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Abstract—Agent-Based Models (ABMs) can be used to The notion of the “true” value is the main point of

quantify future risks by projecting observable behaior into
the future. This can be achieved by simulating a Ipothetical
longitudinal study based on cross-sectional data anestimating
guantities on dynamic risks (e.g., relative hazard) Such an
approach, however, requires assessment of the vatian of the
estimates, which would naturally have a higher vaance than
would be achieved in a real longitudinal study. Wepresent
methodology that considers rigorous statistical meairements
such as standard errors and uncertainty associatewith the
fact that the analyzed longitudinal data are a progction of the
cross-sectional survey. We illustrate the use of oapproach in
simulated and real studies.

Keywords: Agent-based models, uncertainty, standard error,
longitudinal study, cross-sectonal, regression.

. INTRODUCTION

controversy. Policy makers, clinicians, and intghce
analysts imply by the notion of “true” the value tife
parameter in the real world (e.g., the number of-kifected
individuals in the country, the percentage of pasewho
will benefit from treatment, the number of insurtgem the
area). At the same time, a modeler grounded inr@mabi
world (e.g., assume a hypothetical city with 100,00
population) also considers a “true” parameter vatoee
sets up a value for the virtual population and ttrés to
show that the model correctly estimates that valieis, the
use of standard errors and confidence intervajsissfied
but in strict application to the virtual populatiolh should
not be considered as a substitute for values inehleworld.
When ABMs combine real-world data and simulated
virtual outcomes it is necessary to be completlgrcabout
the nature of the estimates and their interpretafidis is
important because the magnitude of the standamtseris

Agent-based models (ABMs) can be used for a numbgnversely related to the square root of the sarsizen. In
of purposes such as testing theoretical concepfs [Ithe real world, to produce such an estimate onecheecruit

forecasting health outcomes [2], and quantificatioh
relative risks [3]. In this paper we specificallyctis on the
latter application (i.e., estimation of behaviosks and
obtaining rigorous estimates of precision for thesmates).

When statistical analysis is conducted on surveg the
statistician is usually concerned about two charistics of
the estimates: bias and standard error. The fiatacterizes
a systematic error which could be caused by thepkagn
method or the estimation procedure; the secondacterizes
the random variation as a result of unobservedmanadoise.

roughly n individuals with numbers varying depending on
the specifics of the design. The reduction of statherror is
equivalent to the increase m which in turn results in
noticeable increase in cost, time, and effort. Thhes goal of
statisticians is to design a study which requinessmallesh
producing the targeted standard error.

In simulation experiments the number of replicatidor
virtual subjects) is incomparably cheaper thanuitiog real
subjects, and given fast-growing computational powe
running hundreds, thousands, and potentially nmidlicof

In this paper we focus on the second measure, whickeplications could lead to virtually negligible steard errors.

characterizes precision.

Thus, we suggest using the terms “standard eramd’

A common criticism of simulation modeling approaghe “confidence intervals” when referring to estimatestained

in general and agent-based models in particuldinas the
simulations produce computer-generated data ttetnat

real-world observations, and thus such data carb®t

from real data using rigorous statistical techngjaed using
the terms “uncertainty” and “range intervals” tondee the
corresponding estimates produced by model-based

considered as evidence in the decision-making pByce simulations.

unless some measure of precision accompanies tlelmo

based estimates. At the same time, to populatamibael
with parameter values, researchers often use uead\sdata,
whose estimates are accompanied with standardserror

In the rest of the paper we present a theoretical
background for combining standard errors and pigctis
when the simulation model assesses longitudinks tiesed
on cross-sectional survey. We provide study exasnpled

When reporting the results of ABMs, researchersmoft discuss the implications for future behavioral ezsh.

report 95% of the range interval (i.e., the inténwherein

95% of simulation results are contained). Sometimes |Il.

however, these intervals are reported as 95% camfig
intervals, which can lead to a critical confusioecbuse a
95% confidence interval refers to the interval tbahtains
the “true” parameter value 95% of the time the gtiscHone.

PROJECTINGRISKS INTO THEFUTURE WITH ABM S

Estimation and quantification of risks is a majask in
many disciplines such as public health, clinical] aecurity
research. The best way to estimate these risksdsriduct a



longitudinal or prospective study where a numbesudfjects
is monitored over a long period of time. For exaapf a
researcher wants to understand who is at the Higis&sto
contract HIV he or she might want to select a largort of
HIV-negative individuals and observe it for, say years.
After 10 years one could conduct a survival analysi
qguantify relative hazard associated with certapesyof risk
behavior (e.g., multiple sex partners). Althoughtsa study
provides strong statistical evidence it is very bensome
and takes a long time because the incidence ofislijuite

the period T the estimate becomes conditioned on the
specific realizatiorj:

and the overall parameter value is an expectatigr all
realizations, i.e.

é:Eoverj( éj IYij- xiju u,n), 4)

where the expectation is taken over all possildehststic
realization of j-indexed samples. The variance of the

low. ABMs allow one to answer similar questions mor €stimate then follows the variance components fiara):

quickly by conducting a cross-sectional study, wher

recruited subjects can describe their behaviors Behavior
could be then quantified in terms of states andsiten

probabilities and incorporated into an ABM. Simirigtthe

behavior for the next 10 years would result in sagents
becoming HIV positive. Replicating the simulatiomany

times allows one to assess how often a particakividual

or a group of individuals who are sharing commohawéors

become HIV positive. In the same manner one caulwgzin
survival analysis and estimate relative hazard.

The relative simplicity of this approach, howevesmes
at the price of the necessity to address the poec the
estimates. In a longitudinal study standard errfotw
well-established statistical procedures and depemdthe
number of subjects in the study. In the ABM applo#e
precision of the estimates depends on both the aurb
subjects in the cross-sectional study and the festaf the
simulations. As we show in the next section, cotidgc
large numbers of replications (e.g., millions) wbaliminate
neither the uncertainty nor the random error assediwith
the number of subjects

1. COMBINING NATURAL VARIATION AND SIMULATION -
BASED UNCERTAINTY

Var(8)=Varoe (E(, IV, X, U, 1) +

Eoverj(var(éj IYij, Xij, U, n)), )

where the first term represents the variation o th
estimatef(Y;, X;, n) over all replicates, and the second term is
a mean of thg(Y;, X, n) over the same replicates. Thus, the
equation (5) could be rewritten as

Var(e)zvaroverj(fj |Yijy xijy U, n) +Eoverj(gj |Yij! xij! U, n)- (6)
Equation 6 provides the basis for the estimationthef
mean and variance of the parameters when the model
combines observed and simulated data. An important
implication of equation 5 is that even if therents variation
between individuals there is still variation caudaed the
stochasticity of the model. Conversely, if the nlode
deterministic, there is still variation caused bg tlifference

in individuals.

Equation 6 could be extended to the case when the
simulations use a number of other parameters that a
considered to be randomly distributed. In the HRample
these parameters would be the numbers of sexudhaten
with partners, use of condoms, transmission prdibaluf
HIV per sex act between HIV-positive and HIV-neyati
individuals, etc. Thus, the estimation of the qimgnof

In a study such as described above, one might bidterestwith three additional parameters becomes:

interested in estimating a specific paramététom the data
simulated over a period of time For example, one might
want to estimate the odds ratio of contracting ki\b years
for having one versus two or more sex partnersthéf
estimation were based on the longitudinal study siibjects
the Odds Ratio estimate would have the form

G=H(Y, X, ), )

where @is the estimate of the odds rafiosymbolsY; andX;
denote the values of dependent and independeablesifor
each individual. For exampleX;=0 if the subject had one or
fewer sex partners over the 5 years Xl if the subject
had two or more sex partners. SimilaMz 0 if the subject is
HIV negativeafter 5 years, andj=1 if the subject is HIV
positive. Model relating$; andY; can contain parametets

that are estimated from the data and thus have sonfd-

guantifiable measure of uncertainty such as standenor.

The variance of the estimat? is calculated according to
conventional statistical methods and is equal to
var(8)=g(Y;, X;, U, n), )
Now, if the sample is not a result of a survey fatiber a
simulated random representation of what could ocwar

6 =E(f; iy mlYigiam Kijigrm ULijiam, U2iiam, U3ijams 1), (1)

where the parameters Ul, U2, and U3 represent other
parameters used in the model. We assume that the g
risk variables X could depend on the values of the
parameters. For example Xfis the number of sex partners,
this parameter could change during the simulatibra i
subjecti with multiple sex partners gets married, and reduc
the number of sex partner to one. The number afrpaters
can, of course, be large, and both the outcome riskd
variables could depend on a joint distribution bege
parameters. In the case of three parameters thaiequor
variance becomes:

Var( 8 )=Varge jxim(fiximlYikm Xikm Uligm U2ijdm,
U3ijiam 1) +Eoverj it m(9i ktml Yijkime Xijiams ULijiame U2ikam, U3ijl(<l8m)y
The simplest assumption for a simulation experimgnt
to assume that all parameters are independentigbdisd
and obtain partial estimates of variance holdingpeot
parameters constant. This approach could eitheerurat
overestimate the variances depending on the nafuthe
covariance structure. At the same time, the assompuif
independence provides a rough estimate of the rahtjee



variation and allows one to conduct sensitivity lgsia. In
case of the independence, the components in equatiorn
into a sum of conditional components, e.g.,
Var over j it m( e ml Yiiiame Xijiams ULijiam, U2iame Ujam, N)=
Var over ji(fi il Yijio Xijio Ulijie U2¥, U3, )+ Var e ji(fi[Yiji,
X, UL*, U2y, U3, n)+ Varge jm(fmlYijm Xijm UL*, U2*,
U3jjm, N), )

infected (I) or susceptible (S) and disease casaspbfrom an
infected to a susceptible individual according teimple
rule. A susceptible agent contacts other individual the
population with the raté contact per unit time and if the
contact is with an infected individual, the diseaise
transmitted to the susceptible individual with pablity y.
For simplicity we assume that the infected indigtoever

where the asterisk indicates a fixed value of theaecovers. The assumptions of homogeneous mixing and

parameter at some characteristic point. The neetidose a
characteristic point to conduct the analysis le&misthe
discussion of realistic scenarios, where the paramalues
and the combination of parameter values are mqsbritant.
The assumption of independence in parameter disitvi
has a theoretical justification. The approach dfuasng
random distribution of parameters follows Bayeslagic
(i.e., that the population parameter is distribudedording to
some distribution). A classic frequentist approatulates
that the parameters are fixed in the population #rel
estimates are only providing a point estimate witie
associated standard errors. The presented appfobmhs
the frequentist logic of fixed parameter but coasid
standard errors as the basis of quantifying theetaimty
about the actual location of the estimable paramdteus,
the distributions of U1, U2, and U3 do not représeme
population distribution of these values but rathbe
analyst’s uncertainty about the location of the fparameter.
It is unlikely that there is a correlation in thetimated
uncertainty in two or more parameters. If, howewere is
using the Bayesian approach and estimates the ptaam
values accordingly, the consideration of joint rilxttion of
parameters in the population becomes an impoanei

A useful way to consider many parameter distrimgics
to consider certain parameters as ‘“experimentalg., (i
consider them fixed and examine the results under t
analyst’s control). The obvious problem of coursethat
varying only one parameter at a time leads to alptp
factorial designs when one needs to consider akipte
variable combinations.

Considerations of theoretically valid assumptions a
useful to reduce the number of associations tadmked. In
the HIV example, some subjects claim to use illetyaigs
such as cocaine, methamphetamine, and heroin. dttermp
of sexual activity is very different for users ofdatives
(heroin) and stimulants (cocaine and methamphe&min
Stimulant users often use the drug to enhance iual
activity, while heroin users have less sexual #gtivecause
of the sedative effect of the drug. If a subjecardes the
drug pattern from methamphetamine to heroin, thaiae
patterns are likely to change too. Usually the choof
scenario is dictated by the study objectives, suach
important public health questions [5].

IV. EXAMPLES OF THEAPPLICATIONS

We illustrate the presented methodology with a &mp
example inspired by the public health desire tadiotethe
number of new cases for a pandemic disease. As$mime

mass-action lead to the probability of infectiom pait time
P for each susceptible as
P= Ayl= pl,
wherep is the product of andy.
Let us consider that the parameftdas estimated from an
independent sample af individuals and has a mean of

(10)

L with a standard error o;. If we want to estimate the

numbers of infected individuals at tinfewe will need to
conduct a simulation of the agent-based model septeg
the entire population of siZ¢ and assess the precision of the
estimate. Assume that the population is of siz6@ @nd the
parametelf is estimated from the sample of 50 individuals
with the mean of 0.1 per day and standard erro0.04.
Assuming the parametef is fixed at the value of 0.1,
simulation runs for such a model over a period @fdays
lead to a distribution of the outcome caused pubsiythe
random nature of the agent-based simulation. Wetlel
distribution as “Error Within” (Figure 1). The owdr
proportion of infected individuals is p=0.075, whicould
also be found by an exact solution to the logidiiterential
equation resulting from the model.

Note that a standard error f@ris defined in frequentist
terms and represents the area where the “true’raotgiom
parameter value can be found. Thus, a standard éoes
not refer to the estimated distribution of the paster.
Nevertheless, we treat the uncertainty in paranetBmate
in a Bayesian sense, where the parameter follows a
distribution with known characteristics, e.g. a Mat
distribution with mean 0.1 and standard deviatibf.04. In
fact, since the “true” frequentist parameter vaisenot
known, why not to consider a “what if’ scenario aghéhw
potential fixed values from a distribution.

By drawing random values from this distribution oan
assess how the uncertainty is propagating throlugmiodel.
We can calculate the components of variance whieldae
to both uncertainty in parameter value and stoahastture
of contacts between individuals.

In the current examplej represents the proportion of
infected individualsp does not vary between individualer
between random simulatiopgonditioned on the value @f
but varies because of the uncertainty associatel itg
estimation. The values of the variance componemtthé
example are the following: variance component betwe

values off, is Varge j(E( éj [Yii, fmy N))=0.0147, variance
component within the value @, (i.e., given a specific value
of f) is Eowr j(Var( &; Y, fm N))=0.0021, and the total

simplicity a homogeneously mixed closed populationyariance of the estimate is 0.0168 with correspupgiguare

containing all susceptible individuals and a newedse
which spreads in the population. An individual ¢eneither

root error terms 0.121, 0.046, and 0.129. Becatsefence



cannot be negative the low bound is fixed at z&igurel).
Presented error bars thus represent the standeots af
these conditional and total estimates. Because hef t
asymmetry in the distribution of uncertainty it bstter to
present the 95% uncertainty intervals because Hedter
reflect the shape of error distribution.

Generally, in sampling theory when parametér
represents the population mean and based on sapize
n, the standard error will be inversely proportional the
square root of the sample size.

Standard.error(g, )= sqrt(Vy/N), (11)

where V, is the estimate of the total variance for
parameterd and N is the population size. Note, here we
assume that city size N is real, fixed to 1,000viddials, and
we cannot change it as we would like.

0.25

0.2

0.15

Proportion of Infected

0.1

0.05

T T T

Error Within Error Between Total Error

Figure 1. Components of the total variance of ttepgrtion
estimate. Error bars correspond to the sizes aidata
errors. Error Between corresponds to the variation
prevalenced caused by the variation in value 8f Error
Within corresponds to the variation whgnis fixed at its
mean.

If this were a real study with real people and ity

Although we cannot change the sample size, in the
simulation model we can change the number of sitiaua
per parameter value. The increase in the number of
simulations will not have much impact on the tastimates
and even if all model-based stochasticity is elatéd (i.e.,
considered a deterministic solution) the errorhi@ ¢stimate
of the proportion infected cannot be smaller thaa érror
caused by the uncertaintyfin

We would thus caution against reporting the valuthe
standard error based on the number of simulatiatiser
than the population size in the denominator. Thantjty
Q=sort(Vy/M), where M represents the number
simulations, could be viewed as a standard errboba very
different quantity. In particular,Vy/M represents how

of

accurately the simulated meaviar( éj IYii, fm N)/M

represents the expected vakig, j(Var(éj [Yiis By N)).

Although this quantity has no part in equationsnfl &,
those can be useful to understand how many simuaktne
should run to get accurate representation of thamnee. One
can hypothetically use billions of replications dagding on
the power of the computer and can completely ebeirthe

quantity Q (i.e., nlzlim Q)=0) but this will of course not

eliminate the value of the total variance. In owaraple,
when estimating the proportion infected, having 10
replications could lead to the point estimate afy 6.0722;
for 100 replications we can get 0.0749, and fofQ0,we get
0.0750. This exercise gives us a good indicatiorhaiv
many replications to use in the simulation. If tpeint
estimate is 0.075 and the standard error of thenat is
about 0.057 then there is no reason to strive Btaining
higher digits and 100 replications are quite sidfit for the
purpose.

Another example is based on a recent study cabled
Acquisition and Transmission of HIV—-Cooperative
Agreement Program (SATH-CAP) funded by the National
Institute of Drug Abuse (NIDA). Based on a sample o
almost 2,000 individuals who reported risky behaiuat
could be associated with HIV transmission, the asdeers
developed an agent-based model describing sexdalraig-
injecting activities of the subjects and the sociatwork
context of the studied population [3,6,7].

The study was cross-sectional (i.e., the subjecsew
assessed once) and the subjects were asked abaurtt @nd

were chosen as a random city from the homogeneouspast sexual and drug use behavior. The prevalehéd\o

mixed country, the total variance for disease propo
would be equal t@(1-p)=0.069, and the standard error of
that estimate would besgrt(0.069/1000)=0.0083. Such
estimate assumes simple random sampling from aritety
large population considering a single realizatioh tioe
epidemic process and does not account for a vaoéty
possible epidemic trajectories that could have ritémally
occurred. The increased total variance in the niaglel
example is different and higher because of the rmicgy in
the parameter estimate and the randomness indycéaeb
contact nature of disease spread. It does not demsi
sampling but rather considers a specific studigulifation.

was about 11% but the incidence was very low, thus
precluding researchers from estimating odds rdtiosisk.
The use of a prevalence-based case-control apprfoacn
disease like HIV is deeply flawed because the biehaan
dramatically change after an individual learns alpmsitive
HIV status, and thus the risk factor often changéh the
outcome. To estimate relative risks associated difflerent
behaviors such as having many sex partners, thavimeh
was projected (3 years ahead) using agent-basedbsioms.
This approach simulates potential incidence ands thu
provides a virtual sample for the analysis. Thdlehge with
this approach is that one needs to account fornpetex



uncertainty, simulation stochasticity, and
uncertainty in providing estimates of the standardrs.

strugtur and provides a good insight to where the highesk ri

individuals are, where to focus interventions, at could

We have applied the approach described above @nobt be the crude magnitude of the effect.

the odds ratios of becoming HIV positive in 3 ye&ws
having 10+ sex partners in 6 months compared watringy
only 1 sex partner. The estimates were adjustedder race,
sex, frequency of partner change, use of stimuaarngs, and
drug injection. The odds ratio for the default maeser
values was 5.4 with an estimated uncertainty eofot.7.
However, besides the uncertainty in behavioral mpatar
estimates (based on the sample of risk subjectse tvere

V. CONCLUSIONS

We have presented an approach that provides atigor
method for calculating uncertainty associated witie
combination of real data and simulated experimessisg
agent-based models. We have clarified the inteapioet and
presentation of uncertainty and standard errorshie also
presented examples where such approaches are used.

uncertainties for which there was no prior knowkedg Although these methods are presented in the comibxt

Among these uncertainties were the percentageeotafal
risk population the sample actually representedsiteity of
the results to the setting
probabilities of who has sex with whom), and difatrrates
of change in sex partners.

For our analysis we considered sensitivity analyisre
we methodically changed the model setting, repgatire
simulations and regression analysis. The analysis/s that
when the sample represents 5% or 15% of the paopultte
Odds Ratios tend to be higher (OR=6.8 and 7.8 extisely

This work was supported
U01DA017373from the National Institute on Drug Abuse

agent-based models they are quite general and easity

; pr ; be extended to system dynamics modeling. In thiepwe
in mixing matrices (e.g.have not

considered “deep uncertainty” which

characterized by effects that could not be forechswen if
all information is precisely available at the tiofeanalysis.
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