of Uk and Vk

‖Ak‖F = ‖A‖F .

Simplify the partitioning as

Ak =

[

Rk Lk

0 Âk

]

(1)

Scalable Factorization and Classification – p.27/43

Approximate A by Jk = UkBkV
T
k , III

In practice, Âk is not computed as it would be dense and
large and likely to overflow the RAM. Since

‖A‖2F = ‖Ak‖
2

F = ‖Rk‖
2

F + ‖L‖2F + ‖Âk‖
2

F ,

‖Âk‖
2

F = ‖A‖2F − ‖Rk‖
2

F − ‖L‖
2

F

where all the quantities on the right hand side are easily
computed.

Scalable Factorization and Classification – p.28/43

Adapting LSQR

One of the better-known sparse least squares algorithms is

LSQR. due to Paige and Saunders. It’s interesting to trans-

late LSQR, based on the Lanczos method of constructing

locally biorthogonal, globally singular basis vectors. Would

it actually help to have the orthogonal basis? I’m currently at

the stage of constructing a Matlab alorithm.

Scalable Factorization and Classification – p.29/43

SVD Summary

For a particular well-known algorithm (SVD), it appears we
can extend the standard dense algorithm to get comparable
efficiency (time per flop) in the sparse case.
Using block algorithms may enable other sparse algorithms
to have similarly improved efficiency. Success would
improve algorithm scalability and applicability to large data
sets.
Nevertheless, improving sparse algorithm scalability is
laborious and can only be justified for algorithms that will be
widely used.
Except of course, that many fairly standard libraries already
exist and can be easily ported. Sparse packages devloped
by DOE include PETsc, ARPACK, SuperLU, and Trilinos (all
have parallel versions).

Scalable Factorization and Classification – p.30/43

Wny not a SVD for a sparse matrix?

We want a sparse decomposition

We want a positive decomposition

We want a local decomposition

Sometimes we don’t have a matrix (missing data for
some entries).

SVD may not scale well.

SVD may not actually be competitive as a classification
algorithm.

Scalable Factorization and Classification – p.31/43

Scaling Classification Algorithms

Consider a set of compounds as a sparse matrix. Each row
corresponds to a compound, each column to a descriptor.
We want to discover likely compounds for further screening.
And we want algorithms that can be applied to large data
sets.

By using the standard set of modules developed for the R

program, we can test (and allow users to test) a variety of

possible algorithms.

Scalable Factorization and Classification – p.32/43

Least Squares is Hard to Scale

Statisticians and Numerical Analysts like least squares and
we want to put our eggs in that basket.
Thus far the ECCR project has not found least squares
based algorithms to be effective – also they scale badly.
In R implementations, PCR appears to scale like O(m2n) in
time and often classifies no better than would a random
choice. Of course, we can plug in ARPACK and the
methods discussed above .. or other factorization methods.

But the best methods we have seen so far are KNN and tree

based algorithms.

Scalable Factorization and Classification – p.33/43

KNN

KNN (K nearest neighbors) is an unsupervised clustering
algorithm. Given m compounds, we compute a dense
m×m collection of distances dij of distances between
compounds i and j. If there are an average of k nonzero
descriptors per compounds, we have an algorithm requiring
m2/2 storage and O(m2k) computations to get the distances
dij. Also there are O(m2 log m) operations in sorting
distances to find nearest neigbors.

Works fairly well, easy to parallelize. If we can do m = 50K

on one node, then with a hundred nodes, we could do m =

500K (problem size goes as p1/2 for p processors.)

Scalable Factorization and Classification – p.34/43

Tree algorithms

Getting a best tree for m compounds is an NP complete
problem, ... nevertheless we observe tree algorithms to be
highly efficient.
Ms. Zhang has observed that the tree based algorithms,
Rpart, Tree, and the ensemble method Random Forest all
scale as m or O(mlog m) in time.

For these problems, we can scale to very large problems

m = O(106) on a single CPU or set of cores.

Scalable Factorization and Classification – p.35/43

Multi-core Processors

Using the R packages has allowed the ECCR projects easy
access to a number of algorithms.
Recently, we’ve found that some algorithms require 64 bit
computations. Recompiling R for 64 bit is relatively easy in
Linux, as 64 bit Intel CPUs have become standard this year.
A next architectural change is "multi-core". Dual core this
year, quad core this summer, 8 cores next year ..
Codes do not automatically take advantage of the
multi-core machines. Recompilation of codes is required.

Scalable Factorization and Classification – p.36/43

Clocks To Core

core

Registers – 1 clock

L1 cache – 2-3 clocks

L2 Cache – 6-12 clocks

core

Registers – 1 clock

L1 cache – 2-3 clocks

L2 Cache – 6-12 clocks

More clocks depending on which core and register

Local RAM 20-200 clocks

Hard Drive 107 clocks Distributed RAM 105 clocks

Scalable Factorization and Classification – p.37/43

Compiler Generated Parallelism?

As with cache architectures and distributed memory
computing, multi-core architectures have a long history in
high performance computing.
Multi-core (shared memory architectures) have several
standard libraries. The main current two are OpenMP and
pThreads. pThreads libraries are available from C and C++
programs. OpenMP directives can be embedded also in
Fortran codes.

Intel, IBM, and PGI compilers (and others) can automatically

embed OpenMP directives in C or Fortran programs. The

HPC experience is that the automatically inserted directives

can be improved by manual editing, so that some parallel

speed-up is achieved.
Scalable Factorization and Classification – p.38/43

OpenMP?

Is OpenMP adequate for good parallelization? After editing
the OpenMP pragmas, got speedup of two with four
processors?
Workers on the LAPACK project have not found OpenMP
directives adequate for good multi-core performance in the
case of LU decomposition. They have turned to using the
pThreads library.
The UPC project may be an easier route for programmers.
It is also a standard.

Scalable Factorization and Classification – p.39/43

Adapting R Modules to Multi-Core

Part of the continued ECCR project should be adapting R
modules to a multi-core environment. The adapted
algorithms will be widely useful.

Scalable Factorization and Classification – p.40/43

References

M. BERRY, Large scale singular value computations,
Internat. J. Supercomputer Appl., 6:13-49, 1992.

C. H. BISCHOF AND C. F. VAN LOAN, The WY
Representaion of Products of Householder Matrices,
SIAM J. Sci. Stat. Comput, 8:s2-s13, 1987.

BLAS TECHNICAL

FORUM,www.netlib.org/utk/papers/blast-forum.html,
1999.

G. GOLUB AND C. F. VAN LOAN, Matrix Computations, 3rd
Ed., The Johns Hopkins University Press, Baltimore,
1996.

Scalable Factorization and Classification – p.41/43

References-2

B. GRÖSSER AND B. LANG, Efficient Parallel Reduction to
Bidiagonal Form, Preprint BUGHW-SC 98/2 (Available
from http://www.math.uni-wuppertal/)

G.W. HOWELL, J.W. DEMMEL, C.T. FULTON, S. HAMMARLING,K.
MARMOL Cache Efficient Bidigaonlization Using BLAS
2.5 Operations. (LAPACK Working Note # 174).
http://www.netlib.org/lapack/lawnspdf/lawn174.pdf.
Related work to appear in ACM TOMS.

B. LANG, Parallel reduction of banded matrices to
bidiagonal form Parallel Comput., 22 (1996), 1-18.

C. PAIGE AND M. SAUNDERS. An Algorithm for Sparse
Linear Equations and Sparse Least Squares. ACM
Trans. on Math. Software, 8(1), 43–71, 1982.

Scalable Factorization and Classification – p.42/43

References-3

B. PARLETT AND I. DHILLON, Fernando’s solution to
Wilkinson’s problem: An application of double
factorization , Lin. Alg. Appl., 267:247–279, 1997.

R. SCHREIBER AND C. F. VAN LOAN, A Storage-Efficient
WY Representation for Products of Householder
Transformations, SIAM Scientific and Statistical
Computing, 10:53-57, 1989.

R. VUDUC, J. DEMMEL, K. YELICK, OSKI: A library of
automatically tuned sparse matrix kernels, Proceedings
of SciDAC 2005, Journal of Physics: Conferences
Series, Jun 2005, http://bebop.cs.berkeley.edu/#pubs

Scalable Factorization and Classification – p.43/43

References-4

Z. ZHANG, H. ZHA, AND H. SIMON, Low-rank
Approximations with Sparse Factors I: Basic Algorithms
and Error Analysis, SIAM Journal of Matrix Analysis
and Applications, 23, pp. 706-727,2002.

Scalable Factorization and Classification – p.44/43

	Thanks to ..
	Chemical data sets as arrays
	Sparse matrix techniques
	 Memory Hierarchy
	 Clocks To CPU
	 BLAS and LAPACK
	 60 fold speedup
	 Sparse Data Sets
	 Dense Algorithms for Sparse
	Sparse flops can be fast
	Factor of 100 serial speedup
	 Dense Algorithms in Sparse Case
	 The Sparse Case
	 Sparse Householder Bidiagonalization
	Sparse Matrix Vector BLAS 2.5
	x, y with many cache misses
	So column block A
	Multiplying by vector blocks
	Yet Again
	 Multiplying by Multiple Vectors
	Blocking the Sparse Matrix
	Doing Both
	Blocking
	Upper banded vs. block iteration
	Approximate A by $J_k = U_k B_k V_k^T$, I
	Approximate A by $J_k = U_k B_k V_k^T$, II
	Approximate A by $J_k = U_k B_k V_k^T$, III
	Adapting LSQR
	SVD Summary
	Wny not a SVD for a sparse matrix?
	Scaling Classification Algorithms
	Least Squares is Hard to Scale
	KNN
	Tree algorithms
	Multi-core Processors
	 Clocks To Core
	Compiler Generated Parallelism?
	OpenMP?
	Adapting R Modules to Multi-Core
	References
	References-2
	References-3
	References-4

