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Meta-Analysis

A quantitative synthesis of relevant information from multiple
studies has become increasingly popular under the name of
Meta-Analysis

Often the goal is to provide a numerical summary of the overall
effect of an intervention (e.g., treatment, device or service)
Two models are frequently used in meta-analysis:

— Fized effects model: assumes that each observed study result
is estimating a common overall effect

— Random effects model: assumes that each observed result is
estimating its own unknown effect; which in turn are
estimating a common overall mean

The use of either models depends on the context
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e The fixed effects model does not allow for between-study
heterogeneity

e The random effects model allows for between-study heterogeneity
as well as within-study variability

e Consider K studies, each measuring the effect of an intervention
e Foreach k=1,2,..., K, suppose

— 0y, denotes (estimated) effect within k-th study, and

— sz denotes the associated variance within k-th study

e The fixed effects model assumes: ék = L+ Sk€k
where £ is the overall effect, Ele;] = 0 and Var[ey] =1

e In contrast, the random effects model assumes:

0 = 0k + sgep and O = pu+ oeg
where 0)’s are (unknown) study-specific (random) effects and o2
is the between-study variance (assume Eley] = 0 and Varleg] = 1)
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Integrating the random effects we obtain: 0, = w+ (oer + sgeg)
Assuming ej, L €5, we have Var[d;] = sz + o2

Thus, under fixed effects model: Var[f;] = s?

whereas under random effects model: Var[d;] = s3 + o2

If study effects are assumed independent, then

” .
0 1

7216;1 7k and Var(jl] = ———

Zk:l Wi Ek:1 Wi

where the weights are given by wy = 1/Var[0]

ﬂ:

Allowing the extra between-studies variation (02) has the effect
of reducing the relative weights given to more precise studies

Thus, random effects model produces more conservative interval

estimates for the overall effect p

How do we estimate o? Should we treat si as (known) fized?
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e Assume that, under the random effects model

(i) study effects, 0y, ind N(Op,s2) - (1)
(ii) random effects, 6y, e N(p,o%)------ 2)

(iii) within study variances, s? are known
(usually estimated values are plugged in)

e Likelihood based inference combines (1) and (2) to form the
marginal model: 6, ind N(p, s2 + 0?)

e Maximum Likelihood Estimate (Frequentist):

(7.5) = argmaxﬁ {o(6c-nfor+) nfor vt}

where ¢(-) denotes the probability density function of N(0,1)

e Monte Carlo (MC) based Posterior Estimate (Bayesian):
(1@ s, 845,02 ~ N (2, ?) and 02|f}s, 5.5 ~ ARS
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FEzample 1: Does Magnesium sulphate have protective effect after
acute myocardial infraction (AMI), particularly through preventing
serious arrhythmias?

Analysis Using Estimated log odd-ratios:
log(OR): 6= (-0.65,—-1.02,-1.12,—-0.04,0.21, —2.05, —1.03, —0.30)
and s.e.(log-OR): s = (1.06,0.41,0.74,1.17,0.48,0.90, 1.02, 0.15)

R codes:

negloglik=function(mu=0,sigma=1){
-sum(dnorm(theta.hat ,mean=mu, sd=sqrt(sigma~2+s~2),log=T))}
require(stats4)

fit=mle(negloglik)
#fit=mle(negloglik,method="L-BFGS-B",lower=c(-Inf,1e-08))
summary (fit)

veov(fit)

confint (fit)
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Results:

Estimate Std.Error 2.5% 97.5%
mu -4.0854e-01 0.1287 -1.1301 -0.1330
sigma -9.8811e-05 0.3102 -0.9482 0.9482

Conclusion: Combined estimated log(OR)=-0.4085 with 95% C.I.
(-1.1301, -0.1330) and hence magnesium sulphate has protective
effect after AMI

e What are the study specific log(OR) estimates?

e What is the predictive distribution of treatment effect in a new
trial?

e What is the predictive distribution of the log(OR) to be observed
in a new trial?

e We can perform Bayesian meta-analysis to answer these questions
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Hierarchical Model: 0 ~ N (6, s3) and 0, ~ N(u,0?)
WinBUGS codes:

modelq{
for(k in 1:K){
theta.hat[k] ~ dnorm(thetalk], tau.s[k])
tau.s[k] <- pow(s[k], -2); thetalk] ~ dnorm(mu, tau)
}
theta[K+1] ~ dnorm(mu, tau)
tau ~ dunif (0, 1000); mu ~ dnorm(0, 0.0001)
tau <- 1/(sigma*sigma); sigma ~ dexp(1)
¥
Data: http://www.mrc-bsu.cam.ac.uk/bayeseval/ex8.1.ISIS-dat.txt
list(theta.hat=c(-0.65,-1.02,-1.12,-0.04,0.21,-2.05,-1.03,-0.30),
s=c(1.06,0.41,0.74,1.17,0.48,0.90,1.02,0.15), K=8)
Inits:
list(mu=0, tau=1)
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Results:
mean sd 2.5% median 97.5%
mu -0.5532 0.2833 -1.2160 -0.5250 -0.0466

sigma 0.3971 0
theta[1] -0.5543 0
theta[2] -0.7211 0
theta[3] -0.6644 0
thetal[4] -0.4783 0.4641 -1.4940 -0.4660 0.5060
theta[5] -0.2527 0
theta[6] -0.8002 0
thetal[7] -0.6174 0
thetal[8] -0.3520 0
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caterpillar plot: posterior intervals of theta
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Recall that we have used approximate normality assumption for the

estimated log(OR)’s.

Is the assumption reasonable?
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e The previous analysis was based on following assumptions:
— The estimated log(OR) differences are normally distributed
— The estimated s.e.’s are fixed

e How reasonable these assumptions are when in fact the original
observations are binomial counts?

Xkj =# of deaths out of ny; patients in group j of k-th study

Assume that Xy; ~ Bin(pg;,ng;) for j=1,2; k=1,... | K

Consider a (new!) full Hierarchical model:
pr;  ~  Beta(mjpg, m;(1— ;)
pu; ~ DBeta(0.5,0.5), for j=1,2
m; ~ Gamma(0.1,0.1)

Study-specifc log(OR): 6 = log % fork=1,....K
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WinBUGS code:

model{
for(j in 1:2){
for(k in 1:8){
X[k,j] ~ dbin(plk,jl, nlk,j1)
plk,jl ~ dbeta(aljl, b[j1)
}
alj] <- m[jI*mu(j]
b[j] <= m[jI*(1-mu[31)
mu[j] ~ dbeta(0.5, 0.5)
nlj] - dgamma(0.1, 0.1)
}
for(k in 1:8){
thetalk] <- logit(plk,1]) - logit(p[k,2])
}
log.or <- logit(mu[1]) - logit(mu[2])
¥
Data: http://www.mrc-bsu.cam.ac.uk/bayeseval/ex8.1.ISIS-dat.txt
Xx[,1] x[,2] n[,1] n[,2]
1 2 40 36
9 23 135 135
2 7 200 200
1 1 48 46
0 8 150 148
1 9 59 56
1 3 25 23
90 118 1159 1157
END
Inits:
list(mu=c(0.5, 0.5), m=c(1,1))
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mean sd 2.5% median 97.5%
log.or -0.6162 0.5618 -1.6850 -0.6333 0.5582
mul[1] 0.0669 0.0308 0.0294 0.0601 0.1471

0

0
mu [2] 0.1135 0.0371 0.0592 0.1083 0.1992
theta[1] -0.8708 1.0550 -3.1580 -0.8127 1.0260
theta[2] -1.0530 0.4069 -1.8710 -1.0440 -0.2732
theta[3] -1.1960 0.7507 -2.7820 -1.1540 0.1821
theta[4] -0.3417 1.1480 -2.7030 -0.3139 1.9410
theta[5] 0.1195 0.4688 -0.8088 0.1171 1.0420
thetal[6] -2.1150 0.9364 -4.1880 -2.0200 -0.5319
thetal[7] -1.1760 1.0370 -3.4090 -1.1160 0.6349
0

theta[8] -0.3067 0.1461 -0.5977 -0.3064 -0.0202

Notice that now the evidence in support of the treatment is no longer

as conclusive as before (when estimated log(OR)’s was used)

Moral: Try to model as many sources of variations as available
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Some Remarks:

o Often an alternative model is used:
logit(pr1) = ¢r + 0 and logit(pr2) = dr

e If ¢;, and 6 are assumed independent, it forces the treatment
risks to be greater than that of control risks
(notice that Var(ér +0) > Var(ér))

o If ¢;’s are given (fixed) uniform priors, it might lead to
inappropriate shrinkage

e Induces strong correlation between treatment (pg;’s) and control
(pre’s) groups when ¢y, are given vague priors
(notice that Corr(¢r + 0, ¢r) = [1+ Var(0)/Var(ér)] /2 )

e See Spiegelhalter, Abrams & Myles (2004, p.275) for a prior
sensitivity study:

http://www.mrc-bsu.cam.ac.uk/bayeseval/ex8.2.efm.txt
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Example 2: Is electronic foetal heart rate monitoring clinically

effective in reducing the risk of perinatal death?

Traditional normal approximation based model may not be
appropriate due to rarity pf perinatal deaths

e Xj; = # perinatal deaths out of ny; in group j of k-th study
o Assume Xy; ~ Bin(prj,ng;) for k=1,...,K(=9), j=1,2
e We can use the earlier Beta distribution based model for py;’s
e However, consider an alternative Hierarchical model:
logit(pr;) ~ N(uj, 03)
i~ N(0,0.0001), forj=1,2
0]2 ~  InvGamma(0.1,0.1)

Study-specifc log(OR): ), = log % fork=1,....K
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WinBUGS code:

model{

for(j in 1:2){

for(k in 1:9){

X[x,j] - dbin(plk,jl, nlk,j1)
logit(plk,jl) <- logit.plk,j]
logit.plk,j] ~ dnorm(muljl, tauljl)}
mu[j] ~ dnorm(0, 0.0001)

taulj] ~ dgamma(0.1, 0.1)

sigmalj] <- 1/sqrt(taulj1)}

for(k in 1:9){thetalk] <- logit.plk,1]-logit.p[k,2]1}
log.or <- mu[1] - mu[2]
sigma.pop <- sqrt(sigma[1]*sigma[1]+sigma[2]*sigma[2])

Data: http://www.mrc-bsu.cam.ac.uk/bayeseval/ex8.2.efm-dat.txt
n[,1] X[,1] n[,2] X[,2]

175 1 175

242 2 241
253 [ 251
463 3 232
445 1 482
485 0 493

6530 14 6554
122 17 124
746 2 682

END

Inits:

list(mu=c(0, 0),

tau=c(1,1))
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Example 3: Does drug treatment reduce mortality in mild to moderate

hypertension adjusting for baseline rates?

e Xj; = # deaths in group j for the k-th study

e n;; = patient-years of follow-up in group j for k-th study

e Consider again a full hierarchical model:

Xixj ~ Poisson(Ag;) k=1,

/\kj = MNgj* (5@’/1000
Oy~ Gamma(piy, py;)
w; ~ Gamma(a,b)

T; ~ Gamma(a,b)

LK j=1,2

e We would be interested in log of the relative differences:

study specific: 6y = log(dx1) — log(dk2) and

population level: log(uy/p2)
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model{

for(j in 1:2){for(k in 1:12){

X[k,j] ~ dpois(lambdalk,j])
lambdalk,j] <- nlk,jlxdeltalk,j1/1000
deltalk,j] - dgamma(alj]l, b[j1)}

aljl <- b[jl*mulj]

bl[j] <- mul[jl*taulj]

mu[j] ~ dgamma(0.1, 0.1)

tau[j] ~ dgamma(0.1, 0.1)}

for(k in 1:12){thetal[k] <- log(deltalk,1]) - log(deltalk,2])}
log.diff <- log(mu[1]) - log(mu[2])

}

Data: http://www.mrc-bsu.cam.ac.uk/bayeseval/ex8.3.hyper-dat.txt
Xx[,11  al,1] x(,2]1  nl,2]
10 595.2 21 640.2

2 762.0 0 756.0
54 5635.0 70 5600.0
a7 5135.0 63 4960.0
53 3760.0 62 4210.0
10 2233.0 9 2084.5
25 7056.1 35 6824.0
a7 8099.0 31 8267.0
43 5810.0 39 5922.0
25 5397.0 45 5173.0

157 22162.7 182 22172.5
92 20885.0 72 20645.0

END

Inits:

list(mu=c(1,1), tau=c(1,1))
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mu[1] sample: 5000 mu[2] sample: 5000

caterpillar plot: theta

box plot mu
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A General Model for Direct Comparison
e In most cases, we will have some outcome events X}; measured
in group j of k-th study of sample size ny;
o Assume Xy; ~ f(x|nx;, ng;) for k=1,..., K, j = 1,2 where n;
denotes the vector of parameters.

o Assume 1y, ~ h(n|p;, 7;) where h(-|p, 7) is a conditional density
with location p and scale 7

e 0 = d(nk1, Mk2) where d(n1,12) is some “signed distance”
between 7; and 72 such that
(i) d(m,m2) = 0iff ;1 =72 and
(ii) d(n1,n2) = —d(n2,m)

e The goal would be to obtain posterior distribution of d(u1, p2) or
E(0x|u)s,7js) (which is same for all k)
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Meta Regression
e Why study results vary systematically?

e Random effects model generally can not identify factors that may
explain the sources of variability

e Regression models can be possibly be used to explore reasons
why study results vary if study level covariates are available

e Suppose z; denote a study level covariate for k-th study
ék =0, +spe, and 0 = u+ﬂ$k + oeg

e Marginally (i.e. integrating the random effects), we get
O = 1+ By + (spex + oey)
e Both frequentist and Bayesian methods can be used to estimate
the overall effect p (wlog assuming », zj = 0)

(source: Sutton and Abrams (2001), Stat Meth in Med Res, 10, p.277-303)
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Indirect Comparison Studies

e Suppose an established treatment C (active-control) exists for a
severe health condition

e Suppose a new treatment T is being evaluated to treat that
health condition

e The efficacy of T would ideally be estimated using a randomized
control trial (RCT) with a placebo P

e But...existence of C may make the use of placebo unethical

e In this case the efficacy of T may have to estimated indirectly
using (past) data on comparisons between C and P

e Can we compare a new treatment 7' and control C' without using
a RCT that directly compares T with placebo P?
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More generally, can we make comparisons between (several)
treatments that may well never have been directly compared?

Is it really possible to draw inferences on the treatment effects
compared with a control only?

On a positive note see Song et al. (2003) article:
http://www.bmj.com/content/326/7387/472.full

On cautionary notes see J. A. Berlin’s talk (04/27/2010): http:

//www.cceb.upenn.edu/biostat/conferences/ClinTrials10/

Suppose 7;; represents expected response of treatment j being
given in study & (control is labeled as j = 0)

A simple model: n; = Ok + o
Often it is convenient to assume ¢g; ~ N(u;, U?)

A variety of other possible models can be considered
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Ezample 4: Can we compare alternative therapies for lowering blood

pressure by estimating effects that have never been directly measured?

Let X}; = mean change in blood pressure for the j-th treatment
in the k-th study where 7 =0,1,2,3and k=1,..., K =8

Four treatments (control, A, B, C) have been given in a set of
crossover experiments comprising RCTs and single-arm studies

But...no direct comparison between treatments A and B made

And...we are interested in this particular contrast (i.e., A vs. B)

2
9

Lethj~N<nkj, )fork:l,...,K:S,j:O,...,J:3

Nkj

ng;—1)S2.
Further assume (JU% ~ x2

3 njkfl
Let nj, = 01 + ¢; where ¢g =0
Thus, 0, = “control” in k-th study and ¢1, @2, ¢3 measure mean

effects of A, B and C, respectively.
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WinBUGS code:

model{

for(i in 1:I){

x[i] ~

dnorm(mu[i],prec[i])

mu[i] <- philtreat[i]] + thetal[study[il]
prec[i] <- n[il/(sigma[treat[i]]*sigma[treat[i]])
SS[i] <- s[il*s[il*(nl[i]l-1)

ss[i] ~

dgamma (a[i],b[i])

ali] <- (m[il-1)/2
blil <- 1/(2*sigmaltreat[il]l*sigmaltreat[il])

}

for(k in 1:K){
thetalk] ~ dnorm(mu.theta, inv.sigma2.theta)

}

#contrasts of interest
AvB <~ phi[2]-phi[3]

mu.theta ~ dunif (-50,50)

inv.sigma2.theta <- 1/(sigma.theta*sigma.theta)
sigma.theta ~ dunif(0,100)

for(j in 1:1){

log(sigmaljl) <-logsigmalj]
logsigma[j]~dunif(-10,10)

phi[1]

}
<=0

for(j in 2:4){
philj] ~ dunif(-50, 50)

¥
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Data: http://www.mrc-bsu.cam.ac.uk/bayeseval/ex8.4.blood-datl.txt
list(I=14, K=8, J=4)

n(]
41
39
a7

100
53
54
a7
44
30
32
32
69
68
67

END

x[]  s[] treat[] study[]
90 7.49 2 1
05 10.28 4
51 72 1
21 02 3
75 07 1
20 39 2
04 20 1
43 17 2
1
3
4
1
1
1

w o oo o

o

97 69
53 80
78 78
99 04
28 58
34 01

® N OO NN DO O N O ®
® N OO AR W W N e

WO W NN ® W

Inits:
list(mu.theta=4,sigma.theta=1,logsigma=c(2,2,2,2),phi=c(NA,4,4,4))
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Multiple Testing

o Consider m tests: Ho; vs. Hyj for j=1,...,m

e Suppose that the tests are conducted independently each at level
«; i..e., the probability of declaring a particular test is significant
under its null is «

e But the probability of declaring at least 1 of the m tests
significant is 1 — (1 — a)™

e E.g. if we use @ = 0.05, we have

m = 5 10 30 50 100
1-095™ 1023 040 0.79 092 0.99

e The probability of declaring at least one test significant is almost
a certainty if when we have 100 tests (each at level 0.05)
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Consider the following set-up:

# Hy not rejected | # Hj rejected || total

# true Hy U 14 mo
# false Hy T S my
’ total ‘ m—R R H m ‘

e Unfortunately U, V,T and S are all unobservable; only R (and
obviously m) is observable

e Some notions/definitions:

— Per-comparison error rate: PCER = %

— Family-wise error rate: FWER = Pr[V > 1]

— False discovery rate: FDR =F [m}

— Positive FDR: pFDR = E [%|R > 0] = FDR/Pr[R > (]
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e The goal is now to control some these error rates

e Most often procedures are based on adjusting the (unadjusted)

p-values, p;’s

o Bonferroni: Reject any Ho; with p-value <

a
m
i.e., adjusted p-value = min{mp;, 1}
e Sidak: Reject any Hy; with p-value < 1 — (1 — a)!/™
i.e. adjusted p-value = min{1 — (1 —p;)™, 1}
e Bonferroni and Sidak performs very similar; however both are
usually too conservative.
e Holm step-down: Order the unadjusted p-values as
P1) EPe) < S Pm)

adjusted p-value = maxi<p<; min{(m — k + 1)p(x, 1}

e Holm’s approach is less conservative than Bonferroni/Sidak
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All of these adjusted p-values attempt to control FWER

Westfall and Young step-down approach:

adjusted p-value = max <p<; Prming<i<m pgy < pa[HE]
Benjamini and Hochberg;:

adjusted p-value = minj<p<m, min{%, 1}

Asymptotically, as m becomes large (under independence of
tests) it can be shown that

ElV]
FDR~pFDR~ ——
g B[R]
where the last ratio is the proportion of false discoveries (PFD)

There are “adaptive” modifications of Benjamini and Hochberg
procedure:

Compute 1m = max{i : p;;) < p%#} and reject Hoj if pijy < pam)
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Some online resources:

e HHS:

http://www.hhs.gov/recovery/programs/cer/execsummary.html

e Spiegelhalter, D. J. (2004):
http://projecteuclid.org/euclid.ss/1089808280

e Spiegelhalter, Abrams and Myles (2003) Book (Chap.8):
http://www.mrc-bsu.cam.ac.uk/bayeseval/

[All four examples in this talk are adapted from the above book]

e Dmitrienko, Tamhane and Bretz (2009) Multiple Testing Problems in
Pharmaceutical Statistics
http://www.crcpress.com/product/isbn/9781584889847

THANKS!

Dhanyavaad 9=gdrg
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