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NMF Problem

• Given
• A nonnegative matrix Y ∈ Rm×n,
• A positive integer p < min{m, n},

• Find
• Nonnegative matrices U ∈ Rm×p and V ∈ Rp×n

• Minimize the functional

f (U, V ) :=
1
2
‖Y − UV‖2

F .
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Basic Ideas

• Approximate a polytope by another polytope with fewer facets.
• Reduce the number of vertices, but not the dimensionality.

• Work on the probability simplex.
• Compact set with known boundary.

• Compute supporting hyperplanes in finitely many steps.
• Find unique and global minimum per iteration.

• Applicable to NMF.
• Might have applications to set estimation in pattern analysis, robot

vision, and tomography — normally in R3. (Not in this talk)
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Probability Simplex

• Given Y ∈ Rm×n, define

σ(Y ) := diag{‖y1‖1, . . . , ‖yn‖1}
ϑ(Y ) := Yσ(Y )−1.

• Columns of ϑ(Y ) are points on the probability simplex Dm in Rm.

Dm :=
{

y ∈ Rm|y � 0, 1>my = 1
}

,



Basic Ideas Polytope Approximation NMF Conclusion

Convex hull of ϑ(Y ) ∈ Rm×n with m = 3 and n = 11.
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Minimal Convex Hull

• There is a smallest convex hull C containing all columns of ϑ(Y ).

C := conv(ϑ(Y )) = conv(ϑ(Ỹ )),

ϑ(Y )︸ ︷︷ ︸
m×n

= ϑ(Ỹ )︸ ︷︷ ︸
m×p

Q︸︷︷︸
p×n

.

• eY =
ˆ
yi1 , . . . , yip

˜
is a m × p submatrix of Y .

• Q ∈ Rp×n itself represents points in the simplex Dp.

• This is an exact NMF of Y ,

Y = ϑ(Y )σ(Y ) = ϑ(Ỹ )(Qσ(Y )).

• p ≤ n, but it might be that p ≥ m.
• Want p << min{m, n}.
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Converse

• If Y = UV is an NMF of Y , then

Y = ϑ(Y )σ(Y ) = ϑ(U)ϑ(σ(U)V )σ(σ(U)V ).

• It must be such that

ϑ(Y ) = ϑ(U)ϑ(σ(U)V ),

σ(Y ) = σ(σ(U)V ).

• WLOG, assume σ(U) = In, then

ϑ(Y ) = ϑ(U)ϑ(V ),

σ(Y ) = σ(V ).
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Reformulation of NMF

• If p < |C|, solving the NMF means minimizing

f (U, V ) =
1
2
‖Y − UV‖2

F =
1
2
‖

ϑ(Y )− U Vσ(Y )−1︸ ︷︷ ︸
W

 σ(Y )‖2
F .

• Can consider W as the projection of the polytope ϑ(Y ) onto the
polytope conv(U) with respect to a weighted inner product.

• Hahn-Banach theorem in a Hilbert space kicks in.
• It is easier to work on the probability simplex.
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Convex Hull Fitting Problem

• Given ϑ(Y ) and p << min{m, n},

minimize g(U, W ) =
1
2
‖ϑ(Y )︸ ︷︷ ︸

m×n

− U︸︷︷︸
m×p

W︸︷︷︸
p×n

‖2
F ,

subject to U ∈ ∂Dm, W � 0, 1>p W = 1>n ,

• ∂Dm stands for the boundary of Dm.
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Convex hull of ϑ(Y ) and U in D3

conv(ϑ(Y ))

conv(U)

D3
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Solving W

• For a fixed U ∈ Rm×p,

W = (U>U)−1(U>ϑ(Y )− 1pµ
>),

• Lagrange multiplier,

µ> =
1>p (U>U)−1U>ϑ(Y )− 1>n

1>p (U>U)−11p
.

• W may not be nonnegative.
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Convex Coordinates

• Entries of W stands for the unique “coordinates" of ϑ(Y ) in terms
of U.

• The proximity map is guaranteed by the Hahn-Banach theorem.
• Wolfe’s algorithm is available to find the nearest point of ϑ(y) on

conv(U). (Wolfe’76)
• More efficient recursive algorithm is also available. (Sekitani &

Yamamoto’93)
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Proximity Map to a Convex Set C
• Given x, ρ(x) = The nearest point on C to x.
• Necessary and sufficient condition on ρ(x):

• (x− ρ(x))>(z− ρ(x)) ≤ 0 for all z ∈ C.
• ‖ρ(0)‖2 ≤ ρ(0)>z for all z ∈ C.

x

z

ρ(x)

C
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Hanh-Banach Theorem

• Two disjoint convex sets can be separated by a hyperplane.
• A hyperplane is determined by a normal vector n and a scalar c.

H(n, c) := {x|n>x = c}.

• A half space.
H+(n, c) := {x|n>x ≥ c}.

• Given C not containing the origin 0, H(ρ(0), ‖ρ(0)‖2) supports C
in the sense that

C ⊂ H+(ρ(0), ‖ρ(0)‖2).
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Sekitani and Yamamato Algorithm, x̂ = N (P)

1. Start with k := 1 and an arbitrary point x0 from conv(P).
2. Find supporting hyperplane.

• αk := min
˘

x>k−1p|p ∈ P
¯

.
• If ‖xk−1‖2 ≤ αk , then bx := xk−1 and stop.

3. Recursion.
• Pk :=

˘
p|p ∈ P and x>k−1p = αk

¯
.

• Call yk := N (Pk ).

4. Check separation.
• βk := min

˘
y>k p|p ∈ P − Pk

¯
.

• If ‖yk‖2 ≤ βk , then bx := yk and stop.

5. Rotation.
• λk :=

max
n

λ| ((1− λ)xk−1 + λyk )
> yk ≤ ((1− λ)xk−1 + λyk )

> p, p ∈ P − Pk

o
.

• xk := (1− λk )xk−1 + λk yk .
• k := k + 1 and go to Step 2.
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p3 = x0

p1 = y1p2

p4

H(x0, α1)
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p3 = x0

p1 = y1

p2

p4

H(x0, α1)

x1
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p3 = x0

p1 = y1

p2 = y2

p4

H(x1, α2)

H(x0, α1)

x1

x2
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p3 = x0

p1 = y1

p2 = y2

p4

H(x0, α1)

H(x1, α2)

H(x2, α3)

x1

x2

y3
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Advantages

• Recursive in nature.
• Not based on simplicial decomposition.

• No need to solve systems of linear equations.
• East to start.

• Can start with an arbitrary point in conv(P).
• Does not need an initial supporting hyperplane.

• Involves only matrix to vector multiplications.
• Find the unique global minimizer — the proximity map.
• Terminate in finite steps.
• Convex combination coefficients can be calculated.
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Solving U
• Gradient is available.

∇Ug(U, W ) :=
∂g
∂U

= −(ϑ(Y )− UW )W>.

• Assume ui is on the j th facet, the projected gradient is easy to
come by.

∇j
ui g(U, W ) := (Im − Aj(A>j Aj)

−1A>j )∇ui g(U, W ). (1)

• Projection matrix is easy to formulate.

Aj(A>j Aj)
−1A>j =

1
m − 1

2666666666664

1 . . . 1 0 1 . . . 1
...

. . .
...

1 1 0 1
0 0 m − 1 0 . . . 0
1 1 0 1 1
...

...
1 . . . 1 0 1 . . . 1

3777777777775
,
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Numerical Experiment

• Use the line search along the projected gradient direction to
adjust U.

• U travels along the boundary of the simplex Dm.
• uj may hit “ridges" of “vertices" of the simplex — can be detected.
• Change facet is easy.

• Code is constructed and is under testing.
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Triangle enclosing a prescribed set of points on D3
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Nonnegative Matrix Factorization

• Similar approach can be generalized to NMF .
• W is no longer on a simplex.
• This becomes a weighted subspace approximation.

• The product UW should be interpreted as points of the simplicial
cone of U.

• By compactness, a truncated simplicial cone is enough.
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NMF in R2

• Relationship between u and W in R2.

u =
n∑

i=1

(
σ2

i wi∑n
i=1 σ2

i w2
i
ϑ(yi)−

σ2
i wi − σ2

i w2
i

2
∑n

i=1 σ2
i w2

i
12

)
,

wi =
u>ϑ(yi)

u>u
, i = 1, . . . , n.

• uwi is precisely the projection of ϑ(yi) onto u.
• wi is guaranteed to be positive and is known as soon as u is given.

• Not true in high-dimensional case.
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Optimality in R2

• A geometric interpretation.
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Nearest Point in Simplicial Cone

• Fix U, write

f (U, V ) = h(U, W )

:=
1
2
‖(ϑ(Y )− UW )σ(Y )‖2

F =
1
2

n∑
i=1

σ2
i ‖ϑ(yi)− Uwi‖2

2, (2)

• If each term in (2) is minimized, the h(U, W ) is necessarily
minimized.

• Best approximate each column of ϑ(Y ) within the simplicial cone of
U.
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Representing the Simplicial Cone

• With a large enough and fixed positive constant α, a truncated
cone is given by

Ũ = [0, αu1, . . . , αup].

• Columns of Ũ ∈ Rm×(p+1) represent p + 1 vertices of a polytope.

• Find the nearest point on conv(Ũ) to ϑ(yi).
• Can be done by Algorithm N .
• Obtain convex combination coefficients fW ∈ R(p+1)×n for ϑ(Y ).
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Unique Global Minimizer
• Decompose W̃ into two blocks,

W̃ =

[
w>0
W0

]
.

• w>0 is the first row of fW .
• W0 ∈ Rp×n.

• No need of the origin.
• Same points, but eUfW = UW

• W = αW0.
• By construction, W � 0.
• W is no longer on Dp.

• Given Y and U,
V = Wσ(Y ),

is the unique global minimizer to f (U, V ).
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Updating U

• Can update U in exactly the same way as computing the optimal
W .

• Consider

f (U, V ) =
1
2
‖

ϑ(Y>)− ϑ(V>)(σ(V>)U>σ(Y>)−1︸ ︷︷ ︸
Φ

)

 σ(Y>)‖2
F .

• Apply the procedures N to compute the unique and optimal
simplicial combination coefficients Φ ∈ Rp×m.

• The optimal U is given by

U =
(
σ(V>)−1Φσ(Y>)

)>
.
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Comparison with Lee and Seung
• Given U, compute V .

• Chu and Lin algorithm,

V = Wσ(Y ),

• Lee and Seung algorithm,

V + = V . ∗ (U>Y )./(U>UV ),

• Given V , compute U.
• Chu and Lin algorithm,

U =
“
σ(V>)−1Φσ(Y>)

”>
.

• Lee and Seung algorithm,

U+ := U. ∗ (YV>)./(UVV>),

• Lee and Seung compute only the minimizer of an approximate
and much simpler model.

• Chu and Lin compute the unique global minimizer.
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Numerical Experiment

• Test data.
• Generate random nonnegative matrices A ∈ Rm×p and B ∈ Rp×n

with p < min{m, n}.
• Let Y = AB be the target data matrix.

• Can any NMF algorithm recover A and B from Y?
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Accuracy
• Our method produces much closer approximation to Y , e.g.,

3.3035× 10−4 versus 1.1989, than Lee and Seung.
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Improvement per Iteration
• Our method decreases the objective value more rapidly than Lee

and Seung.
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Swimmer Database

• A set of black-and-while stick figures satisfying the so called
separable factorial articulation criteria.

• Each figure consists of a “torso" of 12 pixels in the center and
four “limbs" of six pixels that can be in any one of four positions.

• With limbs in all possible positions, there are a total of 256
figures of dimension 32× 32 pixels.

• Can the parts be recovered?
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Eighty Swimmers
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Seventeen Parts
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Conclusion

• The notion of low dimensional polytope approximation is
investigated in this talk.

• The pull-back regulates the resulting polytopes to a more
manageable compact set.

• The proximity map can be calculated in finitely many steps.
• The proximity maps compute the unique global minimization in

each alternating direction.
• The best possible approximation per iteration.
• Numerical experiments.

• Smaller residual errors.
• Fewer steps.
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Future Work

• At present, the proximity map is accomplished column by
column.

• Less competitive in speed with the Lee-Seung algorithm which can
be executed under BLAS3.

• Possible to compute the proximity map for multiple columns
simultaneously.

• A vectorization, if realizable, would be an added power to our
method which in theory should produce the best possible
approximation per alternating direction.
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