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Meta-Analysis

• A quantitative synthesis of relevant information from multiple

studies has become increasingly popular under the name of

Meta-Analysis

• Often the goal is to provide a numerical summary of the overall

effect of an intervention (e.g., treatment, device or service)

• Two models are frequently used in meta-analysis:

– Fixed effects model: assumes that each observed study result

is estimating a common overall effect

– Random effects model: assumes that each observed result is

estimating its own unknown effect; which in turn are

estimating a common overall mean

• The use of either models depends on the context
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• The fixed effects model does not allow for between-study

heterogeneity

• The random effects model allows for between-study heterogeneity

as well as within-study variability

• Consider K studies, each measuring the effect of an intervention

• For each k = 1, 2, . . . , K, suppose

– θ̂k denotes (estimated) effect within k-th study, and

– s2
k denotes the associated variance within k-th study

• The fixed effects model assumes: θ̂k = μ + skεk

where μ is the overall effect, E[εk] = 0 and V ar[εk] = 1

• In contrast, the random effects model assumes:

θ̂k = θk + skεk and θk = μ + σek

where θk’s are (unknown) study-specific (random) effects and σ2

is the between-study variance (assume E[ek] = 0 and V ar[ek] = 1)
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• Integrating the random effects we obtain: θ̂k = μ + (σek + skεk)

• Assuming ek ⊥ εk, we have V ar[θ̂k] = s2
k + σ2

• Thus, under fixed effects model: V ar[θ̂k] = s2
k

whereas under random effects model: V ar[θ̂k] = s2
k + σ2

• If study effects are assumed independent, then

μ̂ =

∑K
k=1 wkθ̂k∑K

k=1 wk

and V ar[μ̂] =
1∑K

k=1 wk

where the weights are given by wk = 1/V ar[θ̂k]

• Allowing the extra between-studies variation (σ2) has the effect

of reducing the relative weights given to more precise studies

• Thus, random effects model produces more conservative interval

estimates for the overall effect μ

• How do we estimate σ? Should we treat s2
k as (known) fixed?
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• Assume that, under the random effects model

(i) study effects, θ̂k
ind
∼ N(θk, s2

k) · · · · · · (1)

(ii) random effects, θk
iid
∼ N(μ, σ2) · · · · · · (2)

(iii) within study variances, s2
k are known

(usually estimated values are plugged in)

• Likelihood based inference combines (1) and (2) to form the

marginal model: θ̂k
ind
∼ N(μ, s2

k + σ2)

• Maximum Likelihood Estimate (Frequentist):

(μ̂, σ̂) = arg max
K∏

k=1

{
φ

(
(θ̂k − μ)/

√
σ2 + s2

k

)
/
√

σ2 + s2
k

}

where φ(·) denotes the probability density function of N(0, 1)

• Monte Carlo (MC) based Posterior Estimate (Bayesian):

μ|θ̂′ks, s′ks, σ2 ∼ N(?, ?) and σ2|θ̂′ks, s′ks ∼ ARS
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Example 1: Does Magnesium sulphate have protective effect after

acute myocardial infraction (AMI), particularly through preventing

serious arrhythmias?

Analysis Using Estimated log odd-ratios:

log(OR): θ̂ = (−0.65,−1.02,−1.12,−0.04, 0.21,−2.05,−1.03,−0.30)

and s.e.(log-OR): s = (1.06, 0.41, 0.74, 1.17, 0.48, 0.90, 1.02, 0.15)

R codes:

negloglik=function(mu=0,sigma=1){

-sum(dnorm(theta.hat,mean=mu,sd=sqrt(sigma^2+s^2),log=T))}

require(stats4)

fit=mle(negloglik)

#fit=mle(negloglik,method="L-BFGS-B",lower=c(-Inf,1e-08))

summary(fit)

vcov(fit)

confint(fit)
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Results:

Estimate Std.Error 2.5% 97.5%

mu -4.0854e-01 0.1287 -1.1301 -0.1330

sigma -9.8811e-05 0.3102 -0.9482 0.9482

Conclusion: Combined estimated log(OR)=-0.4085 with 95% C.I.

(-1.1301, -0.1330) and hence magnesium sulphate has protective

effect after AMI

• What are the study specific log(OR) estimates?

• What is the predictive distribution of treatment effect in a new

trial?

• What is the predictive distribution of the log(OR) to be observed

in a new trial?

• We can perform Bayesian meta-analysis to answer these questions
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Hierarchical Model: θ̂k ∼ N(θk, s2
k) and θk ∼ N(μ, σ2)

WinBUGS codes:

model{

for(k in 1:K){

theta.hat[k] ~ dnorm(theta[k], tau.s[k])

tau.s[k] <- pow(s[k], -2); theta[k] ~ dnorm(mu, tau)

}

theta[K+1] ~ dnorm(mu, tau)

tau ~ dunif(0, 1000); mu ~ dnorm(0, 0.0001)

tau <- 1/(sigma*sigma); sigma ~ dexp(1)

}

Data: http://www.mrc-bsu.cam.ac.uk/bayeseval/ex8.1.ISIS-dat.txt

list(theta.hat=c(-0.65,-1.02,-1.12,-0.04,0.21,-2.05,-1.03,-0.30),

s=c(1.06,0.41,0.74,1.17,0.48,0.90,1.02,0.15), K=8)

Inits:

list(mu=0, tau=1)
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Results:

mean sd 2.5% median 97.5%

------------------------------------------------

mu -0.5532 0.2833 -1.2160 -0.5250 -0.0466

------------------------------------------------

sigma 0.3971 0.3089 0.0121 0.3352 1.1440

theta[1] -0.5543 0.4601 -1.6050 -0.5130 0.3340

theta[2] -0.7211 0.3440 -1.4800 -0.6744 -0.1705

theta[3] -0.6644 0.4370 -1.7180 -0.5820 0.0649

theta[4] -0.4783 0.4641 -1.4940 -0.4660 0.5060

theta[5] -0.2527 0.3551 -0.8530 -0.3044 0.5831

theta[6] -0.8002 0.5379 -2.1490 -0.6663 -0.0517

theta[7] -0.6174 0.4782 -1.7530 -0.5471 0.2306

theta[8] -0.3520 0.1461 -0.6287 -0.3536 -0.0623

------------------------------------------------

theta[9] -0.5510 0.5734 -1.8220 -0.5026 0.5753

------------------------------------------------
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Recall that we have used approximate normality assumption for the

estimated log(OR)’s.

Is the assumption reasonable?
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• The previous analysis was based on following assumptions:

– The estimated log(OR) differences are normally distributed

– The estimated s.e.’s are fixed

• How reasonable these assumptions are when in fact the original

observations are binomial counts?

• Xkj =# of deaths out of nkj patients in group j of k-th study

• Assume that Xkj ∼ Bin(pkj , nkj) for j = 1, 2; k = 1, . . . , K

• Consider a (new!) full Hierarchical model:

pkj ∼ Beta(mjμj , mj(1− μj))

μj ∼ Beta(0.5, 0.5), for j = 1, 2

mj ∼ Gamma(0.1, 0.1)

• Study-specifc log(OR): θk = log pk1(1−pk2)
pk2(1−pk1)

for k = 1, . . . , K
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WinBUGS code:
model{

for(j in 1:2){

for(k in 1:8){

X[k,j] ~ dbin(p[k,j], n[k,j])

p[k,j] ~ dbeta(a[j], b[j])

}

a[j] <- m[j]*mu[j]

b[j] <- m[j]*(1-mu[j])

mu[j] ~ dbeta(0.5, 0.5)

m[j] ~ dgamma(0.1, 0.1)

}

for(k in 1:8){

theta[k] <- logit(p[k,1]) - logit(p[k,2])

}

log.or <- logit(mu[1]) - logit(mu[2])

}

Data: http://www.mrc-bsu.cam.ac.uk/bayeseval/ex8.1.ISIS-dat.txt

X[,1] X[,2] n[,1] n[,2]

1 2 40 36

9 23 135 135

2 7 200 200

1 1 48 46

10 8 150 148

1 9 59 56

1 3 25 23

90 118 1159 1157

END

Inits:

list(mu=c(0.5, 0.5), m=c(1,1))
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mean sd 2.5% median 97.5%

log.or -0.6162 0.5618 -1.6850 -0.6333 0.5582

mu[1] 0.0669 0.0308 0.0294 0.0601 0.1471

mu[2] 0.1135 0.0371 0.0592 0.1083 0.1992

theta[1] -0.8708 1.0550 -3.1580 -0.8127 1.0260

theta[2] -1.0530 0.4069 -1.8710 -1.0440 -0.2732

theta[3] -1.1960 0.7507 -2.7820 -1.1540 0.1821

theta[4] -0.3417 1.1480 -2.7030 -0.3139 1.9410

theta[5] 0.1195 0.4688 -0.8088 0.1171 1.0420

theta[6] -2.1150 0.9364 -4.1880 -2.0200 -0.5319

theta[7] -1.1760 1.0370 -3.4090 -1.1160 0.6349

theta[8] -0.3067 0.1461 -0.5977 -0.3064 -0.0202

Notice that now the evidence in support of the treatment is no longer

as conclusive as before (when estimated log(OR)’s was used)

Moral: Try to model as many sources of variations as available
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Some Remarks:

• Often an alternative model is used:

logit(pk1) = φk + θ and logit(pk2) = φk

• If φk and θ are assumed independent, it forces the treatment

risks to be greater than that of control risks

(notice that V ar(φk + θ) > V ar(φk))

• If φk’s are given (fixed) uniform priors, it might lead to

inappropriate shrinkage

• Induces strong correlation between treatment (pk1’s) and control

(pk2’s) groups when φk are given vague priors

(notice that Corr(φk + θ, φk) = [1 + V ar(θ)/V ar(φk)]−1/2 )

• See Spiegelhalter, Abrams & Myles (2004, p.275) for a prior

sensitivity study:

http://www.mrc-bsu.cam.ac.uk/bayeseval/ex8.2.efm.txt
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Example 2: Is electronic foetal heart rate monitoring clinically

effective in reducing the risk of perinatal death?

Traditional normal approximation based model may not be

appropriate due to rarity pf perinatal deaths

• Xkj = # perinatal deaths out of nkj in group j of k-th study

• Assume Xkj ∼ Bin(pkj , nkj) for k = 1, . . . , K(= 9), j = 1, 2

• We can use the earlier Beta distribution based model for pkj ’s

• However, consider an alternative Hierarchical model:

logit(pkj) ∼ N(μj , σ2
j )

μj ∼ N(0, 0.0001), for j = 1, 2

σ2
j ∼ InvGamma(0.1, 0.1)

• Study-specifc log(OR): θk = log pk1(1−pk2)
pk2(1−pk1)

for k = 1, . . . , K
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WinBUGS code:
model{

for(j in 1:2){

for(k in 1:9){

X[k,j] ~ dbin(p[k,j], n[k,j])

logit(p[k,j]) <- logit.p[k,j]

logit.p[k,j] ~ dnorm(mu[j], tau[j])}

mu[j] ~ dnorm(0, 0.0001)

tau[j] ~ dgamma(0.1, 0.1)

sigma[j] <- 1/sqrt(tau[j])}

for(k in 1:9){theta[k] <- logit.p[k,1]-logit.p[k,2]}

log.or <- mu[1] - mu[2]

sigma.pop <- sqrt(sigma[1]*sigma[1]+sigma[2]*sigma[2])

}

Data: http://www.mrc-bsu.cam.ac.uk/bayeseval/ex8.2.efm-dat.txt

n[,1] X[,1] n[,2] X[,2]

175 1 175 1

242 2 241 1

253 0 251 1

463 3 232 0

445 1 482 0

485 0 493 1

6530 14 6554 14

122 17 124 18

746 2 682 9

END

Inits:

list(mu=c(0, 0), tau=c(1,1))
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Example 3: Does drug treatment reduce mortality in mild to moderate

hypertension adjusting for baseline rates?

• Xkj = # deaths in group j for the k-th study

• nkj = patient-years of follow-up in group j for k-th study

• Consider again a full hierarchical model:

Xkj ∼ Poisson(λkj) k = 1, . . . , K, j = 1, 2

λkj = nkj ∗ δkj/1000

δkj ∼ Gamma(μ2
jτj , μjτj)

μj ∼ Gamma(a, b)

τj ∼ Gamma(a, b)

• We would be interested in log of the relative differences:

study specific: θk = log(δk1)− log(δk2) and

population level: log(μ1/μ2)
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model{

for(j in 1:2){for(k in 1:12){

X[k,j] ~ dpois(lambda[k,j])

lambda[k,j] <- n[k,j]*delta[k,j]/1000

delta[k,j] ~ dgamma(a[j], b[j])}

a[j] <- b[j]*mu[j]

b[j] <- mu[j]*tau[j]

mu[j] ~ dgamma(0.1, 0.1)

tau[j] ~ dgamma(0.1, 0.1)}

for(k in 1:12){theta[k] <- log(delta[k,1]) - log(delta[k,2])}

log.diff <- log(mu[1]) - log(mu[2])

}

Data: http://www.mrc-bsu.cam.ac.uk/bayeseval/ex8.3.hyper-dat.txt

X[,1] n[,1] X[,2] n[,2]

10 595.2 21 640.2

2 762.0 0 756.0

54 5635.0 70 5600.0

47 5135.0 63 4960.0

53 3760.0 62 4210.0

10 2233.0 9 2084.5

25 7056.1 35 6824.0

47 8099.0 31 8267.0

43 5810.0 39 5922.0

25 5397.0 45 5173.0

157 22162.7 182 22172.5

92 20885.0 72 20645.0

END

Inits:

list(mu=c(1,1), tau=c(1,1))
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A General Model for Direct Comparison

• In most cases, we will have some outcome events Xkj measured

in group j of k-th study of sample size nkj

• Assume Xkj ∼ f(x|ηkj , nkj) for k = 1, . . . , K, j = 1, 2 where ηkj

denotes the vector of parameters.

• Assume ηkj ∼ h(η|μj , τj) where h(·|μ, τ) is a conditional density

with location μ and scale τ

• θk = d(ηk1, ηk2) where d(η1, η2) is some “signed distance”

between η1 and η2 such that

(i) d(η1, η2) = 0 iff η1 = η2 and

(ii) d(η1, η2) = −d(η2, η1)

• The goal would be to obtain posterior distribution of d(μ1, μ2) or

E(θk|μ
′
js, τ

′
js) (which is same for all k)
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Meta Regression

• Why study results vary systematically?

• Random effects model generally can not identify factors that may

explain the sources of variability

• Regression models can be possibly be used to explore reasons

why study results vary if study level covariates are available

• Suppose xk denote a study level covariate for k-th study

θ̂k = θk + skεk and θk = μ + βxk + σek

• Marginally (i.e. integrating the random effects), we get

θ̂k = μ + βxk + (skεk + σek)

• Both frequentist and Bayesian methods can be used to estimate

the overall effect μ (wlog assuming
∑

k xk = 0)

(source: Sutton and Abrams (2001), Stat Meth in Med Res, 10, p.277-303)
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Indirect Comparison Studies

• Suppose an established treatment C (active-control) exists for a

severe health condition

• Suppose a new treatment T is being evaluated to treat that

health condition

• The efficacy of T would ideally be estimated using a randomized

control trial (RCT) with a placebo P

• But...existence of C may make the use of placebo unethical

• In this case the efficacy of T may have to estimated indirectly

using (past) data on comparisons between C and P

• Can we compare a new treatment T and control C without using

a RCT that directly compares T with placebo P?
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• More generally, can we make comparisons between (several)

treatments that may well never have been directly compared?

• Is it really possible to draw inferences on the treatment effects

compared with a control only?

• On a positive note see Song et al. (2003) article:

http://www.bmj.com/content/326/7387/472.full

• On cautionary notes see J. A. Berlin’s talk (04/27/2010): http:

//www.cceb.upenn.edu/biostat/conferences/ClinTrials10/

• Suppose ηkj represents expected response of treatment j being

given in study k (control is labeled as j = 0)

• A simple model: ηkj = θk + φkj

• Often it is convenient to assume φkj ∼ N(μj , σ
2
j )

• A variety of other possible models can be considered
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Example 4: Can we compare alternative therapies for lowering blood

pressure by estimating effects that have never been directly measured?

• Let Xkj = mean change in blood pressure for the j-th treatment

in the k-th study where j = 0, 1, 2, 3 and k = 1, . . . , K = 8

• Four treatments (control, A, B, C) have been given in a set of

crossover experiments comprising RCTs and single-arm studies

• But...no direct comparison between treatments A and B made

• And...we are interested in this particular contrast (i.e., A vs. B)

• Let Xkj ∼ N
(
ηkj ,

σ2
j

nkj

)
for k = 1, . . . , K = 8, j = 0, . . . , J = 3

• Further assume
(nkj−1)S2

kj

σ2
j

∼ χ2
njk−1

• Let ηjk = θk + φj where φ0 = 0

• Thus, θk = “control” in k-th study and φ1, φ2, φ3 measure mean

effects of A, B and C, respectively.
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WinBUGS code:
model{

for(i in 1:I){

x[i] ~ dnorm(mu[i],prec[i])

mu[i] <- phi[treat[i]] + theta[study[i]]

prec[i] <- n[i]/(sigma[treat[i]]*sigma[treat[i]])

SS[i] <- s[i]*s[i]*(n[i]-1)

SS[i] ~ dgamma(a[i],b[i])

a[i] <- (n[i]-1)/2

b[i] <- 1/(2*sigma[treat[i]]*sigma[treat[i]])

}

for(k in 1:K){

theta[k] ~ dnorm(mu.theta, inv.sigma2.theta)

}

#contrasts of interest

AvB <- phi[2]-phi[3]

mu.theta ~ dunif(-50,50)

inv.sigma2.theta <- 1/(sigma.theta*sigma.theta)

sigma.theta ~ dunif(0,100)

for(j in 1:J){

log(sigma[j]) <-logsigma[j]

logsigma[j]~dunif(-10,10)

}

phi[1] <- 0

for(j in 2:4){

phi[j] ~ dunif(-50, 50)

}

}
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Data: http://www.mrc-bsu.cam.ac.uk/bayeseval/ex8.4.blood-dat1.txt

list(I=14, K=8, J=4)

n[] x[] s[] treat[] study[]

41 8.90 7.49 2 1

39 6.05 10.28 4 1

47 5.51 8.72 1 2

100 6.21 8.02 3 2

53 3.75 7.07 1 3

54 10.20 9.39 2 3

47 3.04 9.20 1 4

44 8.43 8.17 2 4

30 2.97 7.69 1 5

32 6.53 7.80 3 5

32 7.78 6.78 4 5

69 3.99 8.04 1 6

68 5.28 7.58 1 7

67 3.34 8.01 1 8

END

Inits:

list(mu.theta=4,sigma.theta=1,logsigma=c(2,2,2,2),phi=c(NA,4,4,4))
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Multiple Testing

• Consider m tests: H0j vs. H1j for j = 1, . . . , m

• Suppose that the tests are conducted independently each at level

α; i..e., the probability of declaring a particular test is significant

under its null is α

• But the probability of declaring at least 1 of the m tests

significant is 1− (1− α)m

• E.g., if we use α = 0.05, we have

m = 5 10 30 50 100

1− 0.95m 0.23 0.40 0.79 0.92 0.99

• The probability of declaring at least one test significant is almost

a certainty if when we have 100 tests (each at level 0.05)
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Consider the following set-up:

# H0 not rejected # H0 rejected total

# true H0 U V m0

# false H0 T S m1

total m−R R m

• Unfortunately U, V, T and S are all unobservable; only R (and

obviously m) is observable

• Some notions/definitions:

– Per-comparison error rate: PCER = E[V ]
m

– Family-wise error rate: FWER = Pr[V ≥ 1]

– False discovery rate: FDR = E
[

V
max{R,1}

]

– Positive FDR: pFDR = E
[

V
R |R > 0

]
= FDR/ Pr[R > 0]
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• The goal is now to control some these error rates

• Most often procedures are based on adjusting the (unadjusted)

p-values, pj ’s

• Bonferroni: Reject any H0j with p-value ≤ α
m

i.e., adjusted p-value = min{mpj , 1}

• Sidak: Reject any H0j with p-value ≤ 1− (1− α)1/m

i.e. adjusted p-value = min{1− (1− pj)
m, 1}

• Bonferroni and Sidak performs very similar; however both are

usually too conservative.

• Holm step-down: Order the unadjusted p-values as

p(1) ≤ p(2) ≤ · · · ≤ p(m)

adjusted p-value = max1≤k≤j min{(m− k + 1)p(k), 1}

• Holm’s approach is less conservative than Bonferroni/Sidak

Sujit Ghosh June 17, 2011 32



NISS workshop, RTP, NC, USA

• All of these adjusted p-values attempt to control FWER

• Westfall and Young step-down approach:

adjusted p-value = max1≤k≤j Pr[mink≤l≤m p(l) ≤ p(k)|H
c
0 ]

• Benjamini and Hochberg:

adjusted p-value = minj≤k≤m min{
mp(k)

k , 1}

• Asymptotically, as m becomes large (under independence of

tests) it can be shown that

FDR ≈ pFDR ≈
E[V ]

E[R]

where the last ratio is the proportion of false discoveries (PFD)

• There are “adaptive” modifications of Benjamini and Hochberg

procedure:

Compute m̂ = max{i : p(i) ≤
α
p̂0

i
m} and reject H0j if p(j) ≤ p(m̂)
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Some online resources:

• HHS:

http://www.hhs.gov/recovery/programs/cer/execsummary.html

• Spiegelhalter, D. J. (2004):

http://projecteuclid.org/euclid.ss/1089808280

• Spiegelhalter, Abrams and Myles (2003) Book (Chap.8):

http://www.mrc-bsu.cam.ac.uk/bayeseval/

[All four examples in this talk are adapted from the above book]

• Dmitrienko, Tamhane and Bretz (2009) Multiple Testing Problems in

Pharmaceutical Statistics

http://www.crcpress.com/product/isbn/9781584889847

THANKS!
����������	
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