Meta Analysis and Multiple Testing

Sujit K Ghosh

Web: http://www.stat.ncsu.edu/people/ghosh/

Email: sujit_ghosh@ncsu.edu

Presented at:

"Difficulties with Observational Medical Studies"

NISS Workshop, RTP, NC, USA

NC State Universit

Meta-Analysis

- A quantitative synthesis of relevant information from multiple studies has become increasingly popular under the name of Meta-Analysis
- Often the goal is to provide a numerical summary of the overall effect of an intervention (e.g., treatment, device or service)
- Two models are frequently used in meta-analysis:
 - *Fixed effects model*: assumes that each observed study result is estimating a <u>common</u> overall effect
 - Random effects model: assumes that each observed result is estimating its own unknown effect; which in turn are estimating a common overall mean
- The use of either models depends on the context

Sujit Ghosh	June 17, 2011	1	Sujit Ghosh	June 17, 2011	2
NC STATE UNIVERSITY	NISS worksho	op, RTP, NC, USA	NC STATE UNIVERSITY	NISS workshop, RT	P, NC, USA
• The as we	fixed effects model does not allow for between-s rogeneity random effects model allows for between-study ell as within-study variability	heterogeneity	AssuminThus, ur	ing the random effects we obtain: $\hat{\theta}_k = \mu + (\sigma e_k + \sigma e_k)$ ag $e_k \perp \epsilon_k$, we have $Var[\hat{\theta}_k] = s_k^2 + \sigma^2$ and the fixed effects model: $Var[\hat{\theta}_k] = s_k^2$ under random effects model: $Var[\hat{\theta}_k] = s_k^2 + \sigma^2$	$+ s_k \epsilon_k)$
• For e $-\hat{ heta}_k$ $-s_k^2$	sider K studies, each measuring the effect of an each $k = 1, 2,, K$, suppose k denotes (estimated) effect within k-th study, a k denotes the associated variance within k-th st	and	·	effects are assumed independent, then $\hat{\mu} = \frac{\sum_{k=1}^{K} w_k \hat{\theta}_k}{\sum_{k=1}^{K} w_k} \text{and} Var[\hat{\mu}] = \frac{1}{\sum_{k=1}^{K} w_k}$ he weights are given by $w_k = 1/Var[\hat{\theta}_k]$	
wher • In co wher	fixed effects model assumes: $\hat{\theta}_k = \mu + s_k \epsilon_k$ e μ is the overall effect, $E[\epsilon_k] = 0$ and $Var[\epsilon_k] =$ ontrast, the random effects model assumes: $\hat{\theta}_k = \theta_k + s_k \epsilon_k$ and $\theta_k = \mu + \sigma e_k$ e θ_k 's are (unknown) study-specific (random) effects e between-study variance (assume $E[e_k] = 0$ and $\hat{E}[e_k] = 0$	ffects and σ^2	Allowing of reductThus, ra estimate	g the extra between-studies variation (σ^2) has the ing the relative weights given to more precise stu- andom effects model produces more conservative is so for the overall effect μ we estimate σ ? Should we treat s_k^2 as (known) fix	ıdies interval
Sujit Ghosh	June 17, 2011	3	Sujit Ghosh	June 17, 2011	4

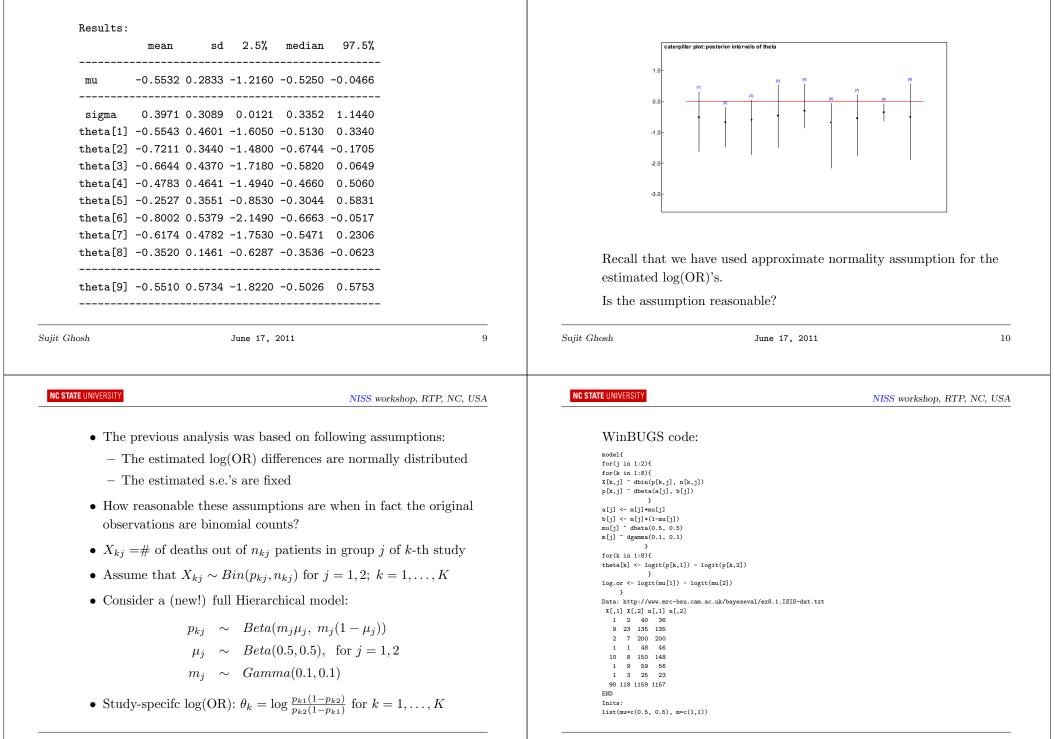
NC STATE UNIVERSITY

NISS workshop, RTP, NC, USA

 Assume that, under the random effects model (i) study effects, θ_k ^{ind} ∼ N(θ_k, s_k²) ·····(1) (ii) random effects, θ_k ^{iid} ∼ N(μ, σ²) ·····(2) 	Example 1: Does Magnesium sulphate have protective effect after acute myocardial infraction (AMI), particularly through preventing serious arrhythmias?
 (iii) within study variances, s²_k are known (usually estimated values are plugged in) Likelihood based inference combines (1) and (2) to form the marginal model: θ̂_k ^{ind} ∼ N(μ, s²_k + σ²) 	Analysis Using Estimated log odd-ratios: $log(OR): \hat{\theta} = (-0.65, -1.02, -1.12, -0.04, 0.21, -2.05, -1.03, -0.30)$ and s.e.(log-OR): $s = (1.06, 0.41, 0.74, 1.17, 0.48, 0.90, 1.02, 0.15)$ R codes:
 Maximum Likelihood Estimate (Frequentist): (µ̂, σ̂) = arg max ∏_{k=1}^K {φ ((θ̂_k − μ)/√σ² + s²_k)/√σ² + s²_k} where φ(·) denotes the probability density function of N(0, 1) Monte Carlo (MC) based Posterior Estimate (Bayesian): µ θ̂'_ks, s'_ks, σ² ~ N(?, ?) and σ² θ̂'_ks, s'_ks ~ ARS 	<pre>negloglik=function(mu=0,sigma=1){ -sum(dnorm(theta.hat,mean=mu,sd=sqrt(sigma^2+s^2),log=T))} require(stats4) fit=mle(negloglik) #fit=mle(negloglik,method="L-BFGS-B",lower=c(-Inf,1e-08)) summary(fit) vcov(fit) confint(fit)</pre>
nosh June 17, 2011 5	Sujit Ghosh June 17, 2011 6
TE UNIVERSITY NISS workshop, RTP, NC, USA	NC STATE UNIVERSITY NISS workshop, RTP, NC, USA
Results: Estimate Std.Error 2.5% 97.5% mu -4.0854e-01 0.1287 -1.1301 -0.1330 sigma -9.8811e-05 0.3102 -0.9482 0.9482 <u>Conclusion</u> : Combined estimated log(OR)=-0.4085 with 95% C.I. (-1.1301, -0.1330) and hence magnesium sulphate has protective effect after AMI	Hierarchical Model: $\hat{\theta}_k \sim N(\theta_k, s_k^2)$ and $\theta_k \sim N(\mu, \sigma^2)$ WinBUGS codes: model{ for(k in 1:K){ theta.hat[k] ~ dnorm(theta[k], tau.s[k]) tau.s[k] <- pow(s[k], -2); theta[k] ~ dnorm(mu, tau) } theta[K+1] ~ dnorm(mu, tau) tau ~ dunif(0, 1000); mu ~ dnorm(0, 0.0001)
 What are the study specific log(OR) estimates? What is the predictive distribution of treatment effect in a new trial? What is the predictive distribution of the log(OR) to be observed in a new trial? 	<pre>tau <- 1/(sigma*sigma); sigma ~ dexp(1) } Data: http://www.mrc-bsu.cam.ac.uk/bayeseval/ex8.1.ISIS-dat.txt list(theta.hat=c(-0.65,-1.02,-1.12,-0.04,0.21,-2.05,-1.03,-0.30), s=c(1.06,0.41,0.74,1.17,0.48,0.90,1.02,0.15), K=8) Inits:</pre>
We can perform Bayesian meta-analysis to answer these questions	list(mu=0, tau=1)

NC STATE UNIVERSITY

Sujit Ghosh


Sujit Ghosh

NC STATE UNIVERSITY

Sujit Ghosh

NISS workshop, RTP, NC, USA

NISS workshop, RTP, NC, USA

NC STATE UNIVERSITY

theta[2] theta[3] theta[4] theta[5] theta[6] theta[7] theta[8] Notice that as conclusiv	mean sd 2.5% media -0.6162 0.5618 -1.6850 -0.6 0.0669 0.0308 0.0294 0.0 0.1135 0.0371 0.0592 0.1 -0.8708 1.0550 -3.1580 -0.8 -1.0530 0.4069 -1.8710 -1.0 -1.1960 0.7507 -2.7820 -1.1 -0.3417 1.1480 -2.7030 -0.3 0.1195 0.4688 -0.8088 0.1 -2.1150 0.9364 -4.1880 -2.0 -1.1760 1.0370 -3.4090 -1.1 -0.3067 0.1461 -0.5977 -0.3 in mow the evidence in support of we as before (when estimated log by to model as many sources of vol	6333 0.5582 0601 0.1471 1083 0.1992 8127 1.0260 0440 -0.2732 1540 0.1821 3139 1.9410 1171 1.0420 0200 -0.5319 1160 0.6349 3064 -0.0202 the treatment is no longer (OR)'s was used)		20.0 10.0 5.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.2 0.3 15.0 10.0 5.0 0.0 0.0 0.0 0.1 15.0 10.0 0.0 0.0 0.0 0.0 0.0 0.0			
ujit Ghosh	June 17, 2011	13	Sujit Ghosh	June 17, 2011	14		
NC STATE UNIVERSITY Some Rema	arks:	NISS workshop, RTP, NC, USA	NC STATE UNIVERSITY Example 2: 1	NISS	workshop, RTP, NC, USA		
• Often a	an alternative model is used:		-	educing the risk of perinatal death?	0		
	$\phi_{k1} = \phi_k + \theta$ and $logit(p_{k2}) = \phi_k$		Traditional n	ormal approximation based model ma	ay not be		
• If ϕ_k ar	nd θ are assumed independent, it	t forces the treatment	appropriate d	lue to rarity pf perinatal deaths			
	be greater than that of control	risks	• $X_{kj} = #$	perinatal deaths out of n_{kj} in group	j of k -th study		
(notice	that $Var(\phi_k + \theta) > Var(\phi_k))$		• Assume $X_{kj} \sim Bin(p_{kj}, n_{kj})$ for $k = 1,, K(=9), j = 1, 2$				
	• If ϕ_k 's are given (fixed) uniform priors, it might lead to inappropriate shrinkage			• We can use the earlier Beta distribution based model for p_{kj} 's			
• Induces	s strong correlation between trea	tment $(p_{k1}$'s) and control	• However,	• However, consider an alternative Hierarchical model:			
(-)	groups when ϕ_k are given vague	-		$logit(p_{kj}) ~\sim~ N(\mu_j, ~\sigma_j^2)$			
(notice	that $Corr(\phi_k + \theta, \phi_k) = [1 + Va$		$\mu_j \sim N(0, 0.0001), \text{ for } j = 1, 2$				
	• See Spiegelhalter, Abrams & Myles (2004, p.275) for a prior			μ_{j} , ν_{1} , ν_{0} , ν_{0	5		
sensitiv	iegelhalter, Abrams & Myles (200			$\sigma_j^2 \sim InvGamma(0.1, 0.1)$			
		04, p.275) for a prior	• Study-sp		1)		

NC STATE UNIVERSITY

15

Sujit Ghosh

NISS workshop, RTP, NC, USA

NISS workshop, RTP, NC, USA

<pre>WunBUCS code: modal{ for(j in 1:2){ for(k in 1:9){ for(k in 1:9){ for(k in 1:9){ logit(p[k,j]) < logit.p[k,j]) logit(p[k,j]) < logit.p[k,j] logit(p[k,j]) < logit.p[k,j]] logit(p[k,j]) < logit.p[k,j]-logit.p[k,2]) for(k in 1:9){theta[k] <- logit.p[k,1]-logit.p[k,2]} for(k in 1:9){theta[k] <- logit.p[k,1]-logit.p[k,2]) for(k in 1:9){theta[k] <- logit.p[k,2] <- form-dat.txt n[,1] x[,1] n[,2] x[,2] Ti 1 75 1 1 75 1 1 1 1 1 1 1 1 1 1 1 1 1 1</pre>	
Sujit Ghosh June 17, 2011 17	Sujit Ghosh June 17, 2011 18
 Example 3: Does drug treatment reduce mortality in mild to moderate hypertension adjusting for baseline rates? X_{kj} = # deaths in group j for the k-th study n_{kj} = patient-years of follow-up in group j for k-th study Consider again a full hierarchical model: X_{kj} ~ Poisson(λ_{kj}) k = 1,,K, j = 1,2 λ_{kj} = n_{kj} * δ_{kj}/1000 δ_{kj} ~ Gamma(μ²_jτ_j, μ_jτ_j) μ_j ~ Gamma(a,b) τ_j ~ Gamma(a,b) We would be interested in log of the relative differences: study specific: θ_k = log(δ_{k1}) - log(δ_{k2}) and population level: log(μ₁/μ₂) 	<pre>MISS workshop, RTP, NC, USA model{ for(j in 1:2){for(k in 1:12){ X[k,]] - dpoid(ambda[k,]]) abda[k,]] - dpoid(ambda[k,]]) bid[k=nl(j-nk,]]+data[k,]]/1000 data[k,]] - dgama(0,1,0,1)} for(k in 1:12)[thata[]] m(j] - dgama(0,1,0,1)) for(k in 1:12)[thata[] <- log(delta[k,1]) - log(delta[k,2])) for(k in 1:12)[thata[] <- log(delta[k,2])) for(k in 1:12)[thata[] <- log(delta[k,1]) - log(delta[k,1]) - log(delta[k,2])) for(k in 1:12)[thata[] <- log(delta[k,1]) - log(delta[k,1]) - log(delta[k,2])) for(k in 1:12)[thata[] <- log(delta[k,1]) - log(delt</pre>

NC STATE UNIVERSITY

mu[2] sample: 5000

. 10.0 20.0

0.3

0.2

40

2.0

0.0

aterpillar plot: thet

- In most cases, we will have some outcome events X_{kj} measured in group j of k-th study of sample size n_{kj}
- Assume $X_{kj} \sim f(x|\eta_{kj}, n_{kj})$ for k = 1, ..., K, j = 1, 2 where η_{kj} denotes the vector of parameters.
- Assume $\eta_{kj} \sim h(\eta|\mu_j, \tau_j)$ where $h(\cdot|\mu, \tau)$ is a conditional density with location μ and scale τ
- $\theta_k = d(\eta_{k1}, \eta_{k2})$ where $d(\eta_1, \eta_2)$ is some "signed distance" between η_1 and η_2 such that
 - (i) $d(\eta_1, \eta_2) = 0$ iff $\eta_1 = \eta_2$ and
- (ii) $d(\eta_1, \eta_2) = -d(\eta_2, \eta_1)$

severe health condition

health condition

NC STATE UNIVERSITY

• The goal would be to obtain posterior distribution of $d(\mu_1, \mu_2)$ or $E(\theta_k | \mu'_j s, \tau'_j s)$ (which is same for all k)

Indirect Comparison Studies

• Suppose an established treatment C (active-control) exists for a

• The efficacy of T would ideally be estimated using a randomized

• Suppose a new treatment T is being evaluated to treat that

• But...existence of C may make the use of placebo unethical

using (past) data on comparisons between C and P

a RCT that directly compares T with placebo P?

• In this case the efficacy of T may have to estimated *indirectly*

• Can we compare a new treatment T and control C without using

Meta Regression

• Why study results vary systematically?

mu[1] sample: 5000

10.0 15.0

0.6

0.4

0.2

- Random effects model generally can not identify factors that may explain the sources of variability
- Regression models can be possibly be used to explore reasons why study results vary if study level covariates are available
- Suppose x_k denote a study level covariate for k-th study

 $\hat{\theta}_k = \theta_k + s_k \epsilon_k$ and $\theta_k = \mu + \beta x_k + \sigma e_k$

- Marginally (i.e. integrating the random effects), we get $\hat{\theta}_k = \mu + \beta x_k + (s_k \epsilon_k + \sigma e_k)$
- Both frequentist and Bayesian methods can be used to estimate the overall effect μ (wlog assuming $\sum_k x_k = 0$)

(source: Sutton and Abrams (2001), Stat Meth in Med Res, 10, p.277-303)

Sujit Ghosh

23

control trial (RCT) with a placebo P

- More generally, can we make comparisons between (several) treatments that may well never have been directly compared?
- Is it really possible to draw inferences on the treatment effects compared with a control only?
- On a positive note see Song et al. (2003) article: http://www.bmj.com/content/326/7387/472.full
- On cautionary notes see J. A. Berlin's talk (04/27/2010): http: //www.cceb.upenn.edu/biostat/conferences/ClinTrials10/
- Suppose η_{kj} represents expected response of treatment j being given in study k (control is labeled as j = 0)
- A simple model: $\eta_{kj} = \theta_k + \phi_{kj}$
- Often it is convenient to assume $\phi_{kj} \sim N(\mu_j, \sigma_j^2)$
- A variety of other possible models can be considered

Example 4: Can we compare alternative therapies for lowering blood pressure by estimating effects that have never been directly measured?

- Let X_{kj} = mean change in blood pressure for the *j*-th treatment in the *k*-th study where j = 0, 1, 2, 3 and k = 1, ..., K = 8
- Four treatments (control, A, B, C) have been given in a set of crossover experiments comprising RCTs and single-arm studies
- But...no direct comparison between treatments A and B made
- And...we are interested in this particular contrast (i.e., A vs. B)

• Let
$$X_{kj} \sim N\left(\eta_{kj}, \frac{\sigma_j^2}{n_{kj}}\right)$$
 for $k = 1, \dots, K = 8, \ j = 0, \dots, J = 3$

- Further assume $\frac{(n_{kj}-1)S_{kj}^2}{\sigma_j^2} \sim \chi^2_{n_{jk}-1}$
- Let $\eta_{jk} = \theta_k + \phi_j$ where $\phi_0 = 0$

NC STATE UNIVERSITY

• Thus, $\theta_k =$ "control" in k-th study and ϕ_1, ϕ_2, ϕ_3 measure mean effects of A, B and C, respectively.

Sujit Ghosh	June 17, 2011	25	Sujit Ghosh	June 17, 2011	26
NC STATE UNIVERSITY WinBUGS cod	e:	NISS workshop, RTP, NC, USA	Data: http://www.mrc-bsulist(I=14, K=8, J=4)	NISS 1.cam.ac.uk/bayeseval/ex8.4.blood-dat1.txt	workshop, RTP, NC, USA
<pre>mdal{ for(i in 1:1){ x[i] ~ dnorm(mu[i],prec[mu[i] <- phi[treat[i] ++ prec[i] <- n[i]/(sigma[tr SS[i] <- s[i]*s[i]*(n[i]- SS[i] ~ dgamma(a[i],b[i] a[i] <- (n[i]-1)/2 b[i] <- 1/(2*sigma[treat[</pre>	<pre>theta[study[i]] reat[i]]*sigma[treat[i]]) -1) [i]]*sigma[treat[i]]) a, inv.sigma2.theta) sigma.theta*sigma.theta) 0) [j]</pre>		n[] x[] s[] treat[] a 41 8.90 7.49 2 1 39 6.05 10.28 4 1 47 5.51 8.72 1 2 100 6.21 8.02 3 2 53 3.75 7.07 1 3 54 10.20 9.39 2 3 47 3.04 9.20 1 4 44 8.43 8.17 2 4 30 2.97 7.69 1 5 32 6.53 7.80 3 5 32 7.78 6.78 4 5 69 3.99 8.04 1 6 68 5.28 7.88 1 7 67 3.34 8.01 1 8 END Inits: list(mu.theta=4,sigma.th	<pre>study[] aeta=1,logsigma=c(2,2,2,2),phi=c(NA,4,4,4))</pre>	
}					

	8.0 6.0 4.0 - 2.0 -	x plot: phi				 Suppose α; ie., t under its But the p significant 	m tests: H_{0j} that the tests he probability	s are con y of dec f declari $\alpha)^m$	$_{1j}$ for j nducte claring ing at 1	i = 1, . ed inde a part	pender icular (test is s	signific	
	4.0 - 3.0 - 2.0 -					-	$m = 1 - 0.95^{m}$ bability of dec ty if when we	l claring ε			~			nost
Sujit Ghosh		June 17, 2011		29	Sujit	Ghosh		June 17,	2011					30
NC STATE UNIVERS	ITY		NISS worksho	op, RTP, NC, USA		STATE UNIVERSITY					NISS wo	rkshop, R	RTP, NC	C, USA
	der the follow	ving set-up:	NISS worksho	op, RTP, NC, USA			is now to co	ntrol so	me the				RTP, NC	C, USA
		ving set-up: # H_0 not rejected	NISS workshot $\# H_0$ rejected	op, RTP, NC, USA	NC	 The goal Most often	en procedures			ese erro	or rates	3		<u>.</u>
						 The goal Most often p-values, 	en procedures p_j 's	s are ba	sed on	ese erro adjust	or rates	3		<u>.</u>
	der the follow	$\# H_0$ not rejected	# H_0 rejected	total	<u>NC</u>	 The goal Most often p-values, Bonferro 	en procedures p_j 's ni: Reject an	s are bas y H_{0j} w	used on vith p-'	ese erro adjust value <u><</u>	or rates	3		<u>.</u>
	der the follow $\#$ true H_0	$\# H_0$ not rejected U	# H_0 rejected V	total m_0	<u>NC</u>	 The goal Most ofter p-values, Bonferro i.e., adju 	en procedures p_j 's ni: Reject an sted p-value	s are bas y H_{0j} w = min{ i	used on with $p-v$ $mp_j, 1$	ese erro adjust value <u><</u> }	for rates ting the $\leq \frac{\alpha}{m}$	e (unac		<u>.</u>
Consi [[[• U	der the follow # true H_0 # false H_0 total Infortunately	$\begin{array}{c} \# \ H_0 \ \text{not rejected} \\ \hline U \\ \hline T \\ \hline m-R \\ U, V, T \ \text{and} \ S \ \text{are all} \end{array}$	$\frac{\# H_0 \text{ rejected}}{V}$	$ \begin{array}{c} \text{total}\\ m_0\\ m_1\\ m\\ \end{array} $		 The goal Most ofter p-values, Bonferro i.e., adju Sidak: R 	en procedures p_j 's ni: Reject an	s are bas y H_{0j} w $= \min\{r_j \}$ with p	used on with p-v $mp_j, 1$ }	ese erro a adjust value \leq } $\leq 1 -$	for rates ting the set of the se	e (unac		<u>.</u>
Consi [[[[. U ol . S	der the follow $\#$ true H_0 $\#$ false H_0 total infortunately bviously m) is ome notions/- - Per-compar	$\begin{array}{c} \# \ H_0 \ \text{not rejected} \\ \hline U \\ \hline T \\ \hline m - R \\ U, V, T \ \text{and} \ S \ \text{are all} \\ \text{s observable} \end{array}$	$# H_0 \text{ rejected}$ V S R unobservable; on $ER = \frac{E[V]}{m}$	$ \begin{array}{c} \text{total}\\ m_0\\ m_1\\ m\\ \end{array} $		 The goal Most ofter p-values, Bonferron i.e., adju Sidak: R i.e. adjus Bonferron usually t Holm stered 	en procedures p_j 's ni: Reject an sted p-value eject any H_{0j} sted p-value = ni and Sidak oo conservati ep-down: Ord	s are bas y H_{0j} w = min{ i j with p = min{ 1 perform ve. ler the u	with p-value $mp_j, 1$ p-value l - (1 - ms) very	ese erro a adjust value \leq $\leq 1 - p_j)^m$ γ simila	for rates ting th $\leq \frac{\alpha}{m}$ $(1 - \alpha, 1)$ ar; how	e (unac $)^{1/m}$ ever bo	ljusteo	d)
Consi [[[[. U o] . S	der the follow # true H ₀ # false H ₀ total infortunately bviously m) is ome notions/ - Per-compar - Family-wise	# H_0 not rejected U T m - R U, V, T and S are all s observable definitions: rison error rate: PCE	$# H_0 \text{ rejected}$ V S R unobservable; on $ER = \frac{E[V]}{m}$ $= \Pr[V \ge 1]$	$ \begin{array}{c} \text{total}\\ m_0\\ m_1\\ m\\ \end{array} $		 The goal Most ofter p-values, Bonferron i.e., adju Sidak: R i.e. adjus Bonferron usually t Holm ster p(1) ≤ p(1) 	en procedures p_j 's ni: Reject an sted p-value = eject any H_{0j} sted p-value = ni and Sidak oo conservati	s are bas y H_{0j} w = min{ n i with p = min{ 1 perform we. ler the u n)	sed on with p- $mp_j, 1$ p-value l $-(1 - ms very)$ unadjus	ese erro a adjust value \leq $\leq 1 - p_j)^m$ γ simila sted p-	for rates ting the set of $\frac{\alpha}{m}$ of $(1 - \alpha, 1)$ for a set of (1 - \alpha, 1) for a set of (1 -	e (unac $)^{1/m}$ ever bo as	ljusteo	d)

31

Sujit Ghosh

- All of these adjusted p-values attempt to control FWER
- Westfall and Young step-down approach: adjusted p-value = $\max_{1 \le k \le j} \Pr[\min_{k \le l \le m} p_{(l)} \le p_{(k)} | H_0^c]$
- Benjamini and Hochberg: adjusted p-value = $\min_{j \le k \le m} \min\{\frac{mp_{(k)}}{k}, 1\}$
- $\bullet\,$ Asymptotically, as m becomes large (under independence of tests) it can be shown that

$$FDR \approx pFDR \approx \frac{E[V]}{E[R]}$$

where the last ratio is the proportion of false discoveries (PFD)

• There are "adaptive" modifications of Benjamini and Hochberg procedure:

Compute $\hat{m} = \max\{i : p_{(i)} \leq \frac{\alpha}{\hat{p}_0} \frac{i}{m}\}$ and reject H_{0j} if $p_{(j)} \leq p_{(\hat{m})}$

Sujit	Ghosh
-------	-------

June 17, 2011

33

NC STATE UNIVERSITY

Some online resources:

- HHS: http://www.hhs.gov/recovery/programs/cer/execsummary.html
- Spiegelhalter, D. J. (2004): http://projecteuclid.org/euclid.ss/1089808280
- Spiegelhalter, Abrams and Myles (2003) Book (Chap.8): http://www.mrc-bsu.cam.ac.uk/bayeseval/

 $[All \ four \ examples \ in \ this \ talk \ are \ adapted \ from \ the \ above \ book]$

• Dmitrienko, Tamhane and Bretz (2009) Multiple Testing Problems in Pharmaceutical Statistics http://www.crcpress.com/product/isbn/9781584889847

THANKS!

Dhanyavaad धन्यवाद

Sujit Ghosh	
-------------	--

June 17, 2011