
1 
 

Uncertainty and Inference in Agent-based Models 
 

Georgiy V. Bobashev, Ph.D. 
Statistics and Epidemiology Division 

RTI International 
Research Triangle Park NC, 27709, USA  

bobashev@rti.org 

Robert J. Morris 
Statistics and Epidemiology Division 

RTI International 
Research Triangle Park NC, 27709, USA  

rjmorris@rti.org
 

Abstract—Agent-Based Models (ABMs) can be used to 
quantify future risks by projecting observable behavior into 
the future. This can be achieved by simulating a hypothetical 
longitudinal study based on cross-sectional data and estimating 
quantities on dynamic risks (e.g., relative hazard). Such an 
approach, however, requires assessment of the variation of the 
estimates, which would naturally have a higher variance than 
would be achieved in a real longitudinal study. We present 
methodology that considers rigorous statistical measurements 
such as standard errors and uncertainty associated with the 
fact that the analyzed longitudinal data are a projection of the 
cross-sectional survey. We illustrate the use of our approach in 
simulated and real studies. 
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I.  INTRODUCTION 

Agent-based models (ABMs) can be used for a number 
of purposes such as testing theoretical concepts [1], 
forecasting health outcomes [2], and quantification of 
relative risks [3]. In this paper we specifically focus on the 
latter application (i.e., estimation of behavior risks and 
obtaining rigorous estimates of precision for these estimates).  

When statistical analysis is conducted on survey data the 
statistician is usually concerned about two characteristics of 
the estimates: bias and standard error. The first characterizes 
a systematic error which could be caused by the sampling 
method or the estimation procedure; the second characterizes 
the random variation as a result of unobserved random noise. 
In this paper we focus on the second measure, which 
characterizes precision.  

A common criticism of simulation modeling approaches 
in general and agent-based models in particular is that the 
simulations produce computer-generated data that are not 
real-world observations, and thus such data cannot be 
considered as evidence in the decision-making process, 
unless some measure of precision accompanies the model-
based estimates. At the same time, to populate the model 
with parameter values, researchers often use real survey data, 
whose estimates are accompanied with standard errors.  

When reporting the results of ABMs, researchers often 
report 95% of the range interval (i.e., the interval wherein 
95% of simulation results are contained). Sometimes, 
however, these intervals are reported as 95% confidence 
intervals, which can lead to a critical confusion because a 
95% confidence interval refers to the interval that contains 
the “true” parameter value 95% of the time the study is done. 

The notion of the “true” value is the main point of 
controversy. Policy makers, clinicians, and intelligence 
analysts imply by the notion of “true” the value of the 
parameter in the real world (e.g., the number of HIV-infected 
individuals in the country, the percentage of patients who 
will benefit from treatment, the number of insurgents in the 
area). At the same time, a modeler grounded in a virtual 
world (e.g., assume a hypothetical city with 100,000 
population) also considers a “true” parameter value—one 
sets up a value for the virtual population and then tries to 
show that the model correctly estimates that value. Thus, the 
use of standard errors and confidence intervals is justified 
but in strict application to the virtual population. It should 
not be considered as a substitute for values in the real world.  

When ABMs combine real-world data and simulated 
virtual outcomes it is necessary to be completely clear about 
the nature of the estimates and their interpretation. This is 
important because the magnitude of the standard errors is 
inversely related to the square root of the sample size n. In 
the real world, to produce such an estimate one has to recruit 
roughly n individuals with numbers varying depending on 
the specifics of the design. The reduction of standard error is 
equivalent to the increase in n, which in turn results in 
noticeable increase in cost, time, and effort. Thus, the goal of 
statisticians is to design a study which requires the smallest n 
producing the targeted standard error.  

In simulation experiments the number of replications (or 
virtual subjects) is incomparably cheaper than recruiting real 
subjects, and given fast-growing computational power, 
running hundreds, thousands, and potentially millions of 
replications could lead to virtually negligible standard errors.  

Thus, we suggest using the terms “standard errors” and 
“confidence intervals” when referring to estimates obtained 
from real data using rigorous statistical techniques and using 
the terms “uncertainty” and “range intervals” to denote the 
corresponding estimates produced by model-based 
simulations. 

In the rest of the paper we present a theoretical 
background for combining standard errors and precision 
when the simulation model assesses longitudinal risks based 
on cross-sectional survey. We provide study examples and 
discuss the implications for future behavioral research.  

II. PROJECTING RISKS INTO THE FUTURE WITH ABMS 

Estimation and quantification of risks is a major task in 
many disciplines such as public health, clinical, and security 
research. The best way to estimate these risks is to conduct a 
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longitudinal or prospective study where a number of subjects 
is monitored over a long period of time. For example, if a 
researcher wants to understand who is at the highest risk to 
contract HIV he or she might want to select a large cohort of 
HIV-negative individuals and observe it for, say, 10 years. 
After 10 years one could conduct a survival analysis to 
quantify relative hazard associated with certain types of risk 
behavior (e.g., multiple sex partners). Although such a study 
provides strong statistical evidence it is very cumbersome 
and takes a long time because the incidence of HIV is quite 
low. ABMs allow one to answer similar questions more 
quickly by conducting a cross-sectional study, where 
recruited subjects can describe their behavior. This behavior 
could be then quantified in terms of states and transition 
probabilities and incorporated into an ABM. Simulating the 
behavior for the next 10 years would result in some agents 
becoming HIV positive. Replicating the simulations many 
times allows one to assess how often a particular individual 
or a group of individuals who are sharing common behaviors 
become HIV positive. In the same manner one can conduct 
survival analysis and estimate relative hazard.  

The relative simplicity of this approach, however, comes 
at the price of the necessity to address the precision of the 
estimates. In a longitudinal study standard errors follow 
well-established statistical procedures and depend on the 
number of subjects in the study. In the ABM approach the 
precision of the estimates depends on both the number of 
subjects in the cross-sectional study and the features of the 
simulations. As we show in the next section, conducting 
large numbers of replications (e.g., millions) would eliminate 
neither the uncertainty nor the random error associated with 
the number of subjects n.  

III.  COMBINING NATURAL VARIATION AND SIMULATION -
BASED UNCERTAINTY 

In a study such as described above, one might be 
interested in estimating a specific parameter θ from the data 
simulated over a period of time T. For example, one might 
want to estimate the odds ratio of contracting HIV in 5 years 
for having one versus two or more sex partners. If the 
estimation were based on the longitudinal study of n subjects 
the Odds Ratio estimate would have the form  

θ̂ =f(Yi, Xi, n),        (1) 

where θ̂ is the estimate of the odds ratio θ, symbols Yi and Xi 
denote the values of dependent and independent variables for 
each individual i. For example, Xi=0 if the subject had one or 
fewer sex partners over the 5 years and Xi=1 if the subject 
had two or more sex partners. Similarly, Yi=0 if the subject is 
HIV negative after 5 years, and Yi=1 if the subject is HIV 
positive. Model relating Xi and Yi can contain parameters U 
that are estimated from the data and thus have some 
quantifiable measure of uncertainty such as standard error. 

The variance of the estimate θ̂  is calculated according to 
conventional statistical methods and is equal to  

Var(θ̂ )=g(Yi, Xi, U, n),        (2) 
Now, if the sample is not a result of a survey but rather a 

simulated random representation of what could occur over 

the period T the estimate becomes conditioned on the 
specific realization j:  

jθ̂ =f(Yij, Xij, U, n),       (3) 

and the overall parameter value is an expectation over all 
realizations, i.e.  

θ̂ =Eover j( jθ̂ |Yij, Xij, U, n),        (4) 

where the expectation is taken over all possible stochastic 
realization of j-indexed samples. The variance of the 
estimate then follows the variance components formula [4]: 

Var(θ̂ )=Varover j(E( jθ̂ |Yij, Xij, U, n)) + 

Eover j(Var( jθ̂ |Yij, Xij, U, n)),        (5) 

where the first term represents the variation of the 
estimate f(Yi, Xi, n) over all replicates, and the second term is 
a mean of the g(Yi, Xi, n) over the same replicates. Thus, the 
equation (5) could be rewritten as  

Var(θ̂ )=Varover j(fj|Yij, Xij, U, n) +Eover j(gj|Yij, Xij, U, n).     (6) 
Equation 6 provides the basis for the estimation of the 

mean and variance of the parameters when the model 
combines observed and simulated data. An important 
implication of equation 5 is that even if there is no variation 
between individuals there is still variation caused by the 
stochasticity of the model. Conversely, if the model is 
deterministic, there is still variation caused by the difference 
in individuals.  

Equation 6 could be extended to the case when the 
simulations use a number of other parameters that are 
considered to be randomly distributed. In the HIV example 
these parameters would be the numbers of sexual contacts 
with partners, use of condoms, transmission probability of 
HIV per sex act between HIV-positive and HIV-negative 
individuals, etc. Thus, the estimation of the quantity of 
interest with three additional parameters becomes:  

θ̂ =E(fj,k,l,m|Yijklm, Xijklm, U1ijklm, U2ijklm, U3ijklm, n),       (7) 
where the parameters U1, U2, and U3 represent other 

parameters used in the model. We assume that the value of 
risk variables X could depend on the values of the 
parameters. For example, if X is the number of sex partners, 
this parameter could change during the simulation if a 
subject i with multiple sex partners gets married, and reduces 
the number of sex partner to one. The number of parameters 
can, of course, be large, and both the outcome and risk 
variables could depend on a joint distribution of these 
parameters. In the case of three parameters the equation for 
variance becomes:  

Var( θ̂ )=Varover j,k,l,m(fj,k,l,m|Yijklm, Xijklm, U1ijklm, U2ijklm, 
U3ijklm, n) +Eover j,k,l,m(gj,k,l,m|Yijklm, Xijklm, U1ijklm, U2ijklm, U3ijklm, 
n).            (8) 

The simplest assumption for a simulation experiment is 
to assume that all parameters are independently distributed 
and obtain partial estimates of variance holding other 
parameters constant. This approach could either under- or 
overestimate the variances depending on the nature of the 
covariance structure. At the same time, the assumption of 
independence provides a rough estimate of the range of the 
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variation and allows one to conduct sensitivity analysis. In 
case of the independence, the components in equation 8 turn 
into a sum of conditional components, e.g.,  

Varover j,k,l,m(fj,k,l,m|Yijklm, Xijklm, U1ijklm, U2ijklm, U3ijklm, n)= 
Varover jk(fj,k|Yijk, Xijk, U1ijk, U2*, U3*, n)+ Varover jl(fj,l|Yijl, 

Xijl, U1*, U2ijl, U3*, n)+ Varover jm(fj,m|Yijm, Xijm, U1*, U2*, 
U3ijm, n),            (9) 

where the asterisk indicates a fixed value of the 
parameter at some characteristic point. The need to choose a 
characteristic point to conduct the analysis leads to the 
discussion of realistic scenarios, where the parameter values 
and the combination of parameter values are most important. 
The assumption of independence in parameter distribution 
has a theoretical justification. The approach of assuming 
random distribution of parameters follows Bayesian logic 
(i.e., that the population parameter is distributed according to 
some distribution). A classic frequentist approach stipulates 
that the parameters are fixed in the population and the 
estimates are only providing a point estimate with the 
associated standard errors. The presented approach follows 
the frequentist logic of fixed parameter but considers 
standard errors as the basis of quantifying the uncertainty 
about the actual location of the estimable parameter. Thus, 
the distributions of U1, U2, and U3 do not represent the 
population distribution of these values but rather the 
analyst’s uncertainty about the location of the true parameter. 
It is unlikely that there is a correlation in the estimated 
uncertainty in two or more parameters. If, however, one is 
using the Bayesian approach and estimates the parameter 
values accordingly, the consideration of joint distribution of 
parameters in the population becomes an important issue.  

A useful way to consider many parameter distributions is 
to consider certain parameters as “experimental” (i.e., 
consider them fixed and examine the results under the 
analyst’s control). The obvious problem of course is that 
varying only one parameter at a time leads to exploding 
factorial designs when one needs to consider all possible 
variable combinations.  

Considerations of theoretically valid assumptions are 
useful to reduce the number of associations to be tracked. In 
the HIV example, some subjects claim to use illegal drugs 
such as cocaine, methamphetamine, and heroin. The pattern 
of sexual activity is very different for users of sedatives 
(heroin) and stimulants (cocaine and methamphetamine). 
Stimulant users often use the drug to enhance their sexual 
activity, while heroin users have less sexual activity because 
of the sedative effect of the drug. If a subject changes the 
drug pattern from methamphetamine to heroin, the sexual 
patterns are likely to change too. Usually the choice of 
scenario is dictated by the study objectives, such as 
important public health questions [5].  

IV.  EXAMPLES OF THE APPLICATIONS  

We illustrate the presented methodology with a simple 
example inspired by the public health desire to predict the 
number of new cases for a pandemic disease. Assume for 
simplicity a homogeneously mixed closed population 
containing all susceptible individuals and a new disease 
which spreads in the population. An individual can be either 

infected (I) or susceptible (S) and disease can spread from an 
infected to a susceptible individual according to a simple 
rule. A susceptible agent contacts other individuals in the 
population with the rate λ contact per unit time and if the 
contact is with an infected individual, the disease is 
transmitted to the susceptible individual with probability γ. 
For simplicity we assume that the infected individual never 
recovers. The assumptions of homogeneous mixing and 
mass-action lead to the probability of infection per unit time 
P for each susceptible as  

P= λγI= βI,       (10) 
where β is the product of λ and γ. 
Let us consider that the parameter β is estimated from an 

independent sample of n individuals and has a mean of 

β̂ with a standard error of Sβ. If we want to estimate the 
numbers of infected individuals at time T we will need to 
conduct a simulation of the agent-based model representing 
the entire population of size N and assess the precision of the 
estimate. Assume that the population is of size 1,000 and the 
parameter β is estimated from the sample of 50 individuals 
with the mean of 0.1 per day and standard error of 0.04. 
Assuming the parameter β is fixed at the value of 0.1, 
simulation runs for such a model over a period of 30 days 
lead to a distribution of the outcome caused purely by the 
random nature of the agent-based simulation. We call this 
distribution as “Error Within” (Figure 1). The overall 
proportion of infected individuals is p=0.075, which could 
also be found by an exact solution to the logistic differential 
equation resulting from the model.  

Note that a standard error for β is defined in frequentist 
terms and represents the area where the “true” non-random 
parameter value can be found. Thus, a standard error does 
not refer to the estimated distribution of the parameter. 
Nevertheless, we treat the uncertainty in parameter estimate 
in a Bayesian sense, where the parameter follows a 
distribution with known characteristics, e.g. a Normal 
distribution with mean 0.1 and standard deviation of 0.04. In 
fact, since the “true” frequentist parameter value is not 
known, why not to consider a “what if” scenario and draw 
potential fixed values from a distribution. 

By drawing random values from this distribution we can 
assess how the uncertainty is propagating through the model. 
We can calculate the components of variance which are due 
to both uncertainty in parameter value and stochastic nature 
of contacts between individuals.  

In the current example, θ represents the proportion of 
infected individuals; β does not vary between individuals i or 
between random simulations j conditioned on the value of β, 
but varies because of the uncertainty associated with its 
estimation. The values of the variance components in the 
example are the following: variance component between 

values of βm is Varover j(E( jθ̂ |Yij, βm, N))=0.0147, variance 

component within the value of βm (i.e., given a specific value 

of βm) is Eover j(Var( jθ̂ |Yij, βm, N))=0.0021, and the total 

variance of the estimate is 0.0168 with corresponding square 
root error terms 0.121, 0.046, and 0.129. Because prevalence 
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cannot be negative the low bound is fixed at zero (Figure1).  
Presented error bars thus represent the standard errors of 
these conditional and total estimates. Because of the 
asymmetry in the distribution of uncertainty it is better to 
present the 95% uncertainty intervals because they better 
reflect the shape of error distribution.  

Generally, in sampling theory when parameter θ 
represents the population mean and based on sample of size 
n, the standard error will be inversely proportional to the 
square root of the sample size. 

Standard.error(
jθ̂ )= sqrt(Vθ/N),      (11) 

where Vθ is the estimate of the total variance for 
parameter θ and N is the population size. Note, here we 
assume that city size N is real, fixed to 1,000 individuals, and 
we cannot change it as we would like. 
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Figure 1. Components of the total variance of the proportion 
estimate. Error bars correspond to the sizes of standard 
errors. Error Between corresponds to the variation in 
prevalence θ caused by the variation in value of β. Error 
Within corresponds to the variation when β is fixed at its 
mean.  

 
If this were a real study with real people and the city 

were chosen as a random city from the homogeneously 
mixed country, the total variance for disease proportion 
would be equal to p(1-p)=0.069, and the standard error of 
that estimate would be sqrt(0.069/1000)=0.0083. Such 
estimate assumes simple random sampling from an infinitely 
large population considering a single realization of the 
epidemic process and does not account for a variety of 
possible epidemic trajectories that could have theoretically 
occurred. The increased total variance in the modeling 
example is different and higher because of the uncertainty in 
the parameter estimate and the randomness induced by the 
contact nature of disease spread. It does not consider 
sampling but rather considers a specific studied population.   

Although we cannot change the sample size, in the 
simulation model we can change the number of simulations 
per parameter value. The increase in the number of 
simulations will not have much impact on the total estimates 
and even if all model-based stochasticity is eliminated (i.e., 
considered a deterministic solution) the error in the estimate 
of the proportion infected cannot be smaller than the error 
caused by the uncertainty in β. 

We would thus caution against reporting the value of the 
standard error based on the number of simulations rather 
than the population size in the denominator. The quantity 
Q=sqrt(Vθ/M), where M represents the number of 
simulations, could be viewed as a standard error but of a very 
different quantity. In particular, Vθ/M represents how 

accurately the simulated mean Var( jθ̂ |Yij, βm, N)/M 

represents the expected value Eover j(Var( jθ̂ |Yij, βm, N)). 

Although this quantity has no part in equations 5 and 6, 
those can be useful to understand how many simulations one 
should run to get accurate representation of the variance. One 
can hypothetically use billions of replications depending on 
the power of the computer and can completely eliminate the 

quantity Q (i.e., 
∞→M

lim Q)=0) but this will of course not 

eliminate the value of the total variance. In our example, 
when estimating the proportion infected, having 10 
replications could lead to the point estimate of, say 0.0722; 
for 100 replications we can get 0.0749, and for 10,000 we get 
0.0750. This exercise gives us a good indication of how 
many replications to use in the simulation. If the point 
estimate is 0.075 and the standard error of the estimate is 
about 0.057 then there is no reason to strive for obtaining 
higher digits and 100 replications are quite sufficient for the 
purpose.  

Another example is based on a recent study called Sexual 
Acquisition and Transmission of HIV–Cooperative 
Agreement Program (SATH-CAP) funded by the National 
Institute of Drug Abuse (NIDA). Based on a sample of 
almost 2,000 individuals who reported risky behavior that 
could be associated with HIV transmission, the researchers 
developed an agent-based model describing sexual and drug-
injecting activities of the subjects and the social network 
context of the studied population [3,6,7].  

The study was cross-sectional (i.e., the subjects were 
assessed once) and the subjects were asked about current and 
past sexual and drug use behavior. The prevalence of HIV 
was about 11% but the incidence was very low, thus 
precluding researchers from estimating odds ratios for risk. 
The use of a prevalence-based case-control approach for a 
disease like HIV is deeply flawed because the behavior can 
dramatically change after an individual learns about positive 
HIV status, and thus the risk factor often changes with the 
outcome. To estimate relative risks associated with different 
behaviors such as having many sex partners, the behavior 
was projected (3 years ahead) using agent-based simulations. 
This approach simulates potential incidence and thus 
provides a virtual sample for the analysis. The challenge with 
this approach is that one needs to account for parameter 
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uncertainty, simulation stochasticity, and structural 
uncertainty in providing estimates of the standard errors.  

We have applied the approach described above to obtain 
the odds ratios of becoming HIV positive in 3 years for 
having 10+ sex partners in 6 months compared with having 
only 1 sex partner. The estimates were adjusted for age, race, 
sex, frequency of partner change, use of stimulant drugs, and 
drug injection. The odds ratio for the default parameter 
values was 5.4 with an estimated uncertainty error of 1.7. 
However, besides the uncertainty in behavioral parameter 
estimates (based on the sample of risk subjects) there were 
uncertainties for which there was no prior knowledge. 
Among these uncertainties were the percentage of the total 
risk population the sample actually represented, sensitivity of 
the results to the setting in mixing matrices (e.g., 
probabilities of who has sex with whom), and different rates 
of change in sex partners.  

For our analysis we considered sensitivity analysis where 
we methodically changed the model setting, repeating the 
simulations and regression analysis. The analysis shows that 
when the sample represents 5% or 15% of the population the 
Odds Ratios tend to be higher (OR=6.8 and 7.8, respectively 
with the uncertainty around 3.7) than when the sample 
represents the default value of 10% of the population. A 
random mixing matrix also produced the increased value of 
the Odds Ratio compared with the matrix estimated from the 
egocentric data (OR=6.9, uncertainty error 1.8). Finally, 
shutting down the sex change rate the odds ratio was equal to 
11.4 with an uncertainty error of 2.4. 

These findings suggest that even when the level of 
uncertainty is high the odds ratio for having 10 or more 
sexual partners in 6 months dramatically increases the odds 
of becoming HIV positive with the ORs in the range of 4–11.  

This variation in estimates due to structural model 
uncertainty is not added to the total more formal uncertainty 
assessment because these sources of variation are not 
quantified as “random” but rather as fixed experimental 
parameters. In many modeling studies the uncertainty is 
compounded by standard errors based on real data, stochastic 
uncertainty based on random simulations, and structural 
uncertainty of the model setting itself (e.g., network 
connections). In such setting our suggestion for presenting 
the results would be to keep structural uncertainty as fixed 
experimental parameters and use information about 
parameter distribution to present the uncertainty errors given 
fixed experimental parameters. It is also informative to 
present the partial uncertainty errors which would be 
obtained if the study was a real-world study because it could 
inform future surveys about the necessary sample sizes.  

Such estimates can be considered quite broad for a 
longitudinal study affecting prevention policy; however, the 
use of agent-based modeling makes it dramatically cheaper 

and provides a good insight to where the highest risk 
individuals are, where to focus interventions, and what could 
be the crude magnitude of the effect.  

V. CONCLUSIONS  

We have presented an approach that provides a rigorous 
method for calculating uncertainty associated with the 
combination of real data and simulated experiments using 
agent-based models. We have clarified the interpretation and 
presentation of uncertainty and standard errors. We have also 
presented examples where such approaches are used. 
Although these methods are presented in the context of 
agent-based models they are quite general and could easily 
be extended to system dynamics modeling.  In this paper we 
have not considered “deep uncertainty” which is 
characterized by effects that could not be forecasted even if 
all information is precisely available  at the time of analysis. 
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