
Fast Newton-type Methods for the Least Squares
Nonnegative Matrix Approximation Problem

Inderjit S. Dhillon

Department of Computer Sciences
The University of Texas at Austin

Joint work with Dongmin Kim and Suvrit Sra



Outline

1 Introduction

2 Existing NNMA Algorithms

3 Newton-type Method for NNMA

4 Extensions

5 Experiments

6 Summary



Introduction
Problem Setting

Nonnegative matrix approximation (NNMA) problem:

A = [a1, . . . ,aN ], ai ∈ RM
+, is input nonnegative matrix.

Goal : Approximate A by conic combinations of
nonnegative representative vectors b1, . . . ,bK such that

ai ≈
K

∑
j=1

bjcji , cji ≥ 0, bj ≥ 0,

i.e. A≈ BC, B,C ≥ 0.



Introduction
Objective or Distortion Functions

The quality of the approximation BC is

Measured using an appropriate distortion function.

For example, the Frobenius norm distortion or the
Kullback-Leibler divergence.

In this presentation, we focus on the Frobenius norm distortion,
which leads to the least squares NNMA problem.

minimize
B,C≥0

F (B;C) = 1
2‖A−BC‖2

F,
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Existing NNMA Algorithms
Basic Framework

The NNMA objective function is not simultaneously convex in B
and C.

But is individually convex in B and in C.

Most NNMA algorithms are iterative and perform an alternating
optimization.

Basic Framework for NNMA algorithms

1. Initialize B0 and/or C0; set t ← 0.
2. Fix Bt and find Ct+1 such that

F (Bt ,Ct+1)≤F (Bt ,Ct),

3. Fix Ct+1 and find Bt+1 such that

F (Bt+1,Ct+1)≤F (Bt ,Ct+1),

4. Let t ← t +1, & repeat Steps 2 and 3 until convergence criteria are satisfied.
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Existing NNMA Algorithms
Exact and Inexact Methods

The Frobenius norm is the sum of Euclidean norms over columns.

Optimization over B (or C) boils down to a series of nonnegative
least squares (NNLS) problems.

minimize
x

f (x) = 1
2‖Gx−h‖2

2,

subject to x ≥ 0.

Exact NNMA methods find a global optimum of this subproblem.

Inexact NNMA methods roughly approximate it.



Existing NNMA Algorithms
Examples

Exact Methods
Based on NNLS algorithms:

Active set procedure [Lawson and Hanson(1974)]
FNNLS [Bro and Jong(1997)]
Interior-point gradient method [Merritt and Zhang(2005)]

Projected gradient method [Lin(2005)].

Inexact Methods

Multiplicative method [Lee and Seung(1999)].

Alternating Least Squares (ALS) algorithm.

“Projected Quasi-Newton” method [Zdunek and Cichocki(2006)].
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Motivation for Newton-type Methods
Gradient Descent Scheme

Consider Lee & Seung’s update rule.

[C]ij ← [C]ij
[BT A]ij

[BT BC]ij
=⇒ [C]ij ← [C]ij +αij

[
[BT A]ij − [BT BC]ij

]
,

where αij =
[C]ij

[BT BC]ij
.

This is a gradient descent update with a special choice of step-size, αij .

It can also be viewed as a special case of projected gradient method:

[C]ij ←P+

[
[C]ij +αij

[
[BT A]ij − [BT BC]ij

]]
,

where P+ is the orthogonal projection onto the nonnegative orthant.
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Motivation for Newton-type Methods
Fast Convergence

level sets of f
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Example of zigzagging phenomenon in gradient descent.

Inner ellipses correspond to a smaller objective value of
f (x) = ‖Gx−h‖2

2.

One iteration of the Newton-method gives the global optimum.
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Handling Nonnegativity Constraints
Combining Projection with Newton-type Method

Use Newton-type method for fast convergence.

How can we handle the constraints?
Combine with simplicity of projected gradient method, i.e.,

Combine orthogonal projection with Newton-type method!

The key in Newton-type method is to use a non-diagonal gradient
scaling matrix H.

[C]ij ←P+

[
[C]ij +αijH

[
[BT A]ij − [BT BC]ij

]]
,
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Previous Attempts at Newton-type Methods for NNMA
Alternating Least Squares (ALS) and Zdunek & Cichocki’s (ZC) Methods

Consider ALS update for NNLS subproblem, min
x≥0

= 1
2‖Gx−h‖2

2.

x = P+[(GT G)−1GT h], or equivalently,

x = P+[x− (GT G)−1(GT Gx−GT h)].

where step-size α = 1 and non-diagonal gradient scaling
H = (GT G)−1.

The ZC update is

xnew = P+[xold−αH(GT Gxold−GT h)],

where α > 0 and H is a positive definite matrix that
approximates the inverse Hessian.
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Previous Attempts at Newton-type Methods for NNMA
Difficulties
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Naïve Combination of projection step and non-diagonal gradient
scaling does not guarantee convergence of the resulting
algorithm.

An iteration may actually lead to an increase of objective.
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New Newton-type Methods
An Idea from the Active Set Method

The active set :

If active variables at the final solution are known in advance,

Original problem can be solved as an equality-constrained
problem.

Equivalently one can solve an unconstrained sub-problem over
inactive variables.

Projection :

The projection step identifies the active variables at the current
iteration.

Gradient :

The gradient information gives a guideline to determine which
variables will not be optimized at the next iteration.
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New Newton-type Methods
Fixed Set

Divide variables into Free variables and Fixed variables.

Fixed Set: Indices listing the entries of xk that are held
fixed.

Definition: a set of indices

Ik =
{

i
∣∣xk

i = 0, [∇f (xk)]i > 0
}

.

A subset of active variables at iteration k .

Contains active variables that satisfy the KKT conditions.
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New Newton-type Methods
Active but Free Variables

What happens when xk
j = 0, but [∇f (xk)]j ≤ 0 ?

Further optimization is possible.

Could become xk+1
j > 0 and [∇f (xk+1)]j = 0.

Thus, such an xk
j is NOT designated a fixed variable.

Solve the problem over Free variables only.
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New Newton-type Methods
Non-diagonal Gradient Scaling using BFGS

Non-diagonal gradient scaling to improve convergence rate.
Let Hk be the current approximation to the Hessian.
BFGS update adds a rank-two correction to Hk to obtain

Hk+1 = Hk − Hk uuT Hk

uT Hk u
+

wwT

uT w
,

where w and u are defined as

w = ∇f (xk+1)−∇f (xk), and u = xk+1− xk .

Let Dk denote the inverse of Hk .
Apply the Sherman-Morrison-Woodbury formula to get:

Dk+1 = Dk +

(
1+

wT Dk w

uT w

)
uuT

uT w
− (Dk wuT +uwT Dk)

uT w
.
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New Newton-type Methods
Example: BFGS for NNLS

For the given problem,

minimize
x

f (x) = 1
2‖Gx−h‖2,

subject to x ≥ 0.

The gradient is

∇f (x) = GT Gx−GT h.

The BFGS update reduces to

Dk+1← Dk +

(
1+

uT GT GDk GT Gu

uT GT Gu

)
uuT

uT GT Gu
− (Dk GT GuuT +uuT GT GDk )

uT GT Gu
.



FNMAE: an exact Method
Definitions

Define some quantities,

Gradient matrices:

∇CF (B;C) = BT BC−BT A, and

∇BF (B;C) = BCCT −ACT .

Fixed set (corresponding to B):

I+ =
{
(i, j)

∣∣Bij = 0, [∇BF (B;C)]ij > 0
}
.

Zero-out operator:

[
Z+[X ]

]
ij =

{
Xij , (i, j) /∈ I+,
0, otherwise.



FNMAE: an exact Method
Update Rule

A subprocedure to update C in FNMAE

1. Compute the gradient matrix ∇CF (B;Cold).
2. Compute fixed set I+ for Cold .
3. Compute the step length vector α using line-search.
4. Update Cold as

U←Z+

[
∇CF (B;Cold)

]
;

U←Z+

[
DU
]
;

Cnew←P+

[
Cold−U ·diag(α)

]
.

5. Cold← Cnew.
6. Update D if necessary.



FNMAE: an exact Method
Algorithm

FNMAE

Input: A ∈ RM×N
+ , K such that 1≤ K ≤min{M,N}

Output: B ∈ RM×K
+ , C ∈ RK×N

+

1. Initialize B0, C0, t = 0.
repeat

2. B← Bt ; Cold← Ct .
repeat

3. The subprocedure to update C.
until Cold converges
4. Ct+1← Cold; C← Ct+1; Bold← Bt .
repeat

5. The subprocedure to update B.
until Bold converges
6. Bt+1← Bold; t ← t +1.

until Stopping criteria are met



FNMAE: an exact Method
Convergence

Theorem (Convergence of FNMAE)

If Bt and Ct retain full-rank, then the sequence {Bt ,Ct} generated by
Algorithm FNMAE converges to a stationary point of the least squares
NNMA problem.

Sketch of proof:

Show that unique solution is obtained at each alternating step.

Show that the sequence {Bt ,Ct} has a limit point.

Invoke proof of the two-block Gauss-Seidel method.



FNMAI: an inexact Method
Update Rule

A subprocedure to update C in FNMAI

1. Compute the gradient matrix ∇CF (B;Cold).
2. Compute fixed set I+ for Cold .
3. Update Cold as

U←Z+

[
∇CF (B;Cold)

]
;

U←Z+

[
(BT B)−1U

]
;

Cnew←P+

[
Cold−αU)

]
.

4. Cold← Cnew.

To speed up computation:

Step-size α is parameterized.

Inverse Hessian is used for non-diagonal gradient scaling.

Note the analogy between FNMAIand ALS.



FNMAI: an inexact Method
Monotonicity

Theorem (Monotonicity of FNMAI)

If Bt and Ct retain full-rank, then FNMAI decreases its objective
function monotonically for sufficiently small α .

Sketch of proof:

Since Bt and Ct retain full-rank, their Hessians are positive
definite, hence satisfy condition for descent in the proof of
FNMAE.

Show that for sufficiently small α , the algorithm decreases the
objective function value for each subproblem.



Extensions
For Regularizers in the Objective Function

Regularized version of the NNMA problem,

minimize
B,C≥0

1
2‖A−BC‖2

F +λ‖B‖2
F + µ‖C‖2

F, λ ,µ > 0.

The gradient and Hessian get redefined. For example,

The gradient
∇CF (B;C) = (BT B +λ I)C−BT A,

and the Hessian
∇

2
CF (B;C) = (BT B +λ I).

Use these updated values in the algorithms FNMAE and FNMAI

Regularization ensures the Hessian remains positive-definite.

All convergence results for FNMAE& FNMAIcarry over without any additional
work.
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Extensions
With Box-constraints

NNMA problem with box-constraints,

minimize 1
2‖A−BC‖2

F,

subject to P ≤ B ≤ Q, R ≤ C ≤ S,

where inequalities are component-wise.

Replace the P+[·] projection by PΩ[·], where

[PΩ[x]]i =


pi : xi ≤ pi
xi : pi < xi < qi
qi : qi ≤ xi

Fixed set for B is redefined as

IΩ =

{
(i, j)

∣∣∣(Bij = Pij , [∇BF (B;C)]ij > 0
)
, or

(
Bij = Qij , [∇BF (B;C)]ij < 0

)}
.



Experiments
Comparisons against ZC
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Experiments
Comparisons against Lee & Seung’s and ALS
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Experiments
Application to Image Processing
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Summary

Non-diagonal gradient scaling scheme can alleviate slow
convergence of the gradient descent based methods.

Naïve combination of projection and non-diagonal gradient
scaling has theoretical deficiencies.
We provide an algorithmic framework based on partitioning of
variables

an exact & probably convergent method (more accurate)
an inexact method analogous to ALS (faster).

In progress...
Other optimization techniques such as L-BFGS, conjugate
gradient, trust region, etc.
More general distortion functions, e.g., Bregman divergences.
Exploit sparsity of problem.
Develop publicly available software toolbox.
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