Polytope Approximation

NMF 00 000000 000000 Conclusion

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Polytope Approximation and NMF

Moody T. Chu (join work with Matthew M. Lin)

North Carolina State University

February 24, NISS Workshop

Polytope Approximation

NMF 00 00000 00000 Conclusion

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Outline

Basic Ideas

Polytope Approximation

Exact NMF Solution Convex Hull Fitting Problem Hahn-Banach Theorem Implementation

NMF

A Demonstration Nearest Point in Simplicial Cone Numerical Experiment

Conclusion

Polytope Approximation 00000 0000 00000000 NMF 00 000000 Conclusion

▲□▶▲□▶▲□▶▲□▶ □ のQ@

NMF Problem

- Given
 - A nonnegative matrix $Y \in \mathbb{R}^{m \times n}$,
 - A positive integer $p < \min\{m, n\}$,
- Find
 - Nonnegative matrices $U \in \mathbb{R}^{m \times p}$ and $V \in \mathbb{R}^{p \times n}$
 - Minimize the functional

$$f(U, V) := \frac{1}{2} ||Y - UV||_{F}^{2}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Basic Ideas

- Approximate a polytope by another polytope with fewer facets.
 - Reduce the number of vertices, but not the dimensionality.
- Work on the probability simplex.
 - Compact set with known boundary.
- Compute supporting hyperplanes in finitely many steps.
 - Find unique and global minimum per iteration.
- Applicable to NMF.
 - Might have applications to set estimation in pattern analysis, robot vision, and tomography normally in ℝ³. (Not in this talk)

NMF 00 000000 000000 Conclusion

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Probability Simplex

• Given $Y \in \mathbb{R}^{m \times n}$, define

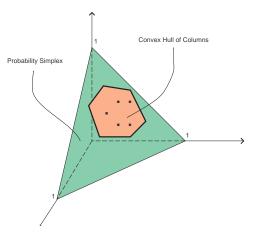
$$\begin{aligned} \sigma(Y) &:= \operatorname{diag}\{\|\mathbf{y}_1\|_1, \dots, \|\mathbf{y}_n\|_1\}\\ \vartheta(Y) &:= Y\sigma(Y)^{-1}. \end{aligned}$$

• Columns of $\vartheta(Y)$ are points on the probability simplex \mathcal{D}_m in \mathbb{R}^m .

$$\mathcal{D}_m := \left\{ \mathbf{y} \in \mathbb{R}^m | \mathbf{y} \succeq \mathbf{0}, \mathbf{1}_m^\top \mathbf{y} = \mathbf{1} \right\},$$

NMF 00 000000 Conclusion

Convex hull of $\vartheta(Y) \in \mathbb{R}^{m \times n}$ with m = 3 and n = 11.



NMF 00 000000 000000

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Minimal Convex Hull

There is a smallest convex hull C containing all columns of θ(Y).

$$\mathcal{C} := \operatorname{conv}(\vartheta(Y)) = \operatorname{conv}(\vartheta(\widetilde{Y})),$$

$$\underbrace{\vartheta(Y)}_{m \times n} = \underbrace{\vartheta(\widetilde{Y})}_{m \times p} \underbrace{Q}_{p \times n}.$$

- $\widetilde{Y} = [\mathbf{y}_{i_1}, \dots, \mathbf{y}_{i_p}]$ is a $m \times p$ submatrix of Y.
- $Q \in \mathbb{R}^{p \times n}$ itself represents points in the simplex \mathcal{D}_p .
- This is an exact NMF of Y,

$$Y = \vartheta(Y)\sigma(Y) = \vartheta(\widetilde{Y})(Q\sigma(Y)).$$

- $p \le n$, but it might be that $p \ge m$.
- Want $p \ll \min\{m, n\}$.

 Polytope Approximation

 00000

 00000

 000000

NMF 00 000000 Conclusion

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Converse

• If Y = UV is an NMF of Y, then

$$Y = \vartheta(Y)\sigma(Y) = \vartheta(U)\vartheta(\sigma(U)V)\sigma(\sigma(U)V).$$

It must be such that

$$\begin{aligned} \vartheta(Y) &= \vartheta(U)\vartheta(\sigma(U)V), \\ \sigma(Y) &= \sigma(\sigma(U)V). \end{aligned}$$

• WLOG, assume $\sigma(U) = I_n$, then

$$\vartheta(Y) = \vartheta(U)\vartheta(V),$$

 $\sigma(Y) = \sigma(V).$

NMF 00 000000 000000 Conclusion

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Reformulation of NMF

• If p < |C|, solving the NMF means minimizing

$$f(U, V) = \frac{1}{2} \|Y - UV\|_F^2 = \frac{1}{2} \|\left(\vartheta(Y) - U\underbrace{V\sigma(Y)^{-1}}_{W}\right)\sigma(Y)\|_F^2.$$

- Can consider W as the projection of the polytope ϑ(Y) onto the polytope conv(U) with respect to a weighted inner product.
- Hahn-Banach theorem in a Hilbert space kicks in.
- It is easier to work on the probability simplex.

NMF 00 000000 Conclusion

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Convex Hull Fitting Problem

• Given $\vartheta(Y)$ and $p \ll \min\{m, n\}$,

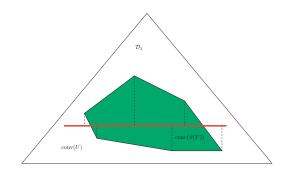
minimize
$$g(U, W) = \frac{1}{2} \| \underbrace{\vartheta(Y)}_{m \times n} - \underbrace{U}_{m \times p} \underbrace{W}_{p \times n} \|_{F}^{2},$$

subject to $U \in \partial \mathcal{D}_{m}, \quad W \succeq 0, \quad \mathbf{1}_{p}^{\top} W = \mathbf{1}_{n}^{\top},$

• $\partial \mathcal{D}_m$ stands for the boundary of \mathcal{D}_m .

NMF 00 000000 Conclusion

Convex hull of $\vartheta(Y)$ and U in \mathcal{D}_3



Polytope Approximation

NMF 00 000000 Conclusion

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Solving W

• For a fixed $U \in \mathbb{R}^{m \times p}$,

$$W = (U^{\top}U)^{-1}(U^{\top}\vartheta(Y) - \mathbf{1}_{\rho}\mu^{\top}),$$

· Lagrange multiplier,

$$\mu^{\top} = \frac{\mathbf{1}_{\rho}^{\top} (U^{\top} U)^{-1} U^{\top} \vartheta(Y) - \mathbf{1}_{n}^{\top}}{\mathbf{1}_{\rho}^{\top} (U^{\top} U)^{-1} \mathbf{1}_{\rho}}.$$

• W may not be nonnegative.

 Polytope Approximation

 ○○○○

 ○○○○

 ○○○○

 ○○○○○○○○○○○○○○

NMF 00 000000 000000 Conclusion

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Convex Coordinates

- Entries of W stands for the unique "coordinates" of θ(Y) in terms of U.
- The proximity map is guaranteed by the Hahn-Banach theorem.
 - Wolfe's algorithm is available to find the nearest point of θ(y) on conv(U). (Wolfe'76)
 - More efficient recursive algorithm is also available. (Sekitani & Yamamoto'93)

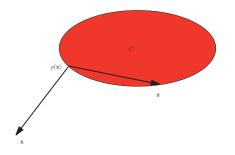
Polytope Approximation

NMF 00 000000 Conclusion

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Proximity Map to a Convex Set C

- Given \mathbf{x} , $\rho(\mathbf{x})$ = The nearest point on C to \mathbf{x} .
- Necessary and sufficient condition on ρ(x):
 - $(\mathbf{x} \rho(\mathbf{x}))^{\top} (\mathbf{z} \rho(\mathbf{x})) \leq 0$ for all $\mathbf{z} \in C$.
 - $\|\rho(\mathbf{0})\|^2 \leq \rho(\mathbf{0})^\top \mathbf{z}$ for all $\mathbf{z} \in C$.



1

NMF 00 000000 000000

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Hanh-Banach Theorem

- Two disjoint convex sets can be separated by a hyperplane.
- A hyperplane is determined by a normal vector **n** and a scalar *c*.

$$H(\mathbf{n}, \boldsymbol{c}) := \{ \mathbf{x} | \mathbf{n}^\top \mathbf{x} = \boldsymbol{c} \}.$$

A half space.

$$\mathcal{H}^+(\mathbf{n}, \mathbf{c}) := \{\mathbf{x} | \mathbf{n}^\top \mathbf{x} \ge \mathbf{c}\}.$$

Given C not containing the origin 0, H(ρ(0), ||ρ(0)||²) supports C in the sense that

$$C \subset H^+(\rho(\mathbf{0}), \|\rho(\mathbf{0})\|^2).$$

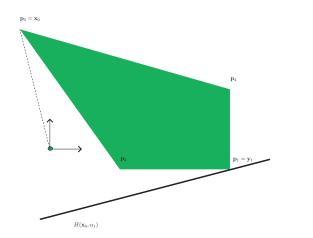
Sekitani and Yamamato Algorithm, $\hat{\mathbf{x}} = \mathcal{N}(P)$

- **1.** Start with k := 1 and an arbitrary point \mathbf{x}_0 from $\operatorname{conv}(P)$.
- 2. Find supporting hyperplane.
 - $\alpha_k := \min \{ \mathbf{x}_{k-1}^\top \mathbf{p} | \mathbf{p} \in \mathbf{P} \}.$
 - If $\|\mathbf{x}_{k-1}\|^2 \leq \alpha_k$, then $\hat{\mathbf{x}} := \mathbf{x}_{k-1}$ and stop.
- 3. Recursion.
 - $P_k := \{ \mathbf{p} | \mathbf{p} \in P \text{ and } \mathbf{x}_{k-1}^\top \mathbf{p} = \alpha_k \}.$
 - Call $\mathbf{y}_k := \mathcal{N}(P_k)$.
- 4. Check separation.
 - $\beta_k := \min \{ \mathbf{y}_k^\top \mathbf{p} | \mathbf{p} \in \mathbf{P} \mathbf{P}_k \}.$
 - If $||\mathbf{y}_k||^2 \leq \beta_k$, then $\widehat{\mathbf{x}} := \mathbf{y}_k$ and stop.
- 5. Rotation.
 - $\lambda_k := \max \left\{ \lambda | ((1 \lambda) \mathbf{x}_{k-1} + \lambda \mathbf{y}_k)^\top \mathbf{y}_k \le ((1 \lambda) \mathbf{x}_{k-1} + \lambda \mathbf{y}_k)^\top \mathbf{p}, \mathbf{p} \in \mathbf{P} \mathbf{P}_k \right\}.$ • $\mathbf{x}_k := (1 - \lambda_k) \mathbf{x}_{k-1} + \lambda_k \mathbf{y}_k.$ • k := k + 1 and go to Step 2.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Polytope Approximation
00000
0000
00
00000000

Conclusion

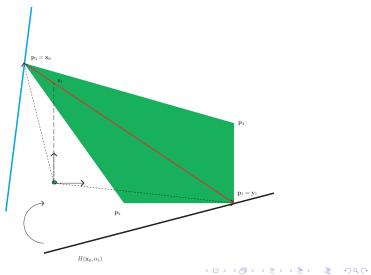


◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Basic lo	

Polytope Approximation	
00000	
0000	
00	
00000000	

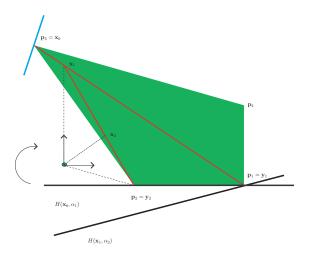
Conclusion



Basic lo	

Polytope Approximation	
00000	
0000	
00	
00000000	

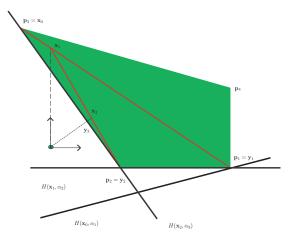
Conclusion



◆□▶ ◆□▶ ◆目▶ ◆目▶ 三日 - のへで

Polytope	Approximation
----------	---------------

NMF 00 000000 Conclusion



<□ > < @ > < E > < E > E のQ @

Polytope Approximation

NMF 00 000000 Conclusion

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Advantages

- Recursive in nature.
- · Not based on simplicial decomposition.
 - No need to solve systems of linear equations.
- East to start.
 - Can start with an arbitrary point in conv(P).
 - Does not need an initial supporting hyperplane.
- Involves only matrix to vector multiplications.
- Find the unique global minimizer the proximity map.
- Terminate in finite steps.
- Convex combination coefficients can be calculated.

Basic Ideas			

Polytope Approximation	
00000	
0000	
00	
000000000	

Solving U

Gradient is available.

$$abla_U g(U,W) := rac{\partial g}{\partial U} = -(\vartheta(Y) - UW)W^{ op}.$$

 Assume u_i is on the *j*th facet, the projected gradient is easy to come by.

$$\nabla^{j}_{\mathbf{u}_{i}}g(U,W) := (I_{m} - A_{j}(A_{j}^{\top}A_{j})^{-1}A_{j}^{\top})\nabla_{\mathbf{u}_{i}}g(U,W).$$
(1)

• Projection matrix is easy to formulate.

$$A_{j}(A_{j}^{\top}A_{j})^{-1}A_{j}^{\top} = \frac{1}{m-1} \begin{bmatrix} 1 & \dots & 1 & 0 & 1 & \dots & 1 \\ \vdots & \ddots & \vdots & & & \\ 1 & 1 & 0 & 1 & & \\ 0 & 0 & m-1 & 0 & \dots & 0 \\ 1 & 1 & 0 & 1 & & 1 \\ \vdots & & & & \vdots \\ 1 & \dots & 1 & 0 & 1 & \dots & 1 \end{bmatrix},$$

 Polytope Approximation

 ○○○○

 ○○○○

 ○○○○○○○○●○

NMF 00 000000 000000 Conclusion

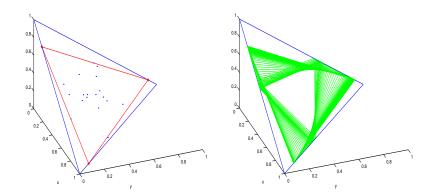
◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Numerical Experiment

- Use the line search along the projected gradient direction to adjust *U*.
- *U* travels along the boundary of the simplex \mathcal{D}_m .
 - **u**_{*j*} may hit "ridges" of "vertices" of the simplex can be detected.
 - Change facet is easy.
- Code is constructed and is under testing.

Polytope Approximation ○○○○ ○○○ ○○○○○○○○○○● NMF 00 0000000 0000000 Conclusion

Triangle enclosing a prescribed set of points on \mathcal{D}_3



▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへ⊙

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Nonnegative Matrix Factorization

- Similar approach can be generalized to NMF.
 - W is no longer on a simplex.
 - This becomes a weighted subspace approximation.
- The product *UW* should be interpreted as points of the *simplicial cone* of *U*.
 - By compactness, a truncated simplicial cone is enough.

NMF 0 00000 00000 Conclusion

▲□▶▲□▶▲□▶▲□▶ □ のQ@

NMF in \mathbb{R}^2

• Relationship between **u** and W in \mathbb{R}^2 .

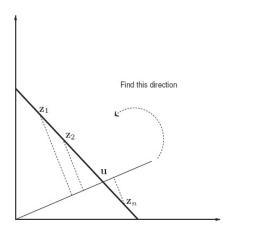
$$\mathbf{u} = \sum_{i=1}^{n} \left(\frac{\sigma_i^2 w_i}{\sum_{i=1}^{n} \sigma_i^2 w_i^2} \vartheta(\mathbf{y}_i) - \frac{\sigma_i^2 w_i - \sigma_i^2 w_i^2}{2 \sum_{i=1}^{n} \sigma_i^2 w_i^2} \mathbf{1}_2 \right),$$

$$w_i = \frac{\mathbf{u}^{\top} \vartheta(\mathbf{y}_i)}{\mathbf{u}^{\top} \mathbf{u}}, \quad i = 1, \dots, n.$$

- $\mathbf{u} w_i$ is precisely the projection of $\vartheta(\mathbf{y}_i)$ onto \mathbf{u} .
- *w_i* is guaranteed to be positive and is known as soon as **u** is given.
 - Not true in high-dimensional case.

Conclusion

• A geometric interpretation.



▲□▶▲□▶▲□▶▲□▶ □ のQ@

Nearest Point in Simplicial Cone

• Fix U, write

$$f(U, V) = h(U, W)$$

:= $\frac{1}{2} \| (\vartheta(Y) - UW) \sigma(Y) \|_F^2 = \frac{1}{2} \sum_{i=1}^n \sigma_i^2 \| \vartheta(\mathbf{y}_i) - U \mathbf{w}_i \|_2^2$, (2)

- If each term in (2) is minimized, the *h*(*U*, *W*) is necessarily minimized.
- Best approximate each column of θ(Y) within the simplicial cone of U.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

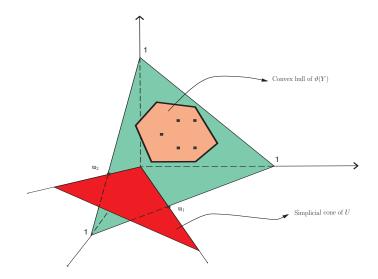
Representing the Simplicial Cone

- With a large enough and fixed positive constant $\alpha,$ a truncated cone is given by

$$\widetilde{U} = [\mathbf{0}, \alpha \mathbf{u}_1, \dots, \alpha \mathbf{u}_p].$$

- Columns of $\widetilde{U} \in \mathbb{R}^{m \times (p+1)}$ represent p + 1 vertices of a polytope.
- Find the nearest point on $conv(\widetilde{U})$ to $\vartheta(\mathbf{y}_i)$.
 - Can be done by Algorithm \mathcal{N} .
 - Obtain convex combination coefficients $\widetilde{W} \in \mathbb{R}^{(p+1) \times n}$ for $\vartheta(Y)$.

NMF 00 000000 00000 Conclusion



◆□▶ ◆□▶ ◆目▶ ◆目▶ 三日 - のへで

Conclusion

(日) (日) (日) (日) (日) (日) (日)

Unique Global Minimizer

• Decompose W into two blocks,

$$\widetilde{\boldsymbol{W}} = \left[\begin{array}{c} \boldsymbol{w}_0^\top \\ \boldsymbol{W}_0 \end{array} \right]$$

- \mathbf{w}_0^{\top} is the first row of \widetilde{W} .
- $W_0 \in \mathbb{R}^{p \times n}$.
- No need of the origin.
 - Same points, but

$$\widetilde{U}\widetilde{W} = UW$$

- $W = \alpha W_0$.
- By construction, $W \succeq 0$.
- W is no longer on \mathcal{D}_p .
- Given Y and U,

$$V = W\sigma(Y),$$

is the unique global minimizer to f(U, V).

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Updating U

- Can update *U* in exactly the same way as computing the optimal *W*.
- Consider

$$f(U, V) = \frac{1}{2} \| \left(\vartheta(Y^{\top}) - \vartheta(V^{\top}) (\underbrace{\sigma(V^{\top})U^{\top}\sigma(Y^{\top})^{-1}}_{\Phi}) \right) \sigma(Y^{\top}) \|_{F}^{2}.$$

- Apply the procedures *N* to compute the unique and optimal simplicial combination coefficients Φ ∈ ℝ^{p×m}.
- The optimal U is given by

$$\boldsymbol{U} = \left(\boldsymbol{\sigma}(\boldsymbol{V}^{\top})^{-1}\boldsymbol{\Phi}\boldsymbol{\sigma}(\boldsymbol{Y}^{\top})\right)^{\top}.$$

Comparison with Lee and Seung

- Given U, compute V.
 - Chu and Lin algorithm,

$$V = W\sigma(Y),$$

• Lee and Seung algorithm,

$$V^+ = V_{\cdot} * (U^{\top} Y)_{\cdot} / (U^{\top} UV),$$

- Given V, compute U.
 - Chu and Lin algorithm,

$$U = \left(\sigma(V^{\top})^{-1}\Phi\sigma(Y^{\top})
ight)^{\top}.$$

· Lee and Seung algorithm,

$$U^+ := U_{\cdot} * (YV^{\top})_{\cdot} / (UVV^{\top})_{\cdot}$$

- Lee and Seung compute only the minimizer of an approximate and much simpler model.
- Chu and Lin compute the unique global minimizer.

NMF 00 000000 000000 Conclusion

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Numerical Experiment

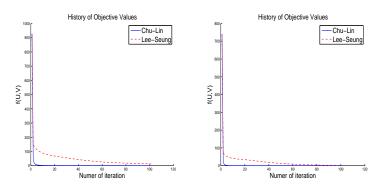
- Test data.
 - Generate random nonnegative matrices A ∈ ℝ^{m×p} and B ∈ ℝ^{p×n} with p < min{m, n}.
 - Let Y = AB be the target data matrix.
- Can any NMF algorithm recover A and B from Y?

Polytope Approximation

NMF 00000

Accuracy

• Our method produces much closer approximation to Y, e.g., 3.3035×10^{-4} versus 1.1989, than Lee and Seung.



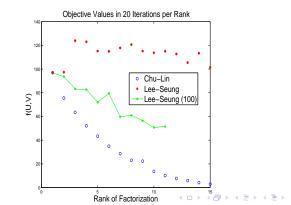
<ロ> (四) (四) (三) (三) (三) (三)

NMF 00 000000 000000

3

Improvement per Iteration

 Our method decreases the objective value more rapidly than Lee and Seung.



Polytope Approximation 00000 0000 00 000000000 NMF 00 000000 000000 Conclusion

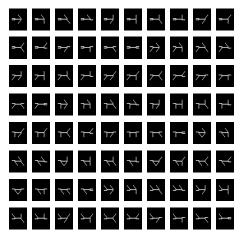
◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Swimmer Database

- A set of black-and-while stick figures satisfying the so called *separable factorial articulation criteria*.
- Each figure consists of a "torso" of 12 pixels in the center and four "limbs" of six pixels that can be in any one of four positions.
- With limbs in all possible positions, there are a total of 256 figures of dimension 32×32 pixels.
- Can the parts be recovered?

Polytope Approximation 00000 0000 00 000000000 NMF 00 000000 000000 Conclusion

Eighty Swimmers



NMF 00 000000 000000 Conclusion

Seventeen Parts

Polytope Approximation 00000 0000 00 00000000 NMF 00 000000 Conclusion

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Conclusion

- The notion of low dimensional polytope approximation is investigated in this talk.
 - The pull-back regulates the resulting polytopes to a more manageable compact set.
 - The proximity map can be calculated in finitely many steps.
- The proximity maps compute the unique global minimization in each alternating direction.
 - The best possible approximation per iteration.
 - Numerical experiments.
 - Smaller residual errors.
 - Fewer steps.

NMF 00 000000 000000 Conclusion

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Future Work

- At present, the proximity map is accomplished column by column.
 - Less competitive in speed with the Lee-Seung algorithm which can be executed under BLAS3.
 - Possible to compute the proximity map for multiple columns simultaneously.
- A vectorization, if realizable, would be an added power to our method which in theory should produce the best possible approximation per alternating direction.